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Abstract 

Microelectronics production failure analysis is an important step in improving product 

quality and development. In fact, the understanding of the failure mechanisms and 

therefore the implementation of corrective actions on the cause of the failure depend 

on the results of this analysis. These analyses are saved under textual features 

format. Then such data need first to be preprocessed and vectorized (converted to 

numeric). Second, to overcome the curse of dimensionality caused by the 

vectorisation process, a dimension reduction is applied. A two-stage variable 

selection and feature extraction is used to reduce the high dimensionality of a feature 

space. We are first interested in studying the potential of using an unsupervised 

variable selection technique, the genetic algorithm, to identify the variables that best 

demonstrate discrimination in the separation and compactness of groups of textual 

data. The genetic algorithm uses a combination of the K-means or Gaussian Mixture 

Model clustering and validity indices as a fitness function for optimization. Such a 

function improves both compactness and class separation. The second work looks 

into the feasibility of applying a feature extraction technique. The adopted 

methodology is a Deep learning algorithm based on variational autoencoder (VAE) 

for latent space disentanglement and Gaussian Mixture Model for clustering of the 

latent space for cluster identification. The last objective of this paper is to propose a 

new methodology based on the combination between variational autoencoder (VAE) 

for the latent space disentanglement, and genetic algorithm (GA) to find, in an 

unsupervised way, the latent variables allowing the best discrimination of clusters of 
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failure analysis data. This methodology is called VAE-GA. Experiments on textual 

datasets of failure analysis demonstrate the effectiveness of the VAEGA proposed 

method which allows better discrimination of textual classes compared to the use of 

GA or VAE separately or the combination of PCA with GA (PCA-GA) or a simple 

Auto-encoders with GA (AE-GA). 

Keywords Failure analysis · Unsupervised variable selection · Genetic algorithm · 

Feature extraction · Variational auto-encoder · Natural language processing ·  

Artificial intelligence 

 

Introduction 

In the development of microelectronic technologies, failure analysis allows 

the study of potential failure mechanisms to define corrective solutions. 

Failure analysis is useful at all stages of a product’s life, from design to use. 

At each of these stages, the analysis results will make it possible to optimize 

the products and ensure greater reliability. It is therefore crucial to be able to 

draw information from each analysis and therefore to ensure a high success 

rate of the analyses. This rate has also become one of the key indicators 

monitored by laboratories. One of the most fundamental challenges of Failure 

Analysis (FA) 4.0 project for the digital world is to ensure that increasingly 

complex electronic systems operate reliably and securely [4]. This is essential 

in safety-critical applications such as autonomous vehicles and in digitized 

industrial production (Industry 4.0). 

The Failure Reporting, Analysis and Corrective Action System (FRACAS) 

is used by many organizations to track failures associated with their products 

[R7]. The fundamental tasks of FRACAS method include: Recording and 

capturing information about failures and problems; Identifying, selecting and 

prioritizing failures and problems; Identifying, implementing and verifying 

corrective actions to prevent recurrence of failures; Providing information from 

failure analysis and corrective actions in order to support reliability data 

analysis; Providing report summaries of incidents counts, and providing 

failure data used for reliability and quality metrics [23]. 

One of the fundamental challenges facing our digital world is to provide an 

innovative method based on artificial intelligence to quickly analyze and 

detect failures during the development and manufacture of electronic 

components and systems, using the final report generated by FRACAS. The 

Natural Language Processing (NLP) has been applied on the FRACAS final 

report to transform unstructured text from documents and databases into 

normalized structured data suitable for analysis or driving machine learning 

algorithms (ML) [37]. 
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Text mining is an important and popular data-mining topic, where a 

fundamental goal is to enable users to extract informative data from text 

assets and perform related operations on text, like recovery, clustering or 

classification and synthesis. For text clustering, one of the most important 

steps is feature selection and dimension reduction, because not all features 

in the text dataset are useful and valuable for unsupervised classification. 

Before applying these techniques of dimension reduction or variable 

selection, we first need to convert textual data into numeric data using 

methods called vectorization which are known in NLP as word embeddings. 

This technique generally tries to map a word using a dictionary to its vector 

form [27]. 

