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Abstract: Electrochemical NOx sensors based on yttria-stabilized zirconia (YSZ) provide a reliable
onboard way to control NOx emissions from glass-melting furnaces. The main limitation is the poison-
ing of this sensor by sulfur oxides (SOx) contained in the stream. To overcome this drawback, an “SO2

trap” with high SOx storage capacity and low affinity to NOx is required. Two CuO/BaO/SBA-15
traps with the same CuO loading (6.5 wt.%) and different BaO loadings (5 and 24.5 wt.%, respectively)
were synthetized, thoroughly characterized and evaluated as SO2 traps. The results show that the
6.5%CuO/5%BaO/SBA-15 trap displays the highest SO2 adsorption capacity and can fully adsorb
SO2 for a specific period of time, while additionally displaying a very low NO adsorption capacity. A
suitable quantity of this material located upstream of the sensor could provide total protection of the
NOx sensor against sulfur poisoning in glass-furnace exhausts.

Keywords: NOx sensor; glass furnaces; sulfur poisoning; SO2 trap; CuO/BaO-based traps

1. Introduction

Nitrous oxides (NOx) are well known as extremely harmful pollutants that play key
roles in the generation of acid rain and photochemical smog and cause damage to human
health [1]. In glass-melting furnaces, the combustion of natural gas, heavy oils, and other
fuel sources is used to melt raw materials at high process temperatures of up to 1500 ◦C,
resulting in NOx emissions in the exhaust gas [2,3]. Many countries and organizations have
imposed stringent emission regulations on glass furnaces to reduce their NOx pollution
levels. In this respect, the development of in situ, cheap and robust techniques, like NOx
sensors, becomes urgent for the onboard control of NOx emissions during the combustion
processes [1,4]. Electrochemical sensors based on a solid electrolyte are a promising method
for the detection of NOx. They have been extensively studied due to their high sensitivity,
selectivity, and durability. In this paper, we will only focus on the potentiometric gas sensor
based on yttria-stabilized zirconia (YSZ) solid electrolyte, as reported by many research
groups [5–11]. For example, Ferlazzo et al. [12] developed an electrochemical biosensor
based on YSZ for amino acid detection. Ando et al. [13] studied a capacitive biosensor
using a YSZ functional layer for the quantification of ammonia. Hao et al. [14] used a
YSZ-based potentiometric sensor with ZnGa2O4 and Pt electrodes for the detection of SO2
under harsh environments with a high sensitivity. The YSZ-based sensors are generally
distinguished by their high temperature resistance and high chemical stability, in addition
to good and reproducible sensing performance [15].

Usually, a platinum reference electrode and a gold sensing electrode are associated
with the YSZ electrolyte. The signal of this sensor type (∆V= VPt − VAu) in a complex gas

Sensors 2023, 23, 8186. https://doi.org/10.3390/s23198186 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23198186
https://doi.org/10.3390/s23198186
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-2584-2119
https://orcid.org/0000-0003-0172-816X
https://orcid.org/0000-0002-7293-6591
https://doi.org/10.3390/s23198186
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23198186?type=check_update&version=1


Sensors 2023, 23, 8186 2 of 24

environment is based on the development of a mixed potential on the sensing electrode, as
described in previous studies [16–18].

One of the major challenges in NOx sensors is the cross-sensitivity to other pollutants
such as CO, as well as the hydrocarbons present in the exhaust. In order to eliminate
this interference with untargeted gases and to obtain a higher NOx selectivity, a solution
proposed in the literature is to use a catalytic filter [19–21] on top of the sensing electrode.
For instance, Gao et al. [6,22] have developed a NOx-selective Pt/YSZ/Au sensor by
coating a catalytic filter consisting of 1.7–4.5 wt.% Pt dispersed on alumina directly on
the sensing elements of the sensor. They reported that this filter can fully oxidize CO
and hydrocarbons, and thereby remove their interference. In addition, the catalytic filter
allows for the reaching of the NO/NO2 thermodynamic equilibrium, resulting in a similar
response for either NO or NO2 at equal concentrations. Therefore, the sensor response
depends only on the total NOx concentration, regardless of the NO/NO2 ratio arriving
at the sensor, at a constant oxygen partial-pressure and temperature. Another way to
obtain selective and sensitive sensors is to apply a polarization current. Some studies
reported that the polarization of the sensing electrode can control the selectivity of the
sensor towards NO or NO2 [23–25]. J.P. Viricelle et al. [26] have proposed a sensitive
three-electrode sensor based on the selective electrochemical reduction of NO2. In this
study, the YSZ-based electrochemical cell operates upon electric polarization between an
Au working electrode and a Pt counter-electrode, resulting in selective NO2 detection at
400–550 ◦C. When the Au working electrode is negatively polarized, only reducible gas
(NO2) can affect its potential (at constant oxygen partial pressure) and therefore be detected,
which avoids interference from reductive gases such as CO hydrocarbons. To achieve a
selective and sensitive response to NOx and not only NO2, the idea of GaO et al. [22] was to
combine both the catalytic filter and the electrical polarization on a three-electrode sensor.

However, for glass-melting furnace applications, one of the main issues is the presence
of sulfur oxides (SOx) in the stream, which can significantly poison the electrodes and the
Pt/Al2O3 catalytic filter of the NOx sensor [27,28]. Therefore, this study aims to develop a
sulfur oxides “trap” located up-stream from the sensor to protect the NOx sensors from
sulfur poisoning. Such material must exhibit a good catalytic activity for the oxidation
of SO2 to SO3 and a high SOx storage capacity into sulfates. Furthermore, the overall
NOx concentration in the stream must not be altered, excluding the NOx storage on the
trap material. A large variety of materials have been reported as potential SOx traps,
and can be classified in different categories such as single-oxides materials (CaO, MgO,
TiO2, MnO2, CeO2, Al2O3), oxides supported on porous silica or alumina-based materials
(zeolites, mesoporous or clay minerals) and oxides supported on carbonaceous materials
(activated carbon and carbon fibers) [29–37]. Al2O3-based oxides undergo sulfation leading
to a loss in their textural properties [38] and present a specific surface area (SSA) in the
order of 200 m2/g, which is not high enough for this application. The main drawback
of activated carbons is their limited thermal stability [39]. On the other hand, organized
mesoporous silica SBA-15 could be a suitable support, combining a high thermal stability
with a chemical inertia towards SOx, which was shown to protect the mesoporous structure
from collapsing [38,40]. Moreover, SBA-15 presents a high SSA and porous volume that can
highly disperse the SOx-storage active phases [41,42]. Many studies are focused on SOx
traps based on copper oxide (CuO) as an active phase [38,43–49]. Xue et al. [50] found that
among a series of adsorbents (CuO, Zn/Mn type, Zn/Ti/Zr type,Zn/Co type, and Zn/Al
type), the CuO-based adsorbents exhibited higher reactivity levels for low-temperature
desulfurization. Indeed, this oxide exhibits a significant catalytic activity towards the
oxidation of SO2 to SO3 and a good ability to store SO3 as CuSO4. In addition, CuO can
be easily regenerated after the decomposition of CuSO4 at a relatively low temperature
(<700 ◦C), thereby limiting the energy consumption and preventing the support deteriora-
tion. Furthermore, SO2 released during the regeneration step can be recovered as sulfuric
acid or pure sulfur [51,52].
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On the other hand, BaO is a well-known NOx storage compound involved in NOx
storage/reduction (NSR) catalysts developed for the post-treatment of diesel vehicles [53–55].
However, its deactivation by sulfur species is well documented in the literature [27,28,56]. For
example, the SO2 exposure of Pt/BaO/Al2O3 and Pt/BaCO3/Al2O3 catalysts, used as NOx
traps, has resulted in the formation of surface and bulk sulfates on barium sites.

