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September 20, 2023

Abstract

Maltodextrin is a substance that is being increasingly used to preserve the physicochemical and biological
properties of many active compounds. Therefore, determining the particle size distribution (PSD) of the
particles having maltodextrin matrices is a crucial issue to control their end-use properties. This can be
done directly by laser diffraction (LD) in a dry way or via SEM image analysis. In this paper, a new method
of segmentation of quasi-circular particles from grayscale images called curvature analysis method (CAM) is
proposed. This method is compared to two other widely used methods: Circular Hough Transform (CHT)
and Stochastic Watershed (SW). It aims in particular to reduce the drawbacks of these two methods: a
large number of false detections and an inaccuracy with respect to the mean particle size in case of a large
number of overlapping particles. The method is validated using synthetic images generated with a model
allowing to simulate gray level images similar to the maltodextrin particle images from the SEM. The CAM
method is then applied to real images and the resulting PSD is compared to the one provided by the LD
technique. Overall, the results obtained by the CAM method are much better than those proposed by CHT
and SW on synthetic images and than the LD method on real images.

Keywords: granulometry, SEM, numerical simulation, overlapping particles.

1 Introduction

1.1 Context

Nowadays, an increasing number of active compounds coming out of discovery (food, pharmaceutics, cosmetics,
etc.) have limited applications mainly due to problems of poor stability, water insolubility or high toxicity
for example. In order to increase the bioavailability and improve the stability of these compounds, different
nanotechnology-based delivery systems have been developed. Among these, nanoencapsulation represents an
effective approach to improve solubility, minimize degradation process, reduce toxicity and control the active
absorption and biological response of molecules like polyphenols [1]. Polyphenolic compounds among which
the Chlorogenic acid (CGA) group, and particularly the 5-O-caffeoylquinic acid (5-CQA), exert important
therapeutic roles such as antioxidant, antibacterial, anti-inflammatory or cardioprotective [2]. Encapsulation
could be performed by spray-drying technique, using the Nano Spray-Dryer B-90 from Büchi Labortechnik AG
(Fig. 1), which allows to coat different active ingredients (AI), producing dry nanoparticles [3].

The wall materials in which the AI is confined provide protection from the surrounding environment, pre-
serving their chemical, physical and biological properties, as well as enable to control its release [6]. In this
study, maltodextrin has been used as a wall material to coat the 5-CQA. When encapsulating, the release of
the active molecule depends on several properties of the particles, especially their size distribution, which itself
depends on the process parameters. It is consequently very important to determine the size distribution of the
produced particles to optimize the delivery properties of the active molecule.

*antoine.bottenmuller@gmail.com
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Figure 1: Schematic Nano Spray-Dryer set-up for the encapsulation of CGA by maltodextrin. Adapted from [4]
and [5].

1.2 Images acquisition

A sample of the dry powder collected at the end of the spray-drying process has been analyzed by Scanning
Electron Microscopy (SEM), in order to characterize their size and morphology. The equipment used is a Field-
Emission Scanning Electron Microscope JEOL JSM 7100F. The dry particles are placed on a carbon film and
metallized by coating with a thin layer of gold using a plasma coater, to avoid excessive electron absorption. The
surface of the sample is scanned by an electron beam produced from a tungsten filament and the observation of
the particle surface is done by detecting secondary electrons (with a voltage of 10 kV). Electron micrographs were
taken at 20000X of magnification. The sample was scanned in order to take about twenty images representative
of the entire population of particles constituting the powder (Fig. 6a).

2 Segmentation methods

To perform a granulometric analysis in such images, the use of a circle detection method is needed. Two of
the most efficient and used methods from the literature for circle detection have been studied and tested for
this problem: the Stochastic Watershed (SW) [7] and the Circular Hough Transform (CHT) [8]. As these two
methods have some major problems in this situation, a new method has been developed to deal with them: the
Curvature Analysis Method (CAM).

