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Abstract—Epileptic patients may suffer from severe brain
damages during seizures. There is thus a significant need for
automated seizure prediction. Independently, brain macroscopic
activity has been shown to display scalefree temporal dynamics,
which, in turn, were involved into seizure prediction. Selfsimilar-
ity, the paradigm model for scalefree dynamics, has however
mostly been defined in univariate settings, thus yielding a
collection of independent analyses of recorded signals. Yet, non-
negligible correlations exist in multi-channel recordings of brain
activity and may prove useful in seizure prediction. This work
aims to assess the benefits of using a recently developed mul-
tivariate eigen-wavelet framework for multivariate selfsimilarity
analysis in seizure prediction using CHB-MIT Scalp EEG data.

Index Terms—Multivariate selfsimilarity, multivariate wavelet
transform, EEG data, Epilepsy, seizure prediction.

I. INTRODUCTION

Context. Epilepsy, a chronic disease is a central nervous sys-
tem disorder, that leads to seizures during which the brain of
patients can be severely injured. Devising automated epileptic
seizure prediction procedures thus constitutes a crucial stake,
notably when they can be implemented from non-invasive and
wearable scalp electroencephalogram (EEG) devices.

Numerous studies have shown that infraslow brain ac-
tivity can be well-described by means of arrhythmic, or
scalefree, temporal dynamics and thus efficiently modeled
by selfsimilarity [1]–[3]. In practice, selfsimilarity analysis
consists in the estimation of a selfsimilarity exponent [4]. Yet,
selfsimilarity has been mostly studied in univariate settings,
i.e., selfsimilarity exponents are estimated independently for
each time series. However, jointly recorded brain activity is
monitored via numerous sensors, entailing multivariate time
series. Recently, a multivariate selfsimilarity model, operator
fractional Brownian motion (ofBm) was proposed [5], and a
corresponding multivariate eigen-wavelet-based analysis was
developed [4], [6]. The goal of the present work is to study the
relevance of using multivariate selfsimilarity for the prediction
of epileptic seizures.
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Related works. Seizure prediction is an important research
topic, often investigated using tools such as synchronization
and functional connectivity [7], phase coherence [8], power
spectral density [9], [10], cross-power spectral density [11]
or power of the wavelet coefficients [12] in standard fre-
quency bands, autoregressive models, or more recently deep
learning frameworks [13]–[15]. Moreover, feature extraction
for seizure prediction often involves channel selection to
decrease computational complexity or reduce overfitting (see
[16] for a review). Scalefree dynamics has also been used
in seizure prediction (e.g., from intracranial EEG [17] or
single scalp EEG [18]). Fractional Brownian motion (fBm)
has been shown to be a relevant model for scalefree temporal
dynamics and often used in magnetoencephalogram (MEG) [3]
and EEG [2] data analysis. Nevertheless, most works rely on
univariate selfsimilarity (or multifractal) analysis. Multivariate
selfsimilarity analysis models such as ofBm [4], [6], [19]
provide a framework for more efficiently accounting for cross-
temporal scalefree dynamics in EEG time series. So far, this
has never been studied.
Goals, contributions and outline. This work aims to
quantify the relevance and benefits of using multivariate self-
similarity models and eigen-wavelet-based analysis for epilep-
tic seizure prediction, compared to univariate analysis, using
multi-channel scalp EEG recordings. To that end, Section II re-
views the ofBm model and the associated wavelet eigenvalue-
based multivariate analysis entailing the estimation of M
selfsimilarity exponents, compared against classical pairwise
multivariate analysis involving the estimation of M(M+1)/2
selfsimilarity exponents. This is applied to M = 22-variate
EEG data, from the CHB-MIT Scalp EEG database [20],
described in Section III. Section IV quantifies the significance
of multivariate selfsimilarity analysis for epileptic seizure pre-
diction: i) Clear differences in scalefree dynamics, quantified
by selfsimilarity exponents, are reported between interictal
states (far from seizure) and preictal states (immediately prior
to seizure) ; ii) Improved seizure prediction performance
are reported for the proposed eigenvalue-based multivariate
analysis compared to classical multivariate analysis and to M
independent univariate analysis.