Indeed, BaO has a high ability for sulfation under harsh environments, and the
resulting barium sulfates are more stable than barium nitrates [55,56]. Moreover, since
the storage capacity depends on the experimental conditions, especially on the reaction
temperature, it seems possible to make the SOx adsorption predominant with respect to
that of NOx on BaO sites. However, BaO is not active for the oxidation of SO2 to SO3 and
cannot be used as the sole active phase in the catalyst. In this context, in addition to CuO,
BaO was chosen as a second active phase to further increase the SOx storage capacity.

In this work, the SO2 storage capacity of two CuO/BaO/SBA-15 adsorbents with
different BaO loadings were assessed under simulated gases from glass-furnace exhaust
during multicycle experiments. These traps were characterized by the inductively coupled
plasma method (ICP), X-ray diffraction (XRD), N2 physisorption, laser diffraction gran-
ulometry, and scanning electron microscopy (SEM). The performances of potentiometric
NOx sensors were also investigated when coupled, or not, with an upstream SO2 trap.
Moreover, the presence of sulfites/sulfate species on the most efficient adsorbent after
several cycles of NO-SO2 exposures was confirmed by diffuse reflectance infrared Fourier
transform spectroscopy (DRIFTS).

2. Materials and Methods
2.1. Synthesis of CuO/BaO/SBA-15 Traps

A commercial SBA-15 mesoporous silica (XFNANO) was first calcined at 900 ◦C
for 2 h with a ramp of 10 ◦C/min in static air. The CuO/BaO/SBA-15 SO2 traps were
prepared as follows. First, CuO was wet-impregnated on the pre-calcined SBA support:
the targeted amount of Cu(NO3)2·3H2O (Sigma-Aldrich, Massachusetts, United States)
precursor was dissolved in 40 mL of distilled water, in which 4.4 g of the pre-calcined
SBA-15 support had been added under stirring at room temperature for few minutes. This
mixture was then heated at 65 ◦C, under stirring, until the complete evaporation of the
water. The resulting powder was dried overnight at 80 ◦C in an oven and then calcined
in a tubular reactor at 600 ◦C for 5 h with a ramp of 2 ◦C/min under synthetic air flow
(10 L/h). BaO was also wet-impregnated on the prepared CuO/SBA-15 powder by using
Ba(CH3COO)2 (Sigma-Aldrich) as a precursor and following the same synthesis steps.
Two CuO/BaO/SBA-15 adsorbents with the same CuO amount (6.5 wt.%) and different
BaO loadings (5 and 24.5 wt.%) were prepared using this protocol.

2.2. Characterization Techniques

The chemical composition of the SO2 traps was determined by inductively coupled
plasma-optical emission spectrometer (ICP-OES), using a HORIBA Jobin Yvon-Activa
spectrometer, from powders previously dissolved in a mixture of inorganic acids (HNO3
and HF).

X-ray powder diffraction (XRD) was performed in reflection mode on a Bruker D8-A25

diffractometer (Cu Kα radiation, λ = 1.5406
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) equipped with a LYNXEYE XE-T linear
detector. Wide-angle measurements were achieved for 2θ angle values in the 5–80◦ range,
by steps of 0.04◦. For low-angle measurements (2θ range from 0.45 to 7◦, by steps of
0.01◦, with a time of 118 s per step), a second XRD apparatus was used, the Bruker AXS
diffractometer (Cu-Kα radiation, λ = 1.54184 Å) equipped with a LYNXEYE detector.

N2 physisorption analyses were performed on a Micromeritics Tristar 3000 apparatus.
Prior to the measurements, the samples were first outgassed at 300 ◦C for 3 h under vacuum.
SSAs were determined according to the BET (Brunauer–Emmett–Teller) method. Pore-
size distributions were calculated by the BJH (Barrett–Joyner–Halenda) method on the
desorption branch of the isotherms.
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The particle-size distribution was determined using laser diffraction granulometry
(MALVERN MS3000). The particles were dispersed in ethanol with an ultrasonic treatment.

Scanning electron microscopy (SEM) micrographs were obtained on a ZEISS SUPRA-
55 VP FEG microscope(Oberkochen, Germany). X-ray mappings were obtained from the
EDX analyzer OXFORD X-Max 80 (Oxfordshire, United Kingdom) integrated on the same
microscope. Images were collected with a voltage of 20 kV.

DRIFT spectroscopy was used to elucidate the sulfation phenomena on the SO2 powder
trap. These measurements were carried out in a Thermo Scientific Nicolet iS50 spectrometer
using a praying-mantis accessory (HARRICK high temperature reaction chamber) and a
liquid-N2-cooled MCT detector with a resolution of 2 cm−1. The spectra were recorded
from 1000 to 4000 cm−1. The background spectrum was collected on pure and dry KBr.
DRIFTS spectra were collected on fresh and sulfated SO2 traps (i.e., traps that had been
exposed to multiple NO-SO2 cycles) at 35, 200 and 500 ◦C under 50 mL/min of He. The
reported spectra are the result of subtracting from the sulfated-trap spectra measured at
each temperature that of the non-sulfated-trap (fresh adsorbent) used as a reference and
also collected under He at the corresponding temperature. Finally, to verify the protection
effect of the SO2 trap on the NOx sensor, the DRIFTS spectra of the SO2-poisoned sensor
and the protected sensor were recorded at room temperature. The latter sensor is supposed
to be protected by a SO2 trap. Note that the sensor was adapted to the reaction chamber of
the DRIFT cell to favor the measurements directly on the sensor surface.

Thermogravimetric (TGA) analyses of sulfated trap were performed with a TGA
Mettler-Toledo analyzer. The data were obtained in 1 L/h of air, from room temperature to
1300 ◦C, with a temperature ramp of 10 ◦C/min.

2.3. SO2 Adsorption and Regeneration Experiments

The SO2 adsorption capacity was investigated by cyclic adsorption and regeneration
experiments in a fixed-bed reactor. Samples were introduced in a vertical U-shaped quartz
reactor (12 mm inner diameter) fitted with a fritted quartz layer. Before the SO2 adsorption
step, the adsorbent was heated at 500 ◦C (ramp of 10 ◦C/min from room temperature) under
20 vol.%O2/He for 1 h to eliminate surface impurities and the humidity. The adsorption
experiments were performed at 500 ◦C for 1 h, using a gas mixture containing 75 ppm of SO2,
0.9 vol.% of O2 and 2 vol. % of H2O, balanced with He, to mimic the conditions encountered
in a glass-melting furnace exhaust. The gas flow rate was fixed at 30 L/h and adjusted by
BROOKS 5850 mass flow controllers. On-line SO2 analysis was continuously performed by
a multi-gas FTIR analyzer (MKS 2030). The regeneration steps were performed right after
the adsorption step, in the same experimental setup, during temperature-programmed
desorption (TPD) experiments in He. TPD was performed from 500 to 700 ◦C at 10 ◦C/min
in a He flow of 30 L/h, and the temperature was maintained at 700 ◦C for 15 min. After
each cycle, the sample was cooled down to 500 ◦C in 20 vol.%O2/He to re-oxidize the Cu
species.