Dimension Reduction techniques seek to find a transformation function that 

can transform a data such that most information of the high-dimensional data 

is kept in a much lower-dimensional subspace [46]. Some feature extraction 

methods have been successfully used in text categorization, such as principal 

component analysis (PCA) [44], Auto-Encoders and Variational Auto-

Encoders (VAE) [15]. On the other hand, variable selection approach reduces 

the dimension of a dataset of variables potentially relevant with respect to a 

given phenomenon by finding the best minimum subset without transforming 

data into a new set. For this, we implement the selection of important 

variables that exclude the noninformative variables in order to improve the 

performance of complex regression and classification [24]. 

Mathematically speaking, various techniques have been employed to 

select optimal subsets of variables: successive projections algorithm [17], 

backward/forward selection algorithm [12], reweighted adaptive competitive 

sampling, importance of variables for projection, elimination of non-

informative variables [7], interval partial least squares regression [26], Monte 

Carlo-elimination of non-informative variables [12], competitive adaptive 

reweighted sampling partial least squares [26], simulated annealing, methods 

based on artificial neural networks, ant colony optimization [2], variable 

importance in partial least squares projection, loading weight, regression 

coefficient [26], sequential search, particle swarm optimization [18], etc. 

However, most of these techniques require additional a priori complementary 

information, which may not be well suited to our textual datasets. Since not 

all data instances X in the dataset have known response values Y, the feature 

selection process is called “Unsupervised Selection Variable.” A growing 

class of evolutionary-optimization computations that became popular through 

the work of Holland is the Genetic Algorithms (GA) [38]. They contain an 

essential category of interrogative methods depending on the stochastic 

algorithms that imitate the principles of biological evolution in nature. As an 

advantage, they have the capability of analyzing the space of variables in a 

large but reasonable amount of time. In addition, the GA are deeply powerful 

methods employed in several band selection problems, including text 

clustering. 
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In the mechanism of GA, a solution (i.e., a point in the research area), 

called a “chromosome”, is constructed with chosen variables positioned as 

genes. The GA needs an objective function, called “fitness” function. The role 

of this function is to compute a quantitative value defining the fitness of each 

chromosome. The mechanism of evolution allows the algorithm to handle a 

finite set of chromosomes (the population). These chromosomes evolve by 

certain operators in each generation, such as crossover and mutations, which 

simulates the developments that result in natural reproduction [38]. The 

fitness function is arguably the most important part of a GA having the role to 

measure the quality of the chromosome in the population according to the 

given optimization objective. Since we want to classify the textual data in 

separate and compact clusters, we propose to test the K-means clustering 

with different well-known and widely used validity indices as a fitness function 

to evaluate the quality of the obtained clusters. 

There are several studies on the application of GA on textual data. Genetic 

algorithm-oriented latent semantic features are proposed to obtain better 

representation of documents in text classification [45]. Genetic algorithm-

based unsupervised feature selection technique with mean absolute 

difference as a fitness function was applied to improve text clustering [1]. GA 

is proposed to select optimal text features using term frequency-inverse 

document frequency (TFIDF) to reduce document term relationships [36]. GA 

has been applied for text clustering using ontology and evaluating the validity 

of various semantic similarity measures [40]. 

In this study, a two-stage feature selection and feature extraction is used 

to: (1) reduce the high dimensionality of a feature space composed of a large 

number of terms; (2) Remove redundant and irrelevant features from the 

feature space; (3) Reduce the computational complexity of the machine 

learning algorithms used in text classification and improve their performance. 

In the first stage, we apply a feature extraction technique using Variational 

Autoencoders (VAE) to represent complex textual data dimension via a low-

dimensional latent space, which is learned in an unsupervised way. In the 

second stage, we apply an unsupervised variable selection technique using 

a genetic algorithm to identify more informative and useful features from the 

textual dataset containing a very large number of words, and to show whether 

the features selected by the proposed method can significantly improve the 

performance of unsupervised textual classification. This new methodology 

VAE – GA makes it possible to project the textual data on a new latent space 

and then to select the discriminant latent variables by GA to classify the 

textual data in an unsupervised way. This methodology will be compared with 

the application of VAE and GA separately, and the combination of PCA-GA 

and AE-GA on real datasets. This article will be structured as: in Sect. 2, 

mathematical methods, brief overview of the proposed research 

methodologies and the experimental setting will be presented. In Sect. 3, the 

application of proposed methodology and the experimental results obtained 

will be discussed. The last section presents conclusion and perspectives. 