II. MULTIVARIATE SELFSIMILARITY

Operator fractional Brownian motion. Fractional Brownian
motion (fBm), the only Gaussian, self-similar stochastic pro-
cess with stationary increments, is the reference model for
univariate selfsimilarity [21], [22]. Multivariate time series
conveying brain activity can be modeled as a collection of
M possibly correlated fBm X , {XH1

(t), . . . , XHM
(t)}t∈R

each associated with a possibly different selfsimilarity param-
eter Hm. Further, these M -fBm are possibly linearly mixed
via a M ×M real-valued invertible matrix W , Y , WX =
W {XH1(t), . . . , XHM

(t)}t∈R. The resulting multivariate pro-
cess Y is a specific case of operator fractional Brownian
motion (ofBm) [4], [6]. Multivariate selfsimilarity analysis
thus amounts to estimating, from the observation of Y , the
vector of selfsimilarity parameters H = (H1, . . . ,HM ).
Multivariate wavelet analysis. Selfsimilarity is classically an-
alyzed through a wavelet-based representation. Let DYm(2j , k)
= 〈2−j/2ψ0(2−jt − k)|Ym(t)〉, ∀k ∈ Z, ∀j ∈ {j1, . . . , j2}
denote the discrete wavelet transform (DWT) coefficients of
component Ym, where ψ0 stands for the reference mother
wavelet [23]. Multivariate DWT is defined naturally as the
collection of univariate DWT applied to each component
Ym: DY (2j , k) = (DY1(2j , k), . . . , DYM

(2j , k)), ∀k ∈ Z,
∀j ∈ {j1, . . . , j2}, ∀m ∈ {1, . . . ,M}. The wavelet spectrum
is then defined as the collection of covariance matrices of
DY (2j , k), computed independently at each scale 2j :

S(2j) ,
1

nj

nj∑
k=1

DY (2j , k)DY (2j , k)∗, (1)

with nj the number of wavelet coefficients at scale 2j . Self-
similarity analysis consists in the estimation of the exponents
H = (H1, . . . , HM ) from the M -variate time series Y .
Univariate selfsimilarity analysis. First, M independent uni-
variate analyses can be conducted using only the diagonal
entries Sm,m(2j) of the wavelet spectrum. When there is
no mixing, (W ≡ I), Sm,m(2j) asymptotically behave as
power-laws across scales, with scaling exponent 2Hm − 1,
thus leading to linear regression-based estimators of H [4],
[6]:

ĤU
m =

 j2∑
j=j1

vj log2 Sm,m(2j)

/2− 1

2
, m = 1, . . . ,M,

(2)
with vj regression weights chosen such that

∑
j jvj = 1

and
∑
j vj = 0 (cf. [4]). When linear mixing is present

(W 6= I), Sm,m(2j) behave as a mixture of power laws across
scales, thus leading to biased estimations of the selfsimilarity
parameters. Furthermore, univariate analysis does not exploit
cross-temporal dynamics likely to exist in data.
Classical multivariate selfsimilarity analysis. To account
for cross-temporal dependencies amongst components, the off-
diagonal entries Sm,m′(2j) (m′ 6= m) can be used. The entries
Sm,m′(2

j) asymptotically behave as power-laws across scales,
with scaling exponent 2Hm,m′ − 1, where, without mixing,

Hm,m′ = (Hm + Hm′)/2. This naturally leads to estimate
Hm,m′ by a linear regression:

Ĥm,m′ =

 j2∑
j=j1

vj log2 |Sm,m′(2j)|

/2− 1

2
, m ≤ m′.

(3)
Without mixing (W = I), departures of Ĥm,m′ from (Hm +
Hm′)/2 may quantify departures of data from the ofBm
model, a potentially valuable multivariate information. When
linear mixing is present, these M(M + 1)/2 estimates lead to
biased estimation of H [22].
Eigen-wavelet multivariate selfsimilarity analysis. To ac-
count both for cross-dependencies and mixing, an alternative
eigen-wavelet-based multivariate selsimilarity analysis was
proposed [4]. It shows that each of the eigenvalues λm(2j)
of the wavelet spectrum S(2j) asymptotically behaves as
power law with respect to the scales 2j , with scaling exponent
2Hm − 1, both with and without mixing.

