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Epileptic patients may suffer from severe brain damages during seizures. There is thus a significant need for automated seizure prediction. Independently, brain macroscopic activity has been shown to display scalefree temporal dynamics, which, in turn, were involved into seizure prediction. Selfsimilarity, the paradigm model for scalefree dynamics, has however mostly been defined in univariate settings, thus yielding a collection of independent analyses of recorded signals. Yet, nonnegligible correlations exist in multi-channel recordings of brain activity and may prove useful in seizure prediction. This work aims to assess the benefits of using a recently developed multivariate eigen-wavelet framework for multivariate selfsimilarity analysis in seizure prediction using CHB-MIT Scalp EEG data.

I. INTRODUCTION

Context. Epilepsy, a chronic disease is a central nervous system disorder, that leads to seizures during which the brain of patients can be severely injured. Devising automated epileptic seizure prediction procedures thus constitutes a crucial stake, notably when they can be implemented from non-invasive and wearable scalp electroencephalogram (EEG) devices.

Numerous studies have shown that infraslow brain activity can be well-described by means of arrhythmic, or scalefree, temporal dynamics and thus efficiently modeled by selfsimilarity [START_REF] He | Scale-free properties of the functional magnetic resonance imaging signal during rest and task[END_REF]- [START_REF] La Rocca | Self-similarity and multifractality in human brain activity: A waveletbased analysis of scale-free brain dynamics[END_REF]. In practice, selfsimilarity analysis consists in the estimation of a selfsimilarity exponent [START_REF] Abry | Wavelet estimation for operator fractional Brownian motion[END_REF]. Yet, selfsimilarity has been mostly studied in univariate settings, i.e., selfsimilarity exponents are estimated independently for each time series. However, jointly recorded brain activity is monitored via numerous sensors, entailing multivariate time series. Recently, a multivariate selfsimilarity model, operator fractional Brownian motion (ofBm) was proposed [START_REF] Didier | Integral representations and properties of operator fractional Brownian motions[END_REF], and a corresponding multivariate eigen-wavelet-based analysis was developed [START_REF] Abry | Wavelet estimation for operator fractional Brownian motion[END_REF], [START_REF] Abry | Wavelet eigenvalue regression for n-variate operator fractional Brownian motion[END_REF]. The goal of the present work is to study the relevance of using multivariate selfsimilarity for the prediction of epileptic seizures. Related works. Seizure prediction is an important research topic, often investigated using tools such as synchronization and functional connectivity [START_REF] Mohanbabu | An optimized deep learning network model for eeg based seizure classification using synchronization and functional connectivity measures[END_REF], phase coherence [START_REF] Mormann | Mean phase coherence as a measure for phase synchronization and its application to the eeg of epilepsy patients[END_REF], power spectral density [START_REF] Park | Seizure prediction with spectral power of eeg using cost-sensitive support vector machines[END_REF], [START_REF] Zhang | Low-complexity seizure prediction from ieeg/seeg using spectral power and ratios of spectral power[END_REF], cross-power spectral density [START_REF] Epmoghaddam | Epileptic seizure prediction using spectral width of the covariance matrix[END_REF] or power of the wavelet coefficients [START_REF] Janjarasjitt | Examination of scale-invariant characteristics of epileptic electroencephalograms using wavelet-based analysis[END_REF] in standard frequency bands, autoregressive models, or more recently deep learning frameworks [START_REF] Daoud | Efficient epileptic seizure prediction based on deep learning[END_REF]- [START_REF] Roy | Cross-wavelet transform aided focal and non-focal electroencephalography signal classification employing deep feature extraction[END_REF]. Moreover, feature extraction for seizure prediction often involves channel selection to decrease computational complexity or reduce overfitting (see [START_REF] Alotaiby | A review of channel selection algorithms for eeg signal processing[END_REF] for a review). Scalefree dynamics has also been used in seizure prediction (e.g., from intracranial EEG [START_REF] Gadhoumi | Scale invariance properties of intracerebral eeg improve seizure prediction in mesial temporal lobe epilepsy[END_REF] or single scalp EEG [START_REF] Domingues | Multifractal analysis for cumulant-based epileptic seizure detection in eeg time series[END_REF]). Fractional Brownian motion (fBm) has been shown to be a relevant model for scalefree temporal dynamics and often used in magnetoencephalogram (MEG) [START_REF] La Rocca | Self-similarity and multifractality in human brain activity: A waveletbased analysis of scale-free brain dynamics[END_REF] and EEG [START_REF] Ciuciu | Interplay between functional connectivity and scale-free dynamics in intrinsic fMRI networks[END_REF] data analysis. Nevertheless, most works rely on univariate selfsimilarity (or multifractal) analysis. Multivariate selfsimilarity analysis models such as ofBm [START_REF] Abry | Wavelet estimation for operator fractional Brownian motion[END_REF], [START_REF] Abry | Wavelet eigenvalue regression for n-variate operator fractional Brownian motion[END_REF], [START_REF] Lucas | Bootstrap for testing the equality of selfsimilarity exponents across multivariate time series[END_REF] provide a framework for more efficiently accounting for crosstemporal scalefree dynamics in EEG time series. So far, this has never been studied.