5 
 

1 Mathematical methods 

1.1 Dimensional reduction by transformation techniques 

1.1.1 Auto‑encoders 

An auto-encoder (AE) is a neural network, which map their input to a latent 

representation typically of lower dimension, through nonlinear 

transformations, and reconstruct their input through this intermediate 

representation. An auto-encoder is composed of an encoder part and a 

decoder part. Both of which can have multiple layers for deeper AEs, and the 

decoding part has a layout that is symmetric to its encoding counterpart. 

Consider X = {(xi)}i
n
=1 being a dataset matrix with xi ∈

RD represents a sam- 

ple from high-dimensional spaces 
RD and n denotes the number of samples. 

The auto-encoder learns compressed features in a low-dimensional space Ld 

(with d<D ) for high-dimensional data with minimum reconstruction loss [25]. 

The output of the neuron is the transformation of the input by set of layers L, 

which are accompanied by a weight matrix, a bias vector and a nonlinear 

activation function. The embedding of the dataset Ld is an output of the 

encoding part of the network denoted byZ = {(zi)}n
i=1 who performed by the 

function denotes as f, with zi = f(xi),i = 1,…,n . Figure 1 shows the basic 

structure of Auto encoder (AE). 

 

Fig. 1  Illustration of the dimensionality reduction principle with encoder and decoder 

Formally, if xi
(l−1) denotes the i th output sample of the (l −1)th layer, which 

is the i th input sample of the l th layer of the network, and xi
(l) is the ith output 

sample of the lth layer produces for this input, given by: 

 xi(l) = f(A(l) × xi(l−1) + b(l)). (1) 

Where A(l) is the weight matrix and b(l) is a bias vector which accompany the 

lth layer, and xi
(1) ≡xi . Generally, to guarantee the learned representation 
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adequately represents the input information, the following reconstruction error 

is minimized during the training phase: 

n 

 argmin =1 
‖
‖‖xi

(L) −xi
‖‖

‖2
2. th (2) 

i 

Where xi(L) denotes the output of the final layer of the AE for the i input sample 

and can be considered as a reconstruction of that input [39]. 

1.1.2 Variational auto‑encoders 

A variational auto-encoder (VAE) is a type of generative deep learning model 

capable of unsupervised learning. It is a nonlinear continuous latent variable 

model, intended to learn a latent space, with an efficient gradient-based 

training procedure based on variational principles [35]. The framework of 

variational autoencoders (VAEs) provides a computationally efficient way for 

optimizing the deep latent-variable models (DLVMs) jointly with a 

corresponding inference model using stochastic gradient descent (SGD). 

We introduce a parametric inference model q𝜙(z∕x) called an encoder or 

recognition model and p𝜃(x∕z) called a decoder or generative model where 𝜙 

and 𝜃 are the variational parameters of the encoder and decoder, 

respectively. The goal of VAE is to find a probability distribution q𝜙(z∕x) of the 

latent variable z, which we can sample from z ∼ q𝜙(z∕x) to generate new 

samples x ∼ p𝜃(x∕z) . For any choice of inference model q𝜙(z∕x) , including the 

choice of variational parameters 𝜙 , we have [9]: 

logp𝜙(x) = 𝔼qq𝜙𝜙(zz∕xx)[[logp𝜃(x)
] 
] 

= 𝔼 ( ∕ ) log p𝜃(x,z) p𝜃(x∕z) 

 ] (3) 

= 𝔼q𝜙(z∕x)  

= L𝜃,𝜙(x)+DKL(q𝜙(z∕x) ∥ p𝜃(x∕z)). The second term in 

equation (3) is the Kullback–Leibler (KL) divergence between p𝜃(x∕z) and 

q𝜙(z∕x) , which is non-negative: 

[ 
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 DKL(q𝜙(z∕x) ∥ p𝜃(x∕z)) ≥ 0. (4) 

The first term in equation (3) is the variational lower bound, also called the 

evidence lower bound (ELBO): 

 L𝜃,𝜙(x) = 𝔼q𝜙(z∕x)[logp𝜃(x,z)− logq𝜙(z∕x)]. (5) 

Due to the non-negativity of the KL divergence, the ELBO is a lower bound 

on the log-likelihood of the data. 