The SO2 adsorption capacity of the adsorbent (CTPD
ads expressed in moles of adsorbed

SO2 per gram of adsorbent) was calculated by the integration of the TPD spectra, according
to Equation (1):

CTPD
ads =

Fg
∫ tf

t0 C dt
106 Vmmads

(1)

where Fg is the gas flow rate (in L/h); C is the SO2 outlet concentration (in ppm); t0 and tf
(in h) are, respectively, the starting and the ending time of the regeneration step; Vm is the
molar volume (24.5 L/mol at 25 ◦C and 1 atmosphere) and mads is the mass of adsorbent
(in g). All the SO2 adsorption–regeneration tests were performed using an adsorbent
mass of 0.1 g. These adsorption–regeneration (TPD) cycles were repeated 3 times for each
SO2 trap.
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2.4. Experimental Setup for NOx Sensor Studies

The electrochemical planar sensor, which was composed of a YSZ porous layer and
three metallic electrodes (Pt-Au-Pt), was elaborated by screen-printing (R23-Meteor 23′′

semi-automatic screen-printer) on alumina substrates (2 cm × 5 cm), as described by
Nematbakhsh et al. [57]. The electrolyte layer of YSZ (home-made ink) was first screen-
printed and sintered at 1380 ◦C for 2 h. The electrodes were printed on a YSZ layer using
commercial inks of Pt and Au, followed by 1 h sintering at 850 ◦C. A Pt heater was also
printed on the reverse side of the alumina support to control the sensor temperature. The
connectors, welding areas and protector dielectric film were deposited on both sides of the
sensor. A catalytic-filter layer consisting of Pt (5 wt.%Pt, MERCK) dispersed in alumina
was deposited over the sensing elements with a subsequent calcination process at 850 ◦C
for 1 h. A schematic figure of the fabricated sensors is shown in Figure 1.
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Figure 1. Scheme of the fabricated three-electrode sensor (Pt-Au-Pt) equipped with a catalytic filter
(Pt/Al2O3).

A measurement bench fully described by Nematbakhsh et al. [57] was used to study the
responses of two sensors operating simultaneously in two separated cells. A polarization
current of 50 nA was applied between the negatively polarized Au working electrode (WE)
and the Pt counter-electrode (CE) to induce electrochemical reductions at the Au/YSZ
interface. The sensor response (∆VRE) was measured between the Pt reference electrode
(RE) and WE. The responses to NO2, NO and SO2 in respective amounts of 100, 100 and
40 ppm were recorded at 510 ◦C in a base gas composed of 5 vol.% O2 and 1.5 vol.% H2O,
balanced with N2. The total flow rate was fixed at 60 L/h, corresponding to 30 L/h per cell.
The gas flow, regulated by mass flow controllers, passed first into a mixing chamber before
being sent to the sensor cell.

To study the ability of the prepared SO2 traps to protect the NOx sensor from sulfur
poisoning, a “SO2 trap system” was integrated into the test bench and located upstream
of the NOx sensor cell to adsorb the SO2 before it reaches the sensor. This system mainly
consisted of a tubular furnace equipped with a vertical quartz flow-through reactor inside.
The trap material was heated to 500 ◦C, as during the SO2 adsorption capacity tests. In this
fixed-bed reactor, the used amount of each adsorbent was selected to optimize the adsorp-
tion capacity while maintaining a uniform gas flow without any pressure drop caused by
the catalytic bed. According to the different particle arrangements in the reactor, catalyst
weights were 0.8 g and 1.5 g for 6.5%CuO/5%BaO/SBA-15 and 6.5%CuO/24.5%BaO/SBA-
15 traps, respectively. To assess the adsorption capacity of the SO2 traps and understand
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the sensors’ responses, FTIR gas analyzer (Gasmet DX 4015) was placed at the exits of the
sensor cells for analyzing the SO2, NO and NO2 gases.

3. Results and Discussion
3.1. Physico-Chemical Characterizations of 6.5%CuO/5%BaO/SBA-15
and 6.5%CuO/24.5%BaO/SBA-15 Traps

Table 1 summarizes the chemical compositions, textural properties (determined from
N2 physisorption) and particle sizes of the SBA-15 mesoporous silica calcined at 900 ◦C
and of the two SO2 traps.

Table 1. Chemical compositions, textural properties and particle sizes of the SBA-15-based adsorbents.

Sample SBA-15 a 6.5%CuO/5%BaO/SBA-15 6.5%CuO/24.5%BaO/SBA-15

CuO content
(wt.%) b - 6.6 6.0

BaO content
(wt.%) b - 4.8 22.3

SSA (m2/g) 406 235 132
Total pore volume (cm3/g) 0.95 0.42 0.22

Pore size (nm) 6.5 4 4
D50 (µm) c 27 19 11

a Calcined at 900 ◦C; b Determined by ICP analysis. The relative uncertainty is estimated to 0.1%; c Median particle
size as determined by laser diffraction granulometry.

The actual percentages of CuO and BaO were in agreement with the theoretical ones
(values reported in the sample nomenclatures), indicating that the synthesis method was
appropriate. It is noteworthy that the small differences between these values could be
considered acceptable, given the mass (5 g) of each prepared batch of the two adsorbents.

Figure 2 reports the low-angle XRD patterns of the SBA-15 support as well as the
CuO/BaO/SBA-15 adsorbents. For SBA-15 support, the main reflections were located at
2θ = 1◦, 1.8◦, 2.1◦ and 2.8◦, which correspond to the reflection planes (100), (110), (200) and
(210). These planes confirm the ordered hexagonal mesoporous structure of SBA-15 with
P6mm symmetry [58].
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Figure 2. Low-angle XRD patterns of SBA-15 support (calcined at 900 ◦C) and CuO/BaO/SBA-15
adsorbents. For a better visibility, the diffraction patterns are shifted along the Y-axis. The insert
corresponds to a zoom between 2θ = 1.5◦ and 2θ = 3.3◦.

For both adsorbents, however, the intensity of the (100) reflection was strongly reduced,
and the other reflections were not clearly observed, suggesting a loss in the crystallographic
order of the mesoporous structure. Similar results were presented by Mathieu et al. [59],
suggesting the formation of CuO and BaO metal oxides inside the mesopores of SBA-15
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support after the calcination step. It must be emphasized that the diffraction peak (100)
shows a slight shift towards higher angles, which is characteristic of a smaller lattice
parameter and can probably be attributed to the successive calcination steps after the
addition of both active phases [59].

The corresponding wide-angle XRD patterns are reported in Figure 3. As expected,
the SBA-15 support shows a very wide diffraction peak at 2θ = 20–30◦ without any other
peaks, confirming its amorphous structure. After the addition of CuO and BaO, the XRD
patterns of both adsorbents reveal the presence of crystalline CuO phase, suggesting the
presence of large CuO nanoparticles after the calcination at 600 ◦C [48]. Moreover, for
6.5%CuO/24.5%BaO/SBA adsorbent, clear diffraction peaks corresponding to barium
carbonate (BaCO3) formed in ambient air and barium silicate (Ba2SiO4) were detected. A
high BaO loading seems to favor the solid-state reaction between BaO and the SBA support
to form Ba2SiO4. This phase and Ba carbonate were not observed on the diffractogram of
6.5%CuO/5%BaO/SBA, most likely due to its lower Ba loading.
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Figure 3. Wide-angle XRD patterns of SBA-15 support (calcined at 900 ◦C) and CuO/BaO/SBA-15
adsorbents. For a better visibility, the diffraction patterns are shifted along the Y-axis.