2.1 Stochastic watershed

Although the watershed segmentation is a strong method for contours extraction in smooth images for which the
contours of the objects are clear enough and well defined, it is not robust for objects with major light effects and
heterogeneous 3D aspects, and too many false contours may be detected [9], [10]. The Stochastic Watershed
(SW) enhances the results by accumulating multiple watershed realizations with random markers [11]. A
distance transform is then applied on these extracted contours [12], and the local maxima are calculated and
defined as the centres of the different circles on the map, and the value of the distance gives their radius.

2.2 Circular Hough transform

The Circular Hough Transform (CHT) is one of the most widely used methods for circle detection [13], [14], [15].
After a low-pass filter on the gradient magnitude image and a binarization of the contours, a discrete three-
dimensional CHT space is built and the circles are extracted from it [16].

2.3 Proposed method: curvature analysis

The two previous methods produce however either under or over-segmentation, especially in the presence of
overlapping grains, and provide a grain size distribution far from reality. The Curvature Analysis Method
(CAM) has been thought and developed to give a solution to this problem. This is a procedural algorithm
divided into three steps:

1. From the original image, the so-called ”linear minimum MSE map” is built; it represents the probability
for each pixel to be on the contour of a grain, by minimizing a weighted Mean Squared Error (MSE)
function in a pre-defined window for each pixel of the image (Fig. 2).
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2. Then, a clean binary image of the thin arcs (portion of the contours) of the grains is extracted from the
linear minimum MSE map (Fig. 3).

3. The associated set of circles best fitting with these arcs is finally estimated (Fig. 4).

These steps will now be detailed.

2.3.1 Building of the linear minimum MSE map

This map is constructed from a circular window scanning the grayscale gradient magnitude image ∇. The line
going by the centre pc of this window, and minimizing the weighted MSE regarding all pixels in the window, is
obtained by regression. Its slope is denoted by α.

Thus, the error function Epc
which must be minimized for each pixel pc from the gradient magnitude ∇, is

defined as follows:

Epc(α) =
1∑n

i=1 ∇(pi)

n∑
i=1

d(pi, Lpc,α)
2∇(pi) (1)

with:

� (pi)i∈J1;nK the family of the n pixels surrounding the centre pc in the pre-defined window;

� ∇(pi) the gray value of the pixel pi in the gradient magnitude image;

� Lpc,α the line of slope α ∈ ]−∞; +∞] crossing the point pc in the image’s coordinates ;

� d(pi, Lpc,α) the Euclidean distance between the point pi and the line Lpc,α in the 2D Euclidean vector
space:

d(pi, Lpc,α) =
(yi − yc)− α(xi − xc)√

1 + α2

By associating to each pixel pc the corresponding value of the minimum error Epc(α), the ”linear minimum
MSE map” (Fig. 2e) is finally built and linearly normalized (its values go from 0 for the highest MSE values to
1 for the lowest ones).

2.3.2 Extraction of the thin arcs of the grains’ contours

The second step’s is extracting the binary image of the thin arcs of the grains’ contours from the linear minimum
MSE map previously built. It is divided into five sub-steps:

1. First, the linear minimum MSE map is binarized through a K-means clustering on the gray values of the
map’s pixels, with K = 2 in our case. (Fig. 3a).

2. Then the topological skeletonization [17] is applied on this binary image of the grains’ contours, to get
the thin topology-preserving version of these contours (Fig. 3b).

3. This skeleton is then cleaned by removing the isolated binary objects for which the area and the maximum
Feret diameter are smaller than defined thresholds (Fig. 3c).

4. The remaining arcs are then split by applying an intersection detector: each positive pixel surrounded by
three positive pixels or more is considered as an intersection, and is then removed (green parts in Fig.
3d).

5. Again, the arcs are split, according to a curvature criterion (red parts in Fig. 3d). Only arcs with a quite
constant curvature will be remaining (Fig. 3e).