Goals, contributions and outline.

This work aims to quantify the relevance and benefits of using multivariate selfsimilarity models and eigen-wavelet-based analysis for epileptic seizure prediction, compared to univariate analysis, using multi-channel scalp EEG recordings. To that end, Section II reviews the ofBm model and the associated wavelet eigenvaluebased multivariate analysis entailing the estimation of M selfsimilarity exponents, compared against classical pairwise multivariate analysis involving the estimation of M (M + 1)/2 selfsimilarity exponents. This is applied to M = 22-variate EEG data, from the CHB-MIT Scalp EEG database [START_REF] Goldberger | Physiobank, physiotoolkit, and physionet: components of a new research resource for complex physiologic signals[END_REF], described in Section III. Section IV quantifies the significance of multivariate selfsimilarity analysis for epileptic seizure prediction: i) Clear differences in scalefree dynamics, quantified by selfsimilarity exponents, are reported between interictal states (far from seizure) and preictal states (immediately prior to seizure) ; ii) Improved seizure prediction performance are reported for the proposed eigenvalue-based multivariate analysis compared to classical multivariate analysis and to M independent univariate analysis.

II. MULTIVARIATE SELFSIMILARITY

Operator fractional Brownian motion. Fractional Brownian motion (fBm), the only Gaussian, self-similar stochastic process with stationary increments, is the reference model for univariate selfsimilarity [START_REF] Pipiras | Long-Range Dependence and Self-Similarity[END_REF], [START_REF] Wendt | Multivariate Hadamard self-similarity: testing fractal connectivity[END_REF]. Multivariate time series conveying brain activity can be modeled as a collection of M possibly correlated fBm X {X H1 (t), . . . , X H M (t)} t∈R each associated with a possibly different selfsimilarity parameter H m . Further, these M -fBm are possibly linearly mixed via a M × M real-valued invertible matrix W , Y W X = W {X H1 (t), . . . , X H M (t)} t∈R . The resulting multivariate process Y is a specific case of operator fractional Brownian motion (ofBm) [START_REF] Abry | Wavelet estimation for operator fractional Brownian motion[END_REF], [START_REF] Abry | Wavelet eigenvalue regression for n-variate operator fractional Brownian motion[END_REF]. Multivariate selfsimilarity analysis thus amounts to estimating, from the observation of Y , the vector of selfsimilarity parameters H = (H 1 , . . . , H M ). Multivariate wavelet analysis. Selfsimilarity is classically analyzed through a wavelet-based representation. Let D Ym (2 j , k) = 2 -j/2 ψ 0 (2 -j t -k)|Y m (t) , ∀k ∈ Z, ∀j ∈ {j 1 , . . . , j 2 } denote the discrete wavelet transform (DWT) coefficients of component Y m , where ψ 0 stands for the reference mother wavelet [START_REF] Mallat | A Wavelet Tour of Signal Processing[END_REF]. Multivariate DWT is defined naturally as the collection of univariate DWT applied to each component

