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Editorial

Dynamic Recrystallization Behaviours in Metals and Alloys
Frank Montheillet

CNRS, UMR 5307 Laboratoire Georges Friedel, Centre SMS, Mines Saint-Etienne, 158 cours Fauriel, CEDEX 2,
42023 Saint-Etienne, France; montheil@emse.fr

The existence of dynamic recrystallization (DRX), i.e., recrystallization occurring
during straining, has long been questioned [1] despite the publication of strong mechanical
and microstructural evidence [2]. Some authors later showed that it was not merely a
“laboratory curiosity” but in fact a real “industrial tool” [3]. Currently, DRX has been
defini tively recognized as the most important physical mechanism associated with the
hot working of metals and alloys, an understanding of which is key to the optimization of
microstructural and mechanical properties.

Although DRX was first imagined to take place exclusively in low to medium stacking
fault energy (SFE) materials, it was later observed that high SFE metals, such as ferritic
steels or aluminium alloys, also exhibit recrystallization-like microstructure transformations
during hot working. In the first case, DRX occurs by nucleation and the growth of new
grains, which has been termed discontinuous DRX (DDRX); in the second case, DRX
results from the progressive “fragmentation” of the initial grains and is often referred
to as continuous DRX (CDRX) [4]. The aim of this Special Issue is to present recent
novel research on this wide topic. The behaviour of a variety of alloys submitted to new
hot-working processes (Figure 1) and/or with new compositions is addressed, which
highlights the importance of DRX in the whole field of the thermomechanical processing of
metals (Figure 2).
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ing fault energy (SFE) materials, it was later observed that high SFE metals, such as ferritic 
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of new grains, which has been termed discontinuous DRX (DDRX); in the second case, 

DRX results from the progressive “fragmentation” of the initial grains and is often re-

ferred to as continuous DRX (CDRX) [4]. The aim of this Special Issue is to present recent 

novel research on this wide topic. The behaviour of a variety of alloys submitted to new 

hot-working processes (Figure 1) and/or with new compositions is addressed, which high-

lights the importance of DRX in the whole field of the thermomechanical processing of 

metals (Figure 2). 

Figure 1. Schematic representations of some processes used to prescribe large-strain hot defor-

mations: (a) friction stir welding [5]; (b) reciprocating upsetting-extrusion [6]; (c) multidirectional 

forging [7]. 
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Figure 1. Schematic representations of some processes used to prescribe large-strain hot deformations:
(a) friction stir welding [5]; (b) reciprocating upsetting-extrusion [6]; (c) multidirectional forging [7].

Nagira et al.’s paper [5] investigates the DRX of both commercial-grade and high-
purity aluminium occurring during friction stir welding; possible transitions between
DDRX and CDRX are revealed, which are associated with distinct texture components.
Dolzhenko et al.’s article [8] deals with DRX in an austenitic stainless steel containing about
10 vol% ferrite together with a small fraction of nanometric Z-phase (CrNbN) particles sub-
mitted to compression tests. Power-law functions are used to relate the various mechanical
and microstructural parameters to each other.
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Figure 2. Examples of microstructures exhibiting DRX in various alloys: (a) DDRX in a highly al-

loyed austenitic stainless steel (1000 °C, 10 −4 s −1, ε = 1) [8]; (b) onset of CDRX/DDRX in a Zr-Ti-Al-

V alloy (800 °C, 10 −2 s −1, ε = 0.7) [9]; (c) onset of CDRX in Ti-35421 (880 °C, 10 −2 s −1, ε = 0.9) [10]. 

Nagira et al.’s paper [5] investigates the DRX of both commercial-grade and high-

purity aluminium occurring during friction stir welding; possible transitions between 

DDRX and CDRX are revealed, which are associated with distinct texture components. 

Dolzhenko et al.’s article [8] deals with DRX in an austenitic stainless steel containing 

about 10 vol% ferrite together with a small fraction of nanometric Z-phase (CrNbN) par-

ticles submitted to compression tests. Power-law functions are used to relate the various 

mechanical and microstructural parameters to each other. 

Two contributions are devoted to near-β titanium alloys deformed in uniaxial com-

pression in both the α and α + β domains: Zhou et al. [10] investigate a low-cost iron-

containing alloy, while Buzolin et al. [11] develop mesoscale models to predict the flow 

stress and microstructure evolutions of the Ti-5553 and Ti-17 grades. Microstructure and 

texture evolutions of a new Zr-Ti-Al-V alloy are investigated by Lei et al. [9], who point 

out the co-existence of DDRX and CDRX. 

Three papers deal with the hot working of magnesium alloys, which are much less 

frequently mentioned in the literature. Two similar Mg-Gd-Y alloys are submitted to large 

strains by Wu et al. [6] and Liu et al. [7] using reciprocating upsetting-extrusion and multi-

directional forging deformation processes, respectively. In a similar way, Ullmann et al. 

[12] investigate a twin-roll-cast Mg-Y-Zn alloy by plane-strain compression. The articles 

converge on the conclusion that complex CDRX and/or DDRX mechanisms lead to grain 

refinement and texture weakening, thus improving formability. 

Finally, a theoretical paper by Montheillet [13] points out the importance of the sof-

tening induced by grain boundary migration (BMIS) during DDRX, in particular for the 

estimation of grain boundary mobility from experimental data. 
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Figure 2. Examples of microstructures exhibiting DRX in various alloys: (a) DDRX in a highly alloyed
austenitic stainless steel (1000 ◦C, 10 −4 s −1, ε = 1) [8]; (b) onset of CDRX/DDRX in a Zr-Ti-Al-V
alloy (800 ◦C, 10 −2 s −1, ε = 0.7) [9]; (c) onset of CDRX in Ti-35421 (880 ◦C, 10 −2 s −1, ε = 0.9) [10].

Two contributions are devoted to near-β titanium alloys deformed in uniaxial compres-
sion in both the α and α + β domains: Zhou et al. [10] investigate a low-cost iron-containing
alloy, while Buzolin et al. [11] develop mesoscale models to predict the flow stress and
microstructure evolutions of the Ti-5553 and Ti-17 grades. Microstructure and texture
evolutions of a new Zr-Ti-Al-V alloy are investigated by Lei et al. [9], who point out the
co-existence of DDRX and CDRX.

Three papers deal with the hot working of magnesium alloys, which are much less
frequently mentioned in the literature. Two similar Mg-Gd-Y alloys are submitted to large
strains by Wu et al. [6] and Liu et al. [7] using reciprocating upsetting-extrusion and multi-
directional forging deformation processes, respectively. In a similar way, Ullmann et al. [12]
investigate a twin-roll-cast Mg-Y-Zn alloy by plane-strain compression. The articles con-
verge on the conclusion that complex CDRX and/or DDRX mechanisms lead to grain
refinement and texture weakening, thus improving formability.

Finally, a theoretical paper by Montheillet [13] points out the importance of the soft-
ening induced by grain boundary migration (BMIS) during DDRX, in particular for the
estimation of grain boundary mobility from experimental data.
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