2.3.3 Circles association and rearrangement

The last step aims to get the final detected circles from the binary thin arcs of the grains’ contours. It is also
divided into four sub-steps:

1. First, to each distinct arc is associated one unique circle, defined by the position of its centre pc = (xc, yc)
and its radius r, computed by considering the arc A as a 2D point cloud (A = (pi)i∈J1;nK) and minimizing
the error function Ecircle(pc, r), which has a well-defined solution to its minimum, defined as follows:

Ecircle(pc, r) =
1

n

n∑
i=1

((xi − xc)
2 + (yi − yc)

2 − r2)2 (2)

A threshold on Ecircle removes the less probable circles. The first remaining circles can be seen on Fig. 4a.
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(a) Original image. (b) Gradient magnitude with the cir-
cular window (blue) centred on a pixel
pc.

(c) View on the one window with the
centre pc (green).

(d) Line Lpc,α (red) going by the cen-
ter pc and minimizing the weighted
MSE function.

(e) Final computed linear minimum
MSE map.

Figure 2: Construction steps of the linear minimum MSE map.
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(a) Binarized image of the linear mini-
mum MSE map from Fig. 2e.

(b) Binary image skeleton. (c) Clean skeleton.

(d) Intersection area (green) and cur-
vature irregularities (red) on clean ske-
leton.

(e) Final split arcs.

Figure 3: Steps of the extraction of the thin arcs.
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(a) All circles from arcs with an error
below a threshold.

(b) Circles close enough in the space
(xc, yc, r) to be merged, green and blue
being two clusters of merging circles.

(c) Circles sharing arcs close enough
from the circles edges to be merged,
green being one cluster of two merging
circles.

(d) Circles being brighter inside their
arc than outside (green) are removed.

(e) Final detected circles.

Figure 4: Steps of circles association and rearrangement.
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(a) Binary shape of a grain with ran-
dom contours.

(b) Grayscale light effects added to the
shape, where light comes from the left.

(c) Shadow of the grain computed from
the shape and light direction.

(d) An image with several grains added
one on top of the other.

(e) Final image after being blurred and
noised.

Figure 5: Example of the generation of a simulated image.
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2. Close circles are then detected and merged with the same previous formula. The proximity of the circles
is simply computed by the Euclidean distance in the space (xc, yc, r) (Fig. 4b).

3. Circles for which the arcs are fully on another circle are merged with the one circle (Fig. 4c).

4. Finally, knowing the arcs associated to each computed circle, the circles for which the average gray value
on the original image near their arcs is higher outside the circle than inside are removed (Fig. 4d). The
remaining circles are then the definitive detected circles (Fig. 4e).

(a) Original image. (b) Grayscale normalized linear mini-
mum MSE map.

(c) Clean binary skeleton from MSE
map with curvature splits (red) and in-
tersections (green).

(d) Circles computed for all arcs from
the skeleton.

(e) Final circles segmentation.

Figure 6: Example of application of the CAM on a real image: view of the different steps.

3 Validation

To test the three different segmentation methods in images of grains for which the ground truth (i.e. the true
centre position and the true radius of the equivalent disk for each visible grain) is known, a grains simulation
model has been developed, based on several properties of the real images. This model will be used to validate
the results on the particle size distribution obtained with the three segmentation methods from the ground
truth, and compare the accuracy of the three methods between each other.

3.1 Grains simulation model

The grains simulation model is inspired by the dead leaves model [18], [19]. It takes three input parameters:
the average number of grains navg on the image, the distribution law Lradii of the grains’ radii, and the vector
of the direction dlight of the light source in the half-sphere in the 3D space above the image’s plan.

It starts by defining a definitive number of grains by choosing it through a uniform law between navg/2 and
3navg/2.

The grains are added iteratively to a grayscale image. Each grain is built and added over all the previous
grains as follows (see also Fig. 5):

1. The random parameters of the disk, its radius and position, are first generated. The centre is here
randomly chosen on the maxima of the distance map computed on the empty space in the image.

2. A random deformation of the shape is then computed, and the properties of the disk (radius, position)
are updated according to this new shape. This allows to move the disk to avoid collisions with previous
ones.
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(a) Original image. (b) Segmentation with SW (N = 40).

(c) Segmentation with CHT. (d) Segmentation with CAM.