Y m : D Y (2 j , k) = (D Y1 (2 j , k), . . . , D Y M (2 j , k)), ∀k ∈ Z, ∀j ∈ {j 1 , .
. . , j 2 }, ∀m ∈ {1, . . . , M }. The wavelet spectrum is then defined as the collection of covariance matrices of D Y (2 j , k), computed independently at each scale 2 j :

S(2 j ) 1 n j nj k=1 D Y (2 j , k)D Y (2 j , k) * , (1) 
with n j the number of wavelet coefficients at scale 2 j . Selfsimilarity analysis consists in the estimation of the exponents H = (H 1 , . . . , H M ) from the M -variate time series Y . Univariate selfsimilarity analysis. First, M independent univariate analyses can be conducted using only the diagonal entries S m,m (2 j ) of the wavelet spectrum. When there is no mixing, (W ≡ I), S m,m (2 j ) asymptotically behave as power-laws across scales, with scaling exponent 2H m -1, thus leading to linear regression-based estimators of H [4], [START_REF] Abry | Wavelet eigenvalue regression for n-variate operator fractional Brownian motion[END_REF]:

ĤU m =   j2 j=j1 v j log 2 S m,m (2 j )   2 - 1 2 , m = 1, . . . , M, (2) 
with v j regression weights chosen such that j jv j = 1 and j v j = 0 (cf. [START_REF] Abry | Wavelet estimation for operator fractional Brownian motion[END_REF]). When linear mixing is present (W = I), S m,m (2 j ) behave as a mixture of power laws across scales, thus leading to biased estimations of the selfsimilarity parameters. Furthermore, univariate analysis does not exploit cross-temporal dynamics likely to exist in data. Classical multivariate selfsimilarity analysis. To account for cross-temporal dependencies amongst components, the offdiagonal entries S m,m (2 j ) (m = m) can be used. The entries S m,m (2 j ) asymptotically behave as power-laws across scales, with scaling exponent 2H m,m -1, where, without mixing,

H m,m = (H m + H m )/2.
This naturally leads to estimate H m,m by a linear regression:

Ĥm,m =   j2 j=j1 v j log 2 |S m,m (2 j )|   2 - 1 2
, m ≤ m .

(3) Without mixing (W = I), departures of Ĥm,m from (H m + H m )/2 may quantify departures of data from the ofBm model, a potentially valuable multivariate information. When linear mixing is present, these M (M + 1)/2 estimates lead to biased estimation of H [START_REF] Wendt | Multivariate Hadamard self-similarity: testing fractal connectivity[END_REF]. Eigen-wavelet multivariate selfsimilarity analysis. To account both for cross-dependencies and mixing, an alternative eigen-wavelet-based multivariate selsimilarity analysis was proposed [START_REF] Abry | Wavelet estimation for operator fractional Brownian motion[END_REF]. It shows that each of the eigenvalues λ m (2 j ) of the wavelet spectrum S(2 j ) asymptotically behaves as power law with respect to the scales 2 j , with scaling exponent 2H m -1, both with and without mixing.

This naturally suggests to perform the practical estimation of H m by a linear regression of log 2 λ m (2 j ) against octaves j = log 2 2 j . However, this results in biased estimated due to eigenvalue repulsions of varying strengths across scales caused by limited and different numbers n j of coefficients available for the estimation of the wavelet spectrum S(2 j ). By nature of multiscale analysis, this bias increases at coarser scales because n j decreases, essentially as n/2 j [START_REF] Lucas | Bootstrap for testing the equality of selfsimilarity exponents across multivariate time series[END_REF]. To overcome this issue, it was proposed to compute several wavelet spectra at each scale, from non-overlapping time windows w = 1, . . . , 2 j2-j , using an identical number n j2 of wavelet coefficients common to all scales [START_REF] Lucas | Bootstrap for testing the equality of selfsimilarity exponents across multivariate time series[END_REF]:

S (w) (2 j ) 1 n j2 wnj 2 k=1+(w-1)nj 2 D Y (2 j , k)D Y (2 j , k) * . ( 4 
)
The eigenvalues {λ

(w) 1 (2 j ), . . . , λ (w) 
M (2 j )} of S (w) (2 j ) are computed for each non-overlapping window w at each scale 2 j , entailing a similar repulsion effect at all scales, thus leading to an unbiased estimation of H m . In practice, the exponents H 1 , . . . , H M are thus estimated by means of linear regressions over the octaves j of the log-averaged eigenvalues log 2 λm (2 j ) 2 j-j2 2 j 2 -j w=1 log 2 (λ

(w) m (2 j )): ĤM m =   j2 j=j1 v j log 2 λm (2 j )   2 - 1 2 , m = 1, . . . , M.
(5) For a detailed study of performance, see [START_REF] Lucas | Bootstrap for testing the equality of selfsimilarity exponents across multivariate time series[END_REF].

III. EPILEPSY DATASET

Data description. Data used in this work consist of multichannel scalp EEG recordings from the CHB-MIT Scalp EEG database available at https://physionet.org/content/chbmit/1.0. 0/, documented in [START_REF] Goldberger | Physiobank, physiotoolkit, and physionet: components of a new research resource for complex physiologic signals[END_REF]. These recordings have been collected at the Boston Children's Hospital from pediatric subjects with medically intractable seizures and sampled at 256Hz. EEG recordings have been divided into 23 cases collected from 22 subjects, composed of 5 males and 17 females, annotated with beginnings and ends of epileptic seizures. For each subject, 22 to 26 EEG signals were recorded for several hours according to the International 10-20 system of EEG electrode positions and nomenclature. The recordings are at least one-hour long and only a part of them contains seizures. Data preprocessing. We make use of the 22 first EEG channels, so as to use the same channels for all subjects.

Because the work focuses on predicting epilepsy, the goal is to detect preictal states, which are periods occurring a few minutes before the onset of an epileptic seizure. Thus windows corresponding to preictal states are selected in recordings containing seizures while windows corresponding to interictal states (far in time from any epilectic seizure) are selected in recordings with no seizure. In practice, 2-minute long windows (corresponding to 30720 samples) are used.

To assess quantitatively the performance of the proposed multivariate eigen-wavelet-based selfsimilarity analysis to detect preictal states, only subjects with at least 110 interictal and 10 preictal windows are considered. Thus, only 8 subjects are studied in this work.

IV. PREDICTION OF PREICTAL STATES

A. Analysis set-up

Wavelet transforms are computed from 2-minute long windows of the scalp EEG signals, using Daubechies wavelets with N ψ = 2 vanishing moments. Linear regressions are performed across scales 2 1 to 2 4 , corresponding to equivalent frequencies ranging from 10Hz to 85Hz. Indeed, intracranial EEG signals are documented to have scalefree dynamics across this range of frequencies [START_REF] Gadhoumi | Scale invariance properties of intracerebral eeg improve seizure prediction in mesial temporal lobe epilepsy[END_REF]. The relevance of this range of scale to account for scalefree dynamics in scalp EEG data is further assessed below.