The N2 physisorption isotherms and the corresponding BJH pore-size distributions of
the SBA-15 support and the CuO/BaO/SBA-15 adsorbents are reported in Figure 4, and
their textural properties are presented in Table 1. The SBA-15 support displays a type IV
isotherm defined by parallel adsorption and desorption branches with a type H1 hysteresis
loop in the relative pressure range P/P0 = 0.7–0.9. These profiles are characteristic of
organized mesoporous materials with well-ordered cylindrical pores, according to the
IUPAC classification [60]. However, for both CuO/BaO/SBA-15 adsorbents, the shape
of the isotherm was modified, and the hysteresis showed a shift toward lower relative
pressures. According to Berger et al. [61], this shift is probably due to the partial plugging
of the pores with copper- or barium-based phases, in good agreement with wide-angle
XRD patterns (Figure 3).

Moreover, the capillary condensation of both adsorbents is less steep, revealing a
decrease in pore size (average pore sizes were 6.5 nm for SBA-15 and 4 nm for both
adsorbents), as shown by Gaudin et al. [48]. The addition of CuO and BaO clearly affects
the pore volume of the SBA-15 support, which decreases from 0.95 cm3/g for the support
to 0.42 and 0.22 cm3/g for 6.5%CuO/5%BaO/SBA-15 and 6.5%CuO/24.5%BaO/SBA-15
adsorbents, respectively (Table 1). The same trend is also observed in SSAs, which decrease
from 406 m2/g to 235 m2/g and 132 m2/g, respectively. These modifications in textural
properties might be due to the blockage of the mesoporous support after the incorporation
of the CuO and BaO active phases [49]. This effect is, as expected, more pronounced with a
higher BaO loading.
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Figure 4. N2 physisorption isotherms (a) and the corresponding BJH pore-size distributions (b) of
SBA-15 support (calcined at 900 ◦C) and CuO/BaO/SBA-15 adsorbents. For better visibility, the
curves are shifted along the Y-axis.

Figure 5 illustrates the particle-size distributions of SBA-15 and CuO/BaO/SBA-15
adsorbents, while Table 1 summarizes their median diameters (D50). The SBA-15 support
calcined at 900 ◦C shows a unimodal size distribution with a median diameter D50 of
27 µm. However, a small bump is observed for diameters larger than 58 µm, which is
probably due to particles being strongly agglomerated. After the incorporation of CuO and
BaO, both adsorbents show a shift of particle-size distribution toward lower diameters.
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Figure 5. Particle-size distribution of SBA-15 support (calcined at 900 ◦C) and CuO/BaO/SBA-15
adsorbents, obtained by laser granulometry.

The median diameters D50 are 19 µm and 11 µm for 6.5%CuO/5%BaO/SBA-15 and
6.5%CuO/24.5%BaO/SBA-15, respectively. This reduction in particle size after impregna-
tion can be explained by the formation of small copper- or barium-based particles during the
synthesis process. These particles can be detached from the support, leading to the decrease
in the overall median diameter. Additionally, the metal oxide particles can diffuse into the
pores of the SBA-15 support, leading to the formation of smaller particles due to confine-
ment effects. Hence, these effects are more pronounced for the 6.5%CuO/24.5%BaO/SBA-
15 adsorbent with a higher BaO loading, which shows a lower median diameter. It is
noteworthy that the 6.5%CuO/5%BaO/SBA-15 adsorbent presents a unimodal size dis-
tribution, as does the SBA-15 support, while the 6.5%CuO/24.5%BaO/SBA-15 displays
a small peak, at less than 1 µm, which could indicate the presence of a population of
BaCO3 agglomerates.
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The SEM micrographs and the corresponding X-ray mappings of adsorbents are
shown in Figure 6. As expected from XRD results (Figure 3), the Cu-X-ray mappings of
both adsorbents (Figure 6c,d) reveal the presence of large CuO agglomerates in the range of
2–3 µm that were also visible on the corresponding micrographs (Figure 6a,b), but a greater
proportion of copper remains homogeneously distributed on the support. However, the
Ba-X-ray mapping of the 6.5%CuO/5%BaO/SBA-15 adsorbent (Figure 6e) displays a homo-
geneous distribution of barium-based particles, whereas the 6.5%CuO/24.5%BaO/SBA-15
adsorbent (Figure 6f) shows relatively large micrometric agglomerates in the range of
5–10 µm. These results fit well with the XRD patterns (Figure 3), which exhibit strong BaCO3
and Ba2SiO4 peaks only for the 6.5%CuO/24.5%BaO/SBA-15 adsorbent with a higher
BaO loading.
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Figure 6. SEM micrographs (a,b) and corresponding X-ray mappings of copper (c,d) and barium
(e,f) of 6.5%CuO/5%BaO/SBA-15 and 6.5%CuO/24.5%BaO/SBA-15 adsorbents, respectively.

3.2. SO2 Adsorption Capacity Measurements

The CuO/BaO/SBA-15 adsorbents were subjected to successive SO2 adsorption–
regeneration cycles in a fixed-bed reactor, as mentioned in the experimental design section.
The SO2 breakthrough curves and TPD spectra obtained during multicycle experiments
are reported in Figures 7 and 8, respectively. The SO2 adsorption capacities, expressed in
µmolSO2/gads, are presented in Table 2.
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submitted to three adsorption (75 ppm SO2, 0.9 vol.% O2, 2 vol.% H2O, balance He, 500 ◦C, 30 L/h)
and regeneration (He, 700 ◦C, 30 L/h) cycles.
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Table 2. SO2 adsorption capacity expressed per g of adsorbent of the 6.5%CuO/5%BaO/SBA-15 and
6.5%CuO/24.5%BaO/SBA-15 traps along three adsorption–regeneration cycles.

Adsorbent
SO2 Adsorption Capacity (CTPD

ads ) a (µmolSO2/gads)

Cycle 1 Cycle 2 Cycle 3

6.5%CuO/5%BaO/SBA-15 312 398 395

6.5%CuO/24.5%BaO/SBA-15 - 44 121
a Calculated from the integration of the TPD curves.

For the first cycle, the 6.5%CuO/5%BaO/SBA-15 adsorbent shows a breakthrough at
15 min (Figure 7a) followed by an increase of the SO2 outlet concentration up to 13 ppm
when 75 ppm of SO2 are injected for 1 h. This suggests that a fraction of SO2 is still
adsorbed, and the saturation of the adsorbent surface has not been reached after 1 h on-
stream. After the second and the third adsorption–regeneration cycles, similar shapes of the
breakthrough curves were obtained, which indicates a good stability of the adsorbent with
a great reproducibility of the adsorption step over cycles. From TPD curves (Figure 7b),
the regeneration peaks occur at around 580 ◦C, which corresponds to the decomposition of
copper sulfates, as described in the literature [48] and according with a previous test of a
sulfated adsorbent containing only copper that showed a similar regeneration peak. The
SO2 adsorption capacity, calculated by the integration of TPD curves (Figure 7b, Table 2),
increases after the first cycle, from 312 up to around 400 µmolSO2/gads, as confirmed by
TPD curves (Figure 7b). As shown by Berger et al. [62], such a behavior could probably
be assigned to some beneficial changes in the adsorbent porosity along the cycles, which
would enable access to additional copper-based active sites.