Figure 7: Example of results from the three segmentation methods on real image.
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3. A gray value is generated as a function of the iterative step, and lighting effects (for volume simulation)
and a shadow (based on lighting direction) are finally added.

After all the grains are placed and drawn (Fig. 5d), the generated output image is blurred at different depth
layers, and little blurred Gaussian noises are finally added to it (Fig. 5e).

3.2 Evaluation of the segmentation methods through the model

In this study, we consider two kinds of laws for the Particle Size Distribution (PSD): a bimodal law, and a
log-normal law. For each law, 100 images have been generated with the grains simulation model. The ground
truth (labels) for all the images is well known and concerns only the visible grains.

The three segmentation methods are then applied on all generated images, with the best inner parameters
possible set for each method, resulting in a list of radii of detected circles.

The PSD densities, in number and in volume, of the three segmentation methods as well as the ground
truth, are retrieved for the two laws. The four resulting diagrams are presented Fig. 8, and the values of the
mean and the standard deviation (STD) of each distribution are given in the Tables 1 and 2.
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(d) Log-normal law: volume densities

Figure 8: Diagrams of densities (PSD) retrieved from the simulated images with SW, CHT and CAM methods.

The volume densities aim to highlight the largest radii, which are mostly false detections in our simulations
when getting over 1µm, even if they aren’t abundant in number. They show that, on the one hand, a noticeable
proportion (in volume) of false large grains over 1µm of radius have been detected by the CHT, where the
ground truth indicates almost no true circles. The SW and CAM, on the other hand, have almost no false
detection over this threshold.

The three methods seem all to underestimate the size of the grains in average from the ground truth (see
Tables). The graphs of densities in number show that CHT and CAM have both more false little grains than
they should have, even if this is less noticeable for the CAM. But the global shape of the true distribution law
can be identified on both methods’ curves in the four graphs, where this one shape fades with the SW.

More generally, the SW’s density curves seem to be quite concentrated around their mean value: their
standard deviation is much smaller than the ground truth compared to the two other methods’ ones, and their
minimum and maximum radii never get far from the mean, preventing detection of much larger or much smaller
true grains. On the contrary, the CHT seems to detect a noticeable amount of false grains in extreme radius
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Properties Ground truth SW CHT CAM

Mean 0.199 µm 0.190 µm 0.280 µm 0.191 µm
STD 0.082 µm 0.058 µm 0.101 µm 0.082 µm

Table 1: Mean and STD of densities on bimodal law.

Properties Ground truth SW CHT CAM

Mean 0.199 µm 0.287 µm 0.282 µm 0.190 µm
STD 0.082 µm 0.054 µm 0.104 µm 0.081 µm

Table 2: Mean and STD of densities on log-normal law.

values despite the thresholds put in its parameters, and its large standard deviations illustrate well this. The
CAM, on the other hand, seems to be more stable for both number and volume densities, despite mean values
still a little smaller than the truth’s ones, and its density curves, as well as its mean and standard deviation
values, seem to be the closest ones from the ground truth’s in every cases.

4 Application on real images

4.1 Results

A total of 20 real images of particles of maltodextrin observed by SEM is provided for this study. They all have
the same scale. The three segmentation methods are applied (see Fig. 6 for the main processing steps of the
CAM, and Fig. 7 for an example of segmentation comparison between the three methods on a real image), and
just like for the validation part, the diagrams of the PSD from the lists of the detected circles’ radii are built,
for densities in both number and volume.

Ground data have been collected by Laser Diffraction (LD) in a dry way with the Mastersizer MS 3000
particle size analyser [20]. But as this method of particle size measurement suffers from a few defaults [21], it
cannot be considered as ground truth. The resulting PSD is illustrated Fig. 9, and the corresponding means
and STDs are given in Table 3.
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(b) Real images: volume densities

Figure 9: Diagrams of densities (PSD) on real images.