B. Single-window multivariate analysis

Fig. 1(left) compares, for a preictal window of a given subject, the M = 22 univariate wavelet analysis log 2 S m,m (2 j ) (solid blue lines with '+') against the eigen-wavelet-based multivariate analysis log 2 λm (2 j ) (solid red lines with 'o'). While the univariate functions log 2 S m,m (2 j ) mostly superimpose, the multivariate eigenvalue-based analysis clearly shows that 3 eigen-functions log 2 λm (2 j ) take values significantly smaller than and are thus negligible compared to the 19 others, as highlighted for e.g., scale 2 4 in Fig. 2. This suggests linear dependencies amongst the 22 EEG-recordings. A careful inspection of data reveals that EEG time series result from subtraction between electrode measurements, some being used several times, so that one time series actually consists of the addition of several others. Specifically, one time series resulting from the measurements of a pair of two electrodes A and B consists of the addition of other time series measured from pairs of electrodes forming a path from A to B. This lead us to remove three redundant recordings (T7-P7, P3-01, FP2-F4) prior to performing multivariate analysis, thus leading to a M = 19-variate selfsimilarity analysis, as reported in Fig. 1(right). Multivariate scalefree analysis. (blue '+') Diagonal entries log 2 Sm,m(2 j ) and (red 'o') log-eigenvalues log 2 λm(2 j ) of the wavelet spectrum S(2 j ) for one preictal window associated with Subject 5 before (left) and after (right) removal of 3 redundant channels. Finally, Fig. 1 confirms linear behaviors (hence scalefree dynamics) for both log 2 S m,m (2 j ) and log-eigenvalues log 2 λm (2 j ), m = 1, . . . , M , at fine scales 2 1 to 2 4 .

C. Interictal vs. preictal scalefree dynamics

To illustrate the ability of selfsimilarity analysis to detect differences in temporal dynamics of preictal and interictal states, Fig. 3 

compares (by means of boxplots) the distributions of the univariate estimates ĤU

m (left) and eigen-wavelet multivariate estimates ĤM m (right) for H m , for each subject independently. Fig. 3 shows clearer differences between the distributions of estimated preictal and interictal H m for the eigen-wavelet-based ĤM m , compared to univariate ĤU m . Fig. 3 also shows that detection of interictal vs. preictal states must be conducted on a per-subject basis, as the distributions of reference interictal H m vary across subjects. Fig. 3 thus clearly reveals that i) preictal states have temporal dynamics that depart from those of the interictal states for one same subject and ii) interictal states of different subjects have different temporal dynamics. These are the first significant findings of this work.

To quantify differences between preictal and interictal states in distributions of estimated selfsimilarity exponents, Wilcoxon signed-rank test p-values p W m are computed. These p-values are compared to Benjamini-Hochberg (multiple hypotheses correction) thresholds, d

(W,m) α
, at a false discovery rate of α = 0.05 [START_REF] Benjamini | Controlling the false discovery rate: a practical and powerful approach to multiple testing[END_REF]. Additionally, an across-component overall performance score is defined as the normalized signed distance from the sorted p-values p W τ (m) to Benjamini-Hochberg thresholds d (black dashed lines) and reports the corresponding scores. Fig. 4 shows that the eigen-wavelet multivariate ĤM m lead systematically to lower p-values and thus larger difference scores, and for some subjects significantly so. These findings confirm i) the statistically significant differences between the temporal dynamics of preictal and interictal states on a persubject basis, and ii) the improved ability of the eigen-wavelet multivariate ĤM m to assess such differences.

(W,m) α , score = 1 M M m=1 (d (W,m) α -p W τ (m) ). (6) 

D. Preictal state detection performance, per subject

To further quantify the benefits of multivariate selfsimilarity analysis to detect preictal states on a per-subject basis, receiver operating characteristic (ROC) curves are computed. For each subject independently, 100 interictal windows are first selected randomly, from which selfsimilarity exponents are estimated and used to define the empirical distributions of the Ĥm under the null hypothesis (interictal state). Second, for the same subject, for all available preictal windows and an equivalent number N w of interictal windows chosen randomly (not from the set of the 100 windows used to create the distributions for the null hypothesis), selfsimilarity exponents are estimated. Third, from these estimates, p-values are computed by comparisons against the distributions of estimates Ĥm under null hypothesis and compared to Benjamini-Hochberg multiple comparison correction thresholds, for a collection of preset false discovery rates α. An interictal state rejection decision is taken as long as one of the M = 19 p-values 6)) are reported at bottom right corner with corresponding colors and symbols. is lower than the corresponding threshold. Fourth, averaging these decisions across the N w preictal and interictal windows permit the computation of probabilities of correct detection and of false alarms for each preset false discovery rates α. These empirical probabilities are plotted one against the other to yield ROC curves.