The increase in the BaO loading modifies the SO2 adsorption properties (Figure 8a).
No complete SO2 uptake was observed for the 6.5%CuO/24.5%BaO/SBA-15 over its cycles.
After 1 h of sulfation under 75 ppm of SO2, the outlet concentration was around 40–50 ppm
for the three cycles. The absence of a total SO2 adsorption period may be due to the gas flow
having bypassed the adsorbent bed through preferential paths, as the bed height is 6 mm,
and/or to possible intra-granular diffusional limitations which would have prevented the
gas from accessing the pores of small grains. This phenomenon could limit the interaction
between SO2 and the adsorbent, ultimately reducing the adsorption efficiency. In addition,
the TPD curves of the first cycle (Figure 8b) do not show any desorption of SO2, suggesting
that sulfates formed during the first adsorption step are stable in He up to 700 ◦C. Despite
the non-regeneration of the trap during the first TPD, the adsorbent continues to store SO2
during the second adsorption step at 500 ◦C while the second TPD shows a small SO2
desorption peak that further increases during the third TPD. This observation might be
explained by the sulfation of some active sites that were bypassed by SO2 and therefore
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not sulfated during the first cycle. It should be noted that the regeneration peaks of this
adsorbent occur at around 660 ◦C, whereas the other adsorbent, with lower BaO loading,
shows desorption peaks at 580 ◦C (Figure 7b), which indicates the formation of different
types of sulfates species. The SO2 storage capacity during the first several minutes increases
with the number of cycles, suggesting an increase of the porosity of the adsorbent over
cycles, limiting the intra-granular diffusional limitations.

As a partial conclusion, the 6.5%CuO/5%BaO/SBA-15 is more efficient than the
6.5%CuO/24.5%BaO/SBA-15 adsorbent for the adsorption of SO2. With the hypothesis
that both adsorbents present the same CuO dispersion, the limited performance of the
6.5%CuO/24.5%BaO/SBA-15 adsorbent is probably related to a negative impact caused
by the higher BaO loading. One possible explanation might be the formation of large
barium-based particles, which have been previously identified by XRD and are visible
by SEM-X-ray mapping analyses. In agreement with the findings of Centi et al. [38], the
sulfation of such particles is a limiting process due to the slow bulk diffusion of SO2
molecules. Furthermore, as clearly highlighted by the N2 physisorption isotherms, these
particles may cause a pore-blocking phenomenon, limiting the ability of SO2 to access
active sites. It is also possible that during the second impregnation step, the higher BaO
loading (24.5 wt.% vs. 5 wt.%) could have led to more blockage of the CuO sites, resulting
in a significant reduction in the total number of accessible sites.

3.3. NOx Sensors’ Responses

As mentioned in the experimental section, a three-electrode NOx sensor (Pt-Au-Pt)
equipped with a catalytic filter (Pt/Al2O3) was tested at 510 ◦C, with a polarization current
of 50 nA between the Au working electrode and the Pt counter electrode. The sensor
signal measurements were performed on an electronic card used to make galvanostatic
measurements of the sensors, as described by Nematbakhsh et al. [57]. The galvanostat
used allowed monitoring of the polarization current and the measurement of the potential
between the working and reference electrodes.

To evaluate the capacity of the CuO/BaO/SBA-15 traps to protect our NOx sensor,
the responses of this sensor to 100 ppm NO2, 100 ppm NO, and 40 ppm SO2 were recorded
in the absence, and in the presence, of both SO2 traps heated to 500 ◦C (base gas: 5 vol.%
O2, 1.5 vol.% H2O in N2). Before the injection of any gas (NOx or SO2), the sensor response
was stabilized for 2 h on the polarization current.

Figure 9a compares the sensor responses to NO2 and NO without, and with, a SO2 trap
located upstream, and Figure 9b–d display the corresponding NOx outlet concentrations.
The inlet gas is denoted as “in” and the outlet as “out”. The aim of these measurements is
to investigate the interaction of the SO2 traps with NOx and the latter’s influence on the
sensor response. The results in Figure 9a show that the sensor presents negative responses
with similar amplitudes to NO2 and NO in the absence of the SO2 trap, as expected and
reported by Gao et al. [22]. Indeed, when the sensor is equipped with a catalytic filter, the
thermodynamic equilibrium of NO/NO2 is achieved, resulting in a response with the same
amplitude and direction for either NO2 or NO.

Interestingly, the same behavior with very similar responses was obtained in the
presence of either 6.5%CuO/5%BaO/SBA-15 or 6.5%CuO/24.5%BaO/SBA-15 traps up-
stream of the sensor. The slight shift of the response towards lower ∆VRE values ob-
served with the 6.5%CuO/5%BaO/SBA-15 trap may be due to a small difference in the
sensor temperature.

To understand the sensor response during these three tests, the NOx outlet concentra-
tions were analyzed. Without a SO2 trap (Figure 9b) and for an inlet NO2 concentration of
100 ppm, the gas analyzer displays a lower NO2 value (around 85 ppm) and also reveals
the presence of NO (around 5 ppm) at the cell exit. Therefore, the total NOx concentration
was 90 ppm for a NO2 set point of 100 ppm. The same results were reproduced, and may
be due to a lower concentration in the NO2 cylinder or a small deviation of the mass flow
controller. This may have no consequence for our results, since the total NOx concentration
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is relatively preserved and constant. For the NO gas, the outlet concentration fits with the
set point of 100 ppm. It should be noted that the measured concentrations do not represent
those at the sensor surface, where the NO/NO2 thermodynamic equilibrium should be
reached due to the catalytic filter effect.
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Figure 9. NOx sensor response (∆VRE = f (t)) to 100 ppm NO2 and 100 ppm NO (a) and the
corresponding gas outlet concentrations (Cgas= f (t)): (b) without SO2 trap; (c) with SO2 trap
6.5%CuO/5%BaO/SBA-15; and (d) with SO2 trap 6.5%CuO/24.5%BaO/SBA-15. Base gas: 5 vol.%
O2, 1.5 vol.% H2O in N2. Solid lines illustrate the concentrations of NO and NO2 gases sent to the
system and dashed lines correspond to gases analyzed at the outlet.

With the 6.5%CuO/5%BaO/SBA-15 trap (Figure 9c), the NOx concentrations at the
outlet are very similar to those obtained without the trap (Figure 9b) for both NO2 and
NO exposures. This result indicates that the 6.5%CuO/5%BaO/SBA-15 trap does not
seem to significantly adsorb NOx, which is consistent with the specifications. It should be
emphasized that the gas flow passes through the SO2 trap powder bed with a residence
time, unlike its subsequent traversal through the catalytic filter of the sensor, which justifies
the finding that the trap is the only factor responsible for gas composition variations.

However, the 6.5%CuO/24.5%BaO/SBA-15 trap (Figure 9d) with a higher BaO loading
presents an interaction with NO2 and NO. Indeed, for an inlet NO2 concentration of
100 ppm, only 20 ppm of NO2 was detected at the outlet, along with 73 ppm of NO,
meaning that this trap can convert NO2 to NO. Nevertheless, the total NOx concentration
remained relatively unchanged, compared to the test without the trap (Figure 9b). For an
inlet NO concentration of 100 ppm, a less-pronounced conversion is obtained (78 ppm
of NO and 20 ppm of NO2) and the same NOx concentration was detected at the outlet.
Hence, this trap seems to reach the thermodynamic equilibrium NO/NO2, but without
any significant NOx adsorption, since the total NOx concentration is still preserved. As
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previously mentioned in the introduction, BaO is known as a primary adsorbent material in
NOx trap systems, with a much better ability to adsorb NO2 rather than NO [63]. However,
according to Hess et al. [64], the adsorption of NOx on BaO at 500 ◦C is thermodynamically
limited and the resulting nitrates/nitrites species are unstable, which can explain the very
low NOx adsorption observed in our case. It is noteworthy that the mass used for this trap,
which contained 24 wt.%BaO, is higher than the other one, which contained 5 wt.%BaO
(1.5 g vs. 0.8 g), which could explain its more pronounced interaction with NOx.