Like in the validation process, the graphs and the standard deviations show that the SW’s density remains
quite concentrated around its mean, where the CHT’s one appears very large, with a high proportion of small
(Fig. 9a) and large (Fig. 9b) radius values at the same time, and has even once again in its volume density
what seems to be a significant proportion of false grains radii over 1µm, limited by the threshold given in its
parameters. The CAM seems once again to be more moderated, extended in both small and large radii zones,
but in reasonable proportions.

Although the LD’s curve seems to be quite close to the ones from the segmentation methods in the graph
in number, it is way far from these ones in the graph in volume, showing extremely large values of grains radii
up to 60µm. When looking at real images, no grain seems to have a radius over 1µm, and, in reality, no grain
could be as large as the LD’s curve indicates. It is likely due to grains clusters which are considered as only one
single grain when physically analysed by this technique to get its corresponding radius.
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Properties LD SW CHT CAM

Mean 0.217 µm 0.285 µm 0.284 µm 0.207 µm
STD 0.133 µm 0.052 µm 0.105 µm 0.093 µm

Table 3: Mean and STD of densities on real images.

Based on the CAM results, it can then be concluded that the real PSD on the particles of maltodextrin must
be close to a log-normal distribution law, for which the mean is around 0.207µm and the standard deviation
around 0.093µm.

4.2 Discussion

When applying the SW, a major problem appears: if the number of markers is small, only the main contours
of the largest grains are extracted, the tiniest ones having just a little chance to get targeted by a marker, and
when increasing this number N , false contours begin to appear very quickly inside the largest grains. Because
the size of the grains is far from being constant and because there are many overlapping cases in such images, it
seems that there is no proper value for N to detect small and large grains at the same time. These observations
could explain the fact that the SW’s density curve seems to be quite concentrated around its mean.

Although the CHT seems to be robust on images with well-defined and separated objects, it seems to be quite
defective when the grains are condensed and overlapping, and when heterogeneous 3D aspects and major light
effects affect the grains appearance. The 3D CHT space building process doesn’t consider contours’ properties
(such as the curvature) and does not make the difference between the pixels of the contours from two different
objects. It can therefore easily mix them and detect false circles between two or more different grains if they
are close enough or overlapping. This could explain the relatively high proportion of very small and very large
false grains in the granulometric analysis.

As the CAM analyses only parts (the arcs) of the contours of the grains, and as the grains are far from
being perfectly circular, the detected circle completely depends on the curvature of the one part of contour: if
the arc has a too small radius of curvature compared to the radius of the true grain to which it belongs, the
associated circle will be smaller than the true corresponding grain, and, on the contrary, if the arc is almost
flat, the associated circle will be bigger. Moreover, when the arc is only a little piece of the grain’s contours
and when its curvature is not steady, the eq. 2 tends to give a smaller radius than the ground truth. This could
explain the underestimates of the mean radius of the circles detected by the CAM.

This application finally shows that the LD technique provides a PSD way far from the ones obtained by any
of the three segmentation methods and even from the observations by eye. It can not then be considered as
trustworthy for such types of particles and configuration.

5 Conclusion

The particles of maltodextrin from this study are facing particular features: the irregularity of the contours of
the grains, the rough aspect of their surface combined with strong light effects, and the way the particles are
condensed and mostly overlapping, make the granulometric analysis on such images quite challenging.

A new segmentation approach - the Curvature Analysis Method (CAM) - has been developed to address the
problems raised by the existing methods from the literature such as the Circular Hough Transform (CHT) and
the Stochastic Watershed (SW). A 2D grains simulation model has also been created to assess and compare the
accuracy of the three segmentation methods with a known ground truth.

The analysis of the PSD obtained from each of the three methods on simulated images shows that the CAM’s
density curves are more accurate than the ones obtained from the SW and the CHT, with less false detections
and a better estimate of the mean radius and of the standard deviation. The same results can be observed on
real images.

As this study focuses only on topology-based segmentation methods, and to go further, deep learning ap-
proaches, such as CNN or U-Nets for objects localisation, could be used as segmentation tools and could give
efficient and accurate results to this PSD evaluation problem.
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