This procedure is performed independently for the M = 19 univariate estimates ĤU m , for the M = 19 eigen-wavelet multivariate estimates ĤM m and for the M (M + 1)/2 = 190 classical multivariate estimates Ĥm,m . Fig. 5 compares, for each of the 8 subjects independently, the resulting ROC curves and related area under curve (AUC) for ĤU m (blue lines with '+'), for ĤM m (red lines with 'o') and for Ĥm,m (black lines with '∆'). Fig. 5 shows that the eigen-wavelet multivariate approach reaches overall the most satisfactory performance: First, it always outperforms the univariate strategy; second, while it is outperformed by the classical multivariate strategy for two subjects (Subjects 2 and 3), it essentially does as well as and sometimes significantly better (Subjects 21 and 22) than the classical multivariate strategy -which may show poor sensitivity -while performing only M = 19 instead of M (M + 1)/2 = 190 tests.

V. CONCLUSION AND PERSPECTIVES

The present work has shown the relevance of comparing, on a per-subject basis, the scalefree temporal dynamics of multichannel scalp EEG data, in intericatal and preictal states for epilectic seizure prediction. It has also shown that multivariate scalefree temporal dynamics assessed by the eigen-wavelet multivariate selfsimilarity analysis described here outperforms univariate analysis or classical multivariate analyses. Indeed, the eigen-wavelet multivariate selfsimilarity analysis takes advantage of cross-temporal dynamics in EEG signals, which thus turns out to be useful for epilectic seizure prediction. Compared to classical multivariate analysis, the eigen-wavelet multivariate selfsimilarity analysis works even when mixing exist and relies on only M tests instead of M (M + 1)/2. Finally, the proposed approach allows for the joint analysis of a large amount of channels, so that no channel selection step is needed before analysis. Matlab routines for multivariate selfsimilarity parameter estimation are publicly available at https://github.com/charlesglucas/ofbm tools.

  Fig. 1.Multivariate scalefree analysis. (blue '+') Diagonal entries log 2 Sm,m(2 j ) and (red 'o') log-eigenvalues log 2 λm(2 j ) of the wavelet spectrum S(2 j ) for one preictal window associated with Subject 5 before (left) and after (right) removal of 3 redundant channels.

Fig. 2 .

 2 Fig. 2. Linear dependencies of the 22 EEG signals. Log-eigenvalues log 10 λm(2 4 ) of the wavelet spectrum S(2 4 ) for one preictal window associated with Subject 5 and M = 22 EEG signals.
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 3 Fig. 3. Distributions of estimated selfsimilarity parameters. Boxplots for univariate estimates ĤU m (first and third columns) and multivariate estimates ĤM m (second and fourth columns) for preictal (red) and interictal (blue) states, for all subjects.
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 4 Fig. 4 compares, for each of the 8 subjects, the p-values p W m associated with the differences between preictal and interictal states in selfsimilarity exponents. either multivariate ĤM m (red 'o') or ĤU m (blue '+'), to the Benjamini-Hochberg thresholds d (W,m) α
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 4 Fig.[START_REF] Abry | Wavelet estimation for operator fractional Brownian motion[END_REF]. Preictal and interictal estimated selfsimilarity parameters distributions. Sorted log p-values of the Wilcoxon signed-rank test between preictal and interictal estimated selfsimilarity parameters distributions for (blue '+') univariate ĤU m and (red 'o') eigen-wavelet multivariate ĤM m for the 8 different subjects, with the Benjamini-Hochberg (log-)thresholds (superimposed dashed black lines) at false discovery rate α = 0.05. Corresponding significance scores averaged across components (cf. Eq. (6)) are reported at bottom right corner with corresponding colors and symbols.
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 5 Fig. 5. Epilepsy prediction from selfsimilarity exponent estimates. ROC curves and related AUC of the test decisions for rejecting preictal states using (blue '+') univariate-like estimates ĤU m , (black '∆') classical multivariate estimates Ĥm,m and (red 'o') eigen-wavelet multivariate estimates ĤM m
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