Thus, with 100 ppm of either NO2 or NO in the inlet gas, similar NOx outlet concen-
trations were detected in the presence of both SO2 traps. This result can explain the similar
responses of the NOx sensor observed in Figure 9a. Indeed, as shown by Gao et al. [22], the
∆VRE value of a sensor equipped with a catalytic filter does not depend on the NO/NO2
reaching the sensor, but only depends on the total NOx concentration. It can be concluded
that the presence of these traps does not influence the sensor response to NOx, which fits
well with our objective.

To study the impact of SO2 on the sensors’ performance, the latter were successively
subjected to 100 ppm of NO and 40 ppm of SO2 in the absence of a SO2 trap (Figure 10).
As a result, the sensor showed a high and negative response to 40 ppm of SO2, with an
important decrease in the baseline. Subsequently, its response to 100 ppm of NO was
significantly reduced compared to that obtained before SO2 exposure. A negative and
large response was observed again after the second SO2 exposure. Therefore, it can clearly
be noticed that this sensor is significantly poisoned by SO2, becoming almost unable to
respond to NO.
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Figure 10. NOx sensor response (in black) (∆VRE = f (t)) to 100 ppm NO and 40 ppm SO2 in the
absence of SO2 trap, with analysis of the gas outlet concentrations (Cgas= f (t)).

To study the ability of the traps to protect the NOx sensor from sulfur poisoning, the
response of this sensor to 100 ppm of NO and 40 ppm of SO2 was studied in the presence
of the 6.5%CuO/5%BaO/SBA-15 trap (Figure 11) and the 6.5%CuO/24.5%BaO/SBA-15
trap (Figure 12), heated to 500 ◦C. The sensor was successively exposed to NO and SO2
until the surfaces of the traps reached saturation. The green lines are used to distinguish
tests that were performed separately.

Figure 11 illustrates that during the first NO exposure, the 6.5%CuO/5%BaO/SBA-15
trap converted a fraction of NO to NO2, which is partially stored, resulting in a total
NOx concentration between 82–90 ppm, instead of 100 ppm of NO in the inlet gas. As
expected, the sensor showed a high negative response to the NOx gases. When exposed
to SO2 for 30 min, the trap allowed a total SO2 adsorption, with no SO2 detected at the
exit cell, resulting in a total protection of the NOx sensor from poisoning. Consequently,
this trap exhibited a stable response to NO, compared with that obtained before the SO2
exposure. Until the eighth SO2 exposure for 30 min, the trap fully stored SO2 without any
SO2 emissions, and the sensor response to NO was stable and reproducible. However, at
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the end of the eighth SO2 exposure (t = 23.5 h), some SO2 started to pass through the trap,
causing the poisoning of the sensor. Therefore, the 6.5%CuO/5%BaO/SBA-15 trap can
fully adsorb SO2 for up to 4 h under the experimental conditions used in this study (flow
rate of 60 L/h containing 40 ppm of SO2 and mads = 0.8 g).
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Figure 11. NOx sensor response (in black) (∆VRE = f (t)) to 100 ppm NO and 40 ppm SO2 in
the presence of the 6.5%CuO/5%BaO/SBA-15 trap, with analysis of the gas outlet concentrations
(Cgas= f (t)).
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Figure 12. NOx sensor response (in black) (∆VRE = f (t)) to 100 ppm NO and 40 ppm SO2 in the
presence of the 6.5%CuO/24.5%BaO/SBA-15 trap, with analysis of the gas outlet concentrations
(Cgas= f (t)).

The 6.5%CuO/24.5%BaO/SBA-15 trap (Figure 12) exhibited a very low NO adsorption,
with a NOx outlet concentration of 90 ppm. This trap allowed a total SO2 adsorption until
the final minutes of the third SO2 exposure for 30 min, at which point the SO2 started to be
detected at the outlet. At this stage, the sensor showed an unstable response to SO2, with a
strong change in its baseline. Afterward, the sensor response to NO gradually decreased as
the SO2 outlet concentration increased, until the sensor became almost completely unable
to respond to NO. Thus, the 6.5%CuO/24.5%BaO/SBA-15 trap may be able to fully adsorb
SO2 during a total period of 1.5 h (total flow rate of 60 L/h containing 40 ppm of SO2 and
mads = 1.5 g).
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Since the objective is to protect the NOx sensor from sulfur poisoning, we will only
focus on the period of full adsorption of SO2 by the trap. Therefore, the SO2 adsorption
capacities of both SO2 traps during the two previous tests (Figures 11 and 12) were cal-
culated based on the period where no SO2 emission was observed, and were denoted as
CBreakthrough

ads . The calculation is performed according to Equation (2):

CBreakthrough
ads =

Fg C0 t
106 Vmmads

(2)

where Fg is the gas flow rate (60 L/h), C0 is the SO2 inlet concentration (40 ppm), t (in
h) is the time period in which no SO2 emission was observed, Vm is the molar volume
(equaling 24.5 L/mol at 25 ◦C and 1 atmosphere) and mads is the mass of adsorbent (in g).
The calculated adsorption capacities are reported in Table 3.

Table 3. SO2 adsorption capacities and the corresponding mads required for 3 months of full SO2

adsorption under specified conditions, for both CuO/BaO/SBA-15 traps.

Adsorbent CBreakthrough
ads

(µmolSO2/gads)
mads (g) Required for 3 Months of Full

SO2 Adsorption a

6.5%CuO/5%BaO/SBA-15 491 182

6.5%CuO/24.5%BaO/SBA-15 98 912
a Considering 100 ppm of SO2 and a total flow rate of 10 L/h.

To meet our industrial requirements, a sufficient amount must be used for the SO2 trap
to fully adsorb SO2 for 3 months (i.e., 2190 h) and therefore ensure a total protection of the
NOx sensor. The proposed mixture to simulate the adsorption step corresponding to the
glass-furnace exhaust contains 100 ppm of SO2, with a total flow rate of 10 L/h. Based on
the SO2 adsorption capacities CBreakthrough

ads , the mass of each trap required for 3 months of
full SO2 adsorption under the specified conditions was calculated; the results are presented
in Table 3.

As shown in Table 3, the 6.5%CuO/5%BaO/SBA-15 trap with the lower BaO loading
presents a higher SO2 adsorption capacity (491 µmolSO2/gads) than that of the
6.5%CuO/24.5%BaO/SBA-15 trap (98 µmolSO2/gads), in agreement with previous ex-
periments. Therefore, the estimated mass values required to fully adsorb SO2 contin-
uously during 3 months under the mentioned specifications are 182 g and 912 g for
6.5%CuO/5%BaO/SBA-15 and 6.5%CuO/24.5%BaO/SBA-15, respectively. It can be con-
cluded that the 6.5%CuO/5%BaO/SBA-15 trap offers the best efficiency and can fully store
SO2 and protect the NOx sensor for up to 3 months using a mass of 182 g, which appears
consistent and feasible at the industrial scale.

3.4. Characterization of the SO2 Traps and of the NOx Sensor after Sulfation

In order to highlight the sulfation and its effect on the active phases for SO2 adsorption,
the two traps were characterized by SEM/X-ray mapping (Figures 13 and 14, respectively)
after their multiple NO-SO2 exposures, as reported in Figures 11 and 12.