 L𝜃,𝜙(x) = logp𝜃(x)−DKL(q𝜙(z∕x) ∥ p𝜃(x∕z)) ≤ logp𝜃(x). (6) 

The loss or objective function to be maximized is given by, 

 LVAE(𝜃,𝜙) = 𝔼q𝜙(z∕x)[logp𝜃(x∕z)]−DKL(q𝜙(z∕x) ∥ p𝜃(z)). (7) 

For two multivariate normal distributions 
N

(𝜇0,Σ0) and 
N

(𝜇1,Σ1)the closed-form 

for the objective loss function of VAE is given by, 

 LVAE∕ 

 1 Σ1+m 

(8) 

The term 𝜇1 −𝜇0 Σ
2

0−1 is a compact form for  , closely 

related to the squared- Mahalanobis distance if ‖ ‖ 𝜇1 is a random variable. 

We then train the VAE to find the optimal parameters using Bernoulli 

distribution as the reconstruction loss. 

 (𝜙∗,𝜃∗) = argmax(𝜙,𝜃) LVAE(𝜃,𝜙). (9) 
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1.1.3 Principal component analysis 

Principal Component Analysis (PCA) is a classical method of multivariate 

statistics. It is a dimension-reduction tool that has been developed to reduce 

a large set of variables to a small set that still contains most of the pertinent 

information from the large set [22]. The reduced variables are called the 

“principal components.” The principal components are calculated from the 

covariance matrix. If we assume that a matrix X of data has been centralized 

to have zero mean, the PCA requires the computation of the eigenvalues and 

eigenvectors of the covariance matrix, which is the product C= n −
1
1X×XT . 

Since the covariance matrix is symmetric, it is diagonalizable, and the 

eigenvectors can be normalized such that they are orthonormal. We can 

decompose C into the product of three matrices: 

 C=W×D×WT. (10) 

where W is a matrix of eigenvectors (each column is an eigenvector) and D 

is a diagonal matrix with eigenvalues 𝜆 in decreasing order on the diagonal. 

The eigenvectors are called principal axes or principal directions of the data. 

Projection of the data onto the principal axes is called principal components 

(PC). Figure 2 shows the Principal Component Analysis technique for 

Dimensionality Reduction. 

1.2 U nsupervised selection variable using genetic algorithm 

Genetic Algorithms (GA) are a class of evolutionary algorithms that use 

techniques inspired by evolutionary biology such as inheritance, mutation, 

selection and crossover [48]. The steps of proposed GA methodology are 

shown in Fig. 3 These algorithms are based on the concept of natural 

selection of solutions by copying its main principles. Each solution may be 

considered a population, where each element is represented by a 

chromosome built with selected variables positioned as genes [16]. The GA 

steps reproduce various evolutionary operations, such as crossover and 

mutation, allowing the method to select for each generation the best 

chromosomes  
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Fig. 2  Illustration of the dimensionality reduction principle with Principal Component Analysis 

 

Fig. 3  Synoptic of the proposed GA methodology with binary genes. In our case, genes 

correspond to variables of numerical dataset 

and to identify at the end an optimal chromosome with respect to an 

optimization criterion defined by a fitness function [28]. 
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1.2.1 Genetic algorithm steps 

Let X ={xj}n
j=1 be a matrix of numerical data of dimension ℝS×n where each 

column corresponds to a sample extracted from S variables W = [w1,…,wS]T 

∈ ℝS . This dataset is recorded on several samples belonging to a set of 

classes C={c1,…,ck,…,cK} . The idea behind GA is the use of a population of 

solutions, each one represented in the form of a chromosome with selected 

variables positioned as genes. These algorithms are a type of evolutionary 

optimization computation based on the concept of natural selection of 

solutions in each generation for reproduction and various evolutionary 

operations such as crossover and mutation. The GA steps are briefly 

described thereafter; they are detailed in several articles, such as [16] and 

[28]. 