This naturally suggests to perform the practical estimation
of Hm by a linear regression of log2 λm(2j) against octaves
j = log2 2j . However, this results in biased estimated due
to eigenvalue repulsions of varying strengths across scales
caused by limited and different numbers nj of coefficients
available for the estimation of the wavelet spectrum S(2j).
By nature of multiscale analysis, this bias increases at coarser
scales because nj decreases, essentially as n/2j [19]. To
overcome this issue, it was proposed to compute several
wavelet spectra at each scale, from non-overlapping time
windows w = 1, . . . , 2j2−j , using an identical number nj2
of wavelet coefficients common to all scales [19]:

S(w)(2j) ,
1

nj2

wnj2∑
k=1+(w−1)nj2

DY (2j , k)DY (2j , k)∗. (4)

The eigenvalues {λ(w)
1 (2j), . . . , λ

(w)
M (2j)} of S(w)(2j) are

computed for each non-overlapping window w at each scale
2j , entailing a similar repulsion effect at all scales, thus
leading to an unbiased estimation of Hm. In practice, the
exponents H1, . . . ,HM are thus estimated by means of linear
regressions over the octaves j of the log-averaged eigenvalues
log2 λ̄m(2j) , 2j−j2

∑2j2−j

w=1 log2(λ
(w)
m (2j)):

ĤM
m =

 j2∑
j=j1

vj log2 λ̄m(2j)

/2− 1

2
, m = 1, . . . ,M.

(5)
For a detailed study of performance, see [19].

III. EPILEPSY DATASET

Data description. Data used in this work consist of multi-
channel scalp EEG recordings from the CHB-MIT Scalp EEG
database available at https://physionet.org/content/chbmit/1.0.
0/, documented in [20]. These recordings have been collected
at the Boston Children’s Hospital from pediatric subjects with
medically intractable seizures and sampled at 256Hz. EEG
recordings have been divided into 23 cases collected from 22

https://physionet.org/content/chbmit/1.0.0/
https://physionet.org/content/chbmit/1.0.0/


subjects, composed of 5 males and 17 females, annotated with
beginnings and ends of epileptic seizures. For each subject, 22
to 26 EEG signals were recorded for several hours according
to the International 10-20 system of EEG electrode positions
and nomenclature. The recordings are at least one-hour long
and only a part of them contains seizures.
Data preprocessing. We make use of the 22 first EEG
channels, so as to use the same channels for all subjects.

Because the work focuses on predicting epilepsy, the goal
is to detect preictal states, which are periods occurring a few
minutes before the onset of an epileptic seizure. Thus windows
corresponding to preictal states are selected in recordings
containing seizures while windows corresponding to interictal
states (far in time from any epilectic seizure) are selected in
recordings with no seizure. In practice, 2-minute long windows
(corresponding to 30720 samples) are used.

To assess quantitatively the performance of the proposed
multivariate eigen-wavelet-based selfsimilarity analysis to de-
tect preictal states, only subjects with at least 110 interictal
and 10 preictal windows are considered. Thus, only 8 subjects
are studied in this work.

IV. PREDICTION OF PREICTAL STATES

A. Analysis set-up

Wavelet transforms are computed from 2-minute long win-
dows of the scalp EEG signals, using Daubechies wavelets
with Nψ = 2 vanishing moments. Linear regressions are
performed across scales 21 to 24, corresponding to equivalent
frequencies ranging from 10Hz to 85Hz. Indeed, intracranial
EEG signals are documented to have scalefree dynamics across
this range of frequencies [17]. The relevance of this range of
scale to account for scalefree dynamics in scalp EEG data is
further assessed below.