The SEM micrograph (Figure 13a) and the Cu-X-ray mapping (Figure 13b) of the
6.5%CuO/5%BaO/SBA-15 trap reveal large CuO particles beside smaller ones, while the
Ba-X-ray mapping (Figure 13c) shows a homogeneous distribution of Ba-based particles.
The same results were observed with the non-sulfated trap (see Figure 6a,c,e) indicating
that the sulfation does not significantly affect the dispersion of the active phases within the
SBA-15 support. Interestingly, the S-X-ray mapping (Figure 13d) confirms the presence of
sulfur species well distributed on the support, most likely copper or/and barium-based
sulfates/sulfites. For the 6.5%CuO/24.5%BaO/SBA-15 trap (Figure 14), the distributions
of CuO (Figure 14b) and BaO (Figure 14c) seem to be similar to those before sulfation
(Figure 6d,f, respectively), since large CuO and BaO particles are still observed. Sulfur-
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based species (Figure 14d) are also identified for this type of trap, and probably formed in
both CuO and BaO active phases.
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To identify the SO2-adsorbed species, the sulfated 6.5%CuO/5%BaO/SBA-15 trap (i.e.,
after the multiple NO-SO2 exposures, Figure 11), which is considered the most efficient,
was also characterized by DRIFT spectrometry. Moreover, in order to identify in situ the
possible regeneration of this trap, a TPD up to 500 ◦C in He was performed and also was
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followed by DRIFTS. Figure 15 shows the DRIFT spectra collected at 35, 200 and 500 ◦C
under 50 mL/min of He. As previously mentioned in the experimental design section, the
spectrum of the non-sulfated trap was taken as a reference and subtracted from that of the
sulfated sample at the corresponding temperatures.
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Figure 15. TPD-DRIFTS spectra for sulfated 6.5%CuO/5%BaO/SBA-15 SO2 trap (after subtracting the
non-sulfated trap spectrum) collected at 35, 200 and 500 ◦C under He. Pink lines = bands associated
with nitrates species, and green lines = bands associated with sulfate/sulfites species.

At 35 ◦C, some broad bands were clearly observed at 978, 1027, 1140 and 1247 cm−1,
which can be assigned to the bulk sulfate species adsorbed in BaO [28]. The presence
of surface sulfate species was also corroborated by the bands observed in the region of
1340–1400 cm−1 [28,65]. Note that the two shoulders at 850 and 895 cm−1 are attributed to
symmetric and asymmetric stretching of monodentate sulfite, respectively [66], suggesting
the presence of some sulfites species on the sulfated trap after several cycles of NO-SO2
exposure. Moreover, in addition to the presence of sulfate/sulfite species, the bands at 815,
1519 and 1590 cm−1 indicate the presence of nitrate species. Indeed, the band at 815 cm−1

is attributed to bridging nitrate [66] or bulk nitrate adsorbed in the BaO phase [67], while
the bands at 1519 and 1590 cm−1 are associated with monodentate nitrate [66,68] and
chelating bidentate nitrate [67,68], respectively. However, the bands identified in the ranges
of 950–1250 cm−1 and 1340–1400 cm−1, which were attributed to sulfates species, could be
associated with some nitrates species (bands of surface nitrate species at 1000–1050 cm−1

and 1340–1410 cm−1 [66,67]).
Therefore, it can be concluded that sulfates/sulfites species were formed during the

sulfation of the 6.5%CuO/5%BaO/SBA-15 trap, as pointed out by these DRIFTS measure-
ments. Moreover, these sulfates/sulfites species seem to be predominant on the trap surface,
compared to nitrates, which suggests a limited adsorption of NO on the trap. However, the
formation of some nitrate species, most likely on BaO sites, cannot be excluded.

At 200 ◦C, no significant changes in the spectrum were observed (Figure 15), sug-
gesting that the adsorbed species are stable at this temperature. With the increase in the
temperature to 500 ◦C, almost all the previously described bands disappeared, indicating
that a non-negligible part of the adsorbed species was desorbed at this temperature. How-
ever, some small bands attributed to bulk sulfates species adsorbed on BaO sites were still
present (978 and 1247 cm−1) suggesting that such species are stable at 500 ◦C. As reported
by Mahzoul et al. [28], the decomposition of barium sulfates can occur at temperatures
close to 1000 ◦C. Furthermore, a broad band in the region 1500–1600 cm−1 can be also
observed, which corresponds to some nitrates that were not decomposed at 500 ◦C. Similar
results have been reported in the literature [67,69], showing that nitrates species mainly
decompose above 350 ◦C, but some of them may remain stable even at 500 ◦C.

Based on these TPD-DRIFTS results, it can be concluded that the regeneration of this
sulfated trap at 500 ◦C in He seems incomplete since some sulfates species are still present
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at this temperature. Thus, a higher temperature is required to completely regenerate
this trap.

Finally, to confirm the protection of the NOx sensor from sulfur poisoning in the
presence of the 6.5%CuO/5%BaO/SBA-15 trap, the DRIFTS spectra of a sensor that was
poisoned by SO2 was compared to one that was supposed to be protected by a SO2
trap (Figure 16). Indeed, the poisoned sensor is the one used is the test presented in
Figure 11. This sensor was subjected to multiple NO-SO2 exposures in the presence of the
6.5%CuO/5%BaO/SBA-15 trap before being poisoned by SO2 not adsorbed by the trap. On
the other hand, the so-called protected sensor was exposed for 30 min to NO and 30 min
to SO2 in the presence of the 6.5%CuO/5%BaO/SBA-15 trap, which showed a total SO2
adsorption. As an assumption, this sensor is supposed to be fully protected from any sulfur
poisoning, which will be identified by these DRIFTS experiments (Figure 16). As previously
mentioned in the experimental design section, it is important to note that the IR radiation
was focused on the sensing side of the sensor covered by the Pt/Al2O3 catalytic filter, and
the spectra were collected at room temperature. The spectrum of a fresh sensor was taken
as a reference and subtracted from those of the poisoned and protected sensors.
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Figure 16. DRIFTS spectra of both the NOx sensor poisoned by SO2 and the NOx sensor protected
from SO2, collected at room temperature. Pink lines = bands associated with nitrates/nitrites species,
and green lines = bands associated with sulfates species.

As shown in Figure 16, several bands are common for both poisoned and protected
sensors. The positions of these bands and their corresponding assignments are as follows:
815 cm−1 and 875 cm−1 for bridging nitrates [66,70], 1294 cm−1 and 1532 cm−1 for mon-
odentate nitrates [66,68,71], 1612 cm−1 for bridging nitrate associated with Pt [68] and 1370,
and 1400 and 1450 cm−1 for monodentate nitrite in the region of 1375–1410 cm−1 [72].
However, the poisoned sensor shows an additional band at 1481 cm−1 attributed to mon-
odentate nitrate [71]. In the same way, some other bands attributed to nitrates/nitrites
species are clearly observed on the protected sensor: 1190 cm−1 for monodentate nitrite [70];
1030 and 1245 cm−1 for chelating or bidentate nitrates, respectively [70,72]; and 1340 cm−1

for water-solvated nitrate [66]. The presence of these different nitrates/nitrites species on
both poisoned and protected NOx sensors can be mainly attributed to the adsorption of NO
on either Pt- or Al2O3-available sites of the catalytic filter. Based on the working principle
of the sensor, one can note that NO is not stored by this filter, but rather undergoes an
adsorption–desorption equilibrium during the experiment. Moreover, the DRIFT spectrum
of the poisoned sensor shows a broad band in the region of 930–1250 cm−1 which can
be deconvoluted in four bands at 1015, 1062, 1120 and 1178 cm−1. These bands could be
related to bulk sulfates species, which confirms the poisoning of this sensor by SO2 and
explains the degradation of its performance, as previously shown in Figure 11. It is note-
worthy that none of these sulfate bands were detected on the protected sensor, confirming
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our assumption that the 6.5%CuO/5%BaO/SBA-15 trap was able to fully capture SO2,
providing a total protection of the sensor from poisoning. In addition, it should be noted
that the monodentate nitrites species observed at 1370 and 1400 cm−1 on both sensors
(1375–1470 cm−1 region [72]) can overlap with surface sulfates species in the region of
1340–1400 cm−1 [65]. As these two bands seem to be more intense in the spectra of the
poisoned sensor than the protected one, they could be attributed to surface sulfate species
rather than nitrate species. Furthermore, the band at 1015 cm−1 observed on the surface
of poisoned sensor and attributed to sulfate species can also overlap with surface nitrate
species in the region of 1000–1050 cm−1 [66].