B. Single-window multivariate analysis

Fig. 1(left) compares, for a preictal window of a given sub-
ject, the M = 22 univariate wavelet analysis log2 Sm,m(2j)
(solid blue lines with ‘+’) against the eigen-wavelet-based
multivariate analysis log2 λ̄m(2j) (solid red lines with ‘o’).
While the univariate functions log2 Sm,m(2j) mostly superim-
pose, the multivariate eigenvalue-based analysis clearly shows
that 3 eigen-functions log2 λ̄m(2j) take values significantly
smaller than and are thus negligible compared to the 19 others,
as highlighted for e.g., scale 24 in Fig. 2. This suggests
linear dependencies amongst the 22 EEG-recordings. A careful
inspection of data reveals that EEG time series result from
subtraction between electrode measurements, some being used
several times, so that one time series actually consists of
the addition of several others. Specifically, one time series
resulting from the measurements of a pair of two electrodes A
and B consists of the addition of other time series measured
from pairs of electrodes forming a path from A to B. This
lead us to remove three redundant recordings (T7-P7, P3-01,
FP2-F4) prior to performing multivariate analysis, thus leading
to a M = 19-variate selfsimilarity analysis, as reported in
Fig. 1(right).
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Fig. 1. Multivariate scalefree analysis. (blue ‘+’) Diagonal entries
log2 Sm,m(2j) and (red ‘o’) log-eigenvalues log2 λ̄m(2j) of the wavelet
spectrum S(2j) for one preictal window associated with Subject 5 before
(left) and after (right) removal of 3 redundant channels.

Fig. 2. Linear dependencies of the 22 EEG signals. Log-eigenvalues
log10 λ̄m(24) of the wavelet spectrum S(24) for one preictal window
associated with Subject 5 and M = 22 EEG signals.

Finally, Fig. 1 confirms linear behaviors (hence scale-
free dynamics) for both log2 Sm,m(2j) and log-eigenvalues
log2 λ̄m(2j), m = 1, . . . ,M , at fine scales 21 to 24.

C. Interictal vs. preictal scalefree dynamics

To illustrate the ability of selfsimilarity analysis to detect
differences in temporal dynamics of preictal and interictal
states, Fig. 3 compares (by means of boxplots) the distribu-
tions of the univariate estimates ĤU

m (left) and eigen-wavelet
multivariate estimates ĤM

m (right) for Hm, for each subject
independently. Fig. 3 shows clearer differences between the
distributions of estimated preictal and interictal Hm for the
eigen-wavelet-based ĤM

m , compared to univariate ĤU
m.

Fig. 3 also shows that detection of interictal vs. preictal
states must be conducted on a per-subject basis, as the distri-
butions of reference interictal Hm vary across subjects.

Fig. 3 thus clearly reveals that i) preictal states have
temporal dynamics that depart from those of the interictal
states for one same subject and ii) interictal states of different
subjects have different temporal dynamics. These are the first
significant findings of this work.

To quantify differences between preictal and interictal
states in distributions of estimated selfsimilarity exponents,
Wilcoxon signed-rank test p-values pWm are computed. These
p-values are compared to Benjamini-Hochberg (multiple hy-
potheses correction) thresholds, d(W,m)

α , at a false discovery
rate of α = 0.05 [24]. Additionally, an across-component over-
all performance score is defined as the normalized signed dis-
tance from the sorted p-values pWτ(m) to Benjamini-Hochberg

thresholds d(W,m)
α ,

score =
1

M

M∑
m=1

(d(W,m)
α − pWτ(m)). (6)
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Fig. 3. Distributions of estimated selfsimilarity parameters. Boxplots for univariate estimates ĤU
m (first and third columns) and multivariate estimates

ĤM
m (second and fourth columns) for preictal (red) and interictal (blue) states, for all subjects.

Fig. 4 compares, for each of the 8 subjects, the p-values pWm
associated with the differences between preictal and interictal
states in selfsimilarity exponents. either multivariate ĤM

m (red
‘o’) or ĤU

m (blue ‘+’), to the Benjamini-Hochberg thresholds
d
(W,m)
α (black dashed lines) and reports the corresponding

scores. Fig. 4 shows that the eigen-wavelet multivariate ĤM
m

lead systematically to lower p-values and thus larger difference
scores, and for some subjects significantly so. These findings
confirm i) the statistically significant differences between the
temporal dynamics of preictal and interictal states on a per-
subject basis, and ii) the improved ability of the eigen-wavelet
multivariate ĤM

m to assess such differences.

D. Preictal state detection performance, per subject

To further quantify the benefits of multivariate selfsimilarity
analysis to detect preictal states on a per-subject basis, receiver
operating characteristic (ROC) curves are computed. For each
subject independently, 100 interictal windows are first selected
randomly, from which selfsimilarity exponents are estimated
and used to define the empirical distributions of the Ĥm under
the null hypothesis (interictal state). Second, for the same
subject, for all available preictal windows and an equivalent
number Nw of interictal windows chosen randomly (not from
the set of the 100 windows used to create the distributions
for the null hypothesis), selfsimilarity exponents are esti-
mated. Third, from these estimates, p-values are computed
by comparisons against the distributions of estimates Ĥm

under null hypothesis and compared to Benjamini-Hochberg
multiple comparison correction thresholds, for a collection of
preset false discovery rates α. An interictal state rejection
decision is taken as long as one of the M = 19 p-values
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Fig. 4. Preictal and interictal estimated selfsimilarity parameters distri-
butions. Sorted log p-values of the Wilcoxon signed-rank test between preictal
and interictal estimated selfsimilarity parameters distributions for (blue ‘+’)
univariate ĤU

m and (red ‘o’) eigen-wavelet multivariate ĤM
m for the 8 different

subjects, with the Benjamini-Hochberg (log-)thresholds (superimposed dashed
black lines) at false discovery rate α = 0.05. Corresponding significance
scores averaged across components (cf. Eq. (6)) are reported at bottom right
corner with corresponding colors and symbols.

is lower than the corresponding threshold. Fourth, averaging
these decisions across the Nw preictal and interictal windows
permit the computation of probabilities of correct detection
and of false alarms for each preset false discovery rates α.
These empirical probabilities are plotted one against the other
to yield ROC curves.

This procedure is performed independently for the M = 19
univariate estimates ĤU

m, for the M = 19 eigen-wavelet
multivariate estimates ĤM

m and for the M(M + 1)/2 = 190
classical multivariate estimates Ĥm,m′ . Fig. 5 compares, for
each of the 8 subjects independently, the resulting ROC curves
and related area under curve (AUC) for ĤU

m (blue lines with
‘+’), for ĤM

m (red lines with ‘o’) and for Ĥm,m′ (black lines
with ‘∆’). Fig. 5 shows that the eigen-wavelet multivariate
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Fig. 5. Epilepsy prediction from selfsimilarity exponent estimates. ROC
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distributions for the different subjects.

approach reaches overall the most satisfactory performance:
First, it always outperforms the univariate strategy; second,
while it is outperformed by the classical multivariate strategy
for two subjects (Subjects 2 and 3), it essentially does as
well as and sometimes significantly better (Subjects 21 and
22) than the classical multivariate strategy – which may show
poor sensitivity – while performing only M = 19 instead of
M(M + 1)/2 = 190 tests.

V. CONCLUSION AND PERSPECTIVES

The present work has shown the relevance of comparing, on
a per-subject basis, the scalefree temporal dynamics of multi-
channel scalp EEG data, in intericatal and preictal states for
epilectic seizure prediction. It has also shown that multivariate
scalefree temporal dynamics assessed by the eigen-wavelet
multivariate selfsimilarity analysis described here outperforms
univariate analysis or classical multivariate analyses. Indeed,
the eigen-wavelet multivariate selfsimilarity analysis takes
advantage of cross-temporal dynamics in EEG signals, which
thus turns out to be useful for epilectic seizure prediction.
Compared to classical multivariate analysis, the eigen-wavelet
multivariate selfsimilarity analysis works even when mixing
exist and relies on only M tests instead of M(M + 1)/2.
Finally, the proposed approach allows for the joint analysis
of a large amount of channels, so that no channel selection
step is needed before analysis. Matlab routines for multivariate
selfsimilarity parameter estimation are publicly available at
https://github.com/charlesglucas/ofbm tools.
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