Based on DRIFTS measurements, it can therefore be concluded that surface sul-
fates/sulfites and nitrates species were formed on SO2 traps after several cycles of NO-SO2
exposures, the former being clearly predominant, which suggests a limited adsorption
of NO on the trap. A partial regeneration of the adsorbent surface was also pointed out
by these experiments. However, the temperature should be increased to ensure full SO2
trap regeneration. Finally, the protection role of the SO2 trap for the NOx sensor was
confirmed, showing that most of the species observed on the surface of the protected
sensor can be attributed to the N-containing adsorbed species, and without clear evidence
of sulfates/sulfites species. These species were, however, clearly present in the DRIFTS
spectrum of the poisoned sensor.

Thermal analyses were performed on a sulfated 6.5%CuO/5%BaO/SBA-15 trap to
identify the types of SO2-adsorbed species. This sulfation was performed at 500 ◦C and
under 40 ppm of SO2 until the breakthrough, in the same base gas of previous tests (5 vol.%
O2, 1.5 vol.% H2O in N2). The thermogravimetric (TGA) and derivative thermogravimetric
(DTG) curves in the temperature range of 35–1300 ◦C are shown in Figure 17. A small weight
loss is observed below 100 ◦C, which may correspond to the release of physically adsorbed
water. Another weight loss, of about 0.75%, is detected between 230 to 400 ◦C. It may be
due to the decomposition of copper carbonate into CuO, which occurs at temperatures of
230–300 ◦C, as previously reported by Shaheen et al. [73].
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Figure 17. TGA-DTG analyses of the sulfated 6.5%CuO/5%BaO/SBA-15 trap.

However, the main weight loss, of about 2.5%, is observed between 860 and 1140 ◦C
and centered at 1030 ◦C. This weight loss could be due to the decomposition of barium
sulfates or barium carbonates. Since no similar decomposition was observed in the ther-
mal analysis of the fresh trap (results not shown), it can be deduced that this weight loss
most likely corresponds to the decomposition of barium sulfates into BaO. Indeed, as
shown by Mahzoul et al. [28], the barium sulfate may decompose at 1000 ◦C. Moreover,
Yamazaki et al. [74] showed that such a decomposition could also occur at lower temper-
atures, around 800 ◦C, which matches well with our decomposition temperature range.
It is important to note that a small weight loss can be observed in the temperature range
of 500–750 ◦C, which may be attributed to the decomposition of copper sulfates to CuO,
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as found in the literature [48] and confirmed by our regeneration tests (see Figure 7b).
Based on these thermal analysis results, it can be concluded that the barium sites of the
6.5%CuO/5%BaO/SBA-15 trap are probably more active toward SO2 adsorption than are
the copper sites. However, BaO presents a limited catalytic activity for the oxidation of SO2
to SO3, which is essential for subsequent adsorption. Therefore, the presence of CuO in the
catalyst is necessary to enable this oxidation while giving rise to more adsorption sites.

4. Conclusions

In order to protect the electrochemical NOx sensor from sulfur poisoning under the
glass-furnace exhaust, two different CuO/BaO/SBA-15 adsorbents were synthesized and
tested for trapping SO2 at 500 ◦C during cyclic adsorption–regeneration experiments. The
challenge was to identify a material able to oxidize and trap SO2, and with a low affin-
ity to NOx. The whole of the characterizations of these traps shows: (1) the formation
of large micrometric CuO particles for both traps, (2) finely dispersed small Ba parti-
cles for the 6.5%CuO/5%BaO/SBA-15 and some BaCO3 micrometric agglomerates on
6.5%CuO/24.5%BaO/SBA-15, and (3) a more pronounced decrease in porous volume, spe-
cific surface area and mesoporous organization observed for the 6.5%CuO/24.5%BaO/SBA-
15 trap with higher BaO loading.

The SO2 adsorption–regeneration cycles show that the trap performance strongly
depends on the BaO loading. The 6.5%CuO/5%BaO/SBA-15 trap exhibits a better
efficiency/stability compromise, with higher adsorption capacity than that of the
6.5%CuO/24.5%BaO/SBA-15 trap after the third cycle.

The NOx sensor response was studied in the presence of the “SO2 trap system” placed
upstream the sensor. Both traps showed a very low NOx adsorption and only acted in the
NO2-NO conversion, while preserving the total NOx concentrations. Therefore, the NOx
sensor response was not impacted by the presence of these traps.

The response of this sensor was investigated during multiple NO-SO2 exposures in
the absence of, and in the presence of, SO2 traps. In the absence of traps, the sensor was
significantly poisoned by SO2, becoming almost unable to respond to NO. However, in
the presence of the 6.5%CuO/5%BaO/SBA-15 trap, a total SO2 adsorption across 4 h
(mads = 0.8 g) was observed, along with a very low NO adsorption. Consequently,
the NOx sensor was completely protected from SO2 poisoning and showed a stable
response to NO. The 6.5%CuO/24.5%BaO/SBA-15 trap provided a much shorter pro-
tection, lasting for only 1.5 h, despite a higher mass (mads= 1.5 g) implemented. There-
fore, the calculated SO2 adsorption capacity corresponding to the full adsorption of SO2

(C Breakthrough
ads ) was approximately five times higher for the 6.5%CuO/5%BaO/SBA-15 than

for 6.5%CuO/24.5%BaO/SBA-15.
In our experimental conditions, a mass of 182 g of the 6.5%CuO/5%BaO/SBA-15 trap

would be sufficient to continuously adsorb SO2 during three months of operation and to
protect the NOx sensor from sulfur poisoning without affecting its response to NOx. This
finding represents a major advance, as previously the main challenge was the interference
of NO adsorption with that of SO2 for copper-based adsorbents. Given the long-term
stability of NOx sensors in harsh environments, which has been previously highlighted
in the literature, and with the demonstrated performance of the SO2 trap throughout the
performed tests, it can be concluded that the whole system exhibits robust stability in such
challenging conditions.

Finally, the SO2-adsorbed species on the sulfated traps were successfully identified by
SEM-X-ray mapping and DRIFTS measurements. The thermal analysis suggests that SO2 is
predominantly adsorbed on the BaO sites rather than on the CuO sites of the trap.

Future investigation should focus on designing a container for the SO2 trap and
integrating it into industrial setups, upstream of the NOx sensor in the existing sys-
tem. This container should present a compacted design that permits the gas to pass
through without obstruction while maintaining a sufficient residence time. Such a design
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could serve as a unit replaced at regular intervals (e.g., every 3 months) once the catalyst
reaches saturation.
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