The initialized parameters are: the chromosome size L (the number of 

genes corresponding to the variable to be selected); the population size N 

(the number of chromosomes per generation); the number of elites Ne (the 

number of chromosomes with the best fitness values in the current generation 

that are guaranteed to survive to the next generation); and the fraction FRACc 

(the number of chromosomes selected to perform crossover). The stopping 

parameters are the maximal number of iterations MAXit , and the tolerance𝜖 
for the chosen fitness function. The first step of a GA is the creation of the 

starting population P(0). N chromosomes are generated by randomly 

selecting L variables from W ( L<S is the size of the chromosomes): 

P(0) = {zi(0) = [zi1…zil …ziL] . (11) The initial 

population P(0) is selected randomly from the set of uniformly distributed 

variables ranging over their maximum and minimum limits [28]: 

 z0i ∼ 

U(zmini ,zmaxi ). (12) 

where z0
i signifies the initial l th variable of the i th population; zmin

i and zmax
i 

are the minimum and maximum limits of the lth decision variable; U(zmin
i ,zmax

i 

) signifies a uniform random variable ranging over[zmin
i ,zmax

i ] . Then each 

chromosome zi in the current population is evaluated using a fitness function 

F(.) that assigns a fitness value Fi: 

 Fi = F(zi),∀i = 1…N. (13) 

The fitness function is arguably the most important part of a GA. The role of 

a fitness function is to measure the quality of the chromosome in the 

population according to the given optimization objective. Since we want to 

classify samples within the K unknown classes, we propose to use the K-
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means or Gaussian Mixture Models Clustering methods with well-known and 

widely used validity indices as fitness function to evaluate the quality of the 

obtained clusters such as: Davies Bouldin (DB), Calinski-Harabasz (CH), Xie 

Beni (XB), Dunn Index (DI), Alternative Silhouette Width Criterion (ASWC) 

and Pakhira–Bandyopadhyay–Maulik (PBM). All of these indices measure the 

compactness and the separability of the clusters [41]. 

For each fitness function Fi , the values are ordered in ascending order and 

the best Ne chromosomes are selected based on this ordering. These are the 

surviving chromosomes that will be copied unchanged in the next population. 

Once this selection has been completed, other Np chromosomes are 

selected in pairs to replicate and to form Nc =Np “child” chromosomes in the 

next population. The selection is performed probabilistically so that an 

individual’s selection probability is proportional to the individual’s fitness. 

There are several schemes for the selection process: roulette-wheel selection 

and its extensions, scaling techniques, tournament models, elitist models, 

ranking, proportional selection, stochastic methods and stochastic universal 

sampling selection, etc. [31]. In our application, we have chosen the 

stochastic universal sampling selection procedure since this method is a 

single-phase sampling algorithm that has no deviation between the expected 

reproduction rate and the algorithmic sampling frequency and has a minimum 

spread [30]. First, we compute the probability pi of selecting the chromosome 

zi and the cumulative probability qi: 

Fi 

 pi Fi . (14) 

i 

 qi =∑pk. (15) 

i=k 

Next, we generate a uniform random number r ∈ [0, N
1] . If r < q1 then we 

select the first chromosome z1 , otherwise we select the chromosome zi such 

that qi−1 < r ≤ qi. 

Once the selection of Np chromosomes has been completed, to form child 

chro- 

mosomes, we apply the crossover technique that is a structured yet 

randomized information exchange between chromosomes. This process 

allows the production of two children from two parents. In this process, genetic 

material from one parent is combined with genetic material from another 

parent to discover better children. Crossover operators can be realized by 

many methods, including single-point, k-point, Flat, uniform and/or order-

based, discrete, and nonlinear methods. This work used a uniform crossover 

since it gives good results and has been used successfully in a majority of 
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cases [8, 19]. A uniform crossover operator combines a uniform blend of data 

from each parent [8], promoting greater exploration. In uniform crossover, 

each gene is randomly selected either from the first or from the second parent. 

To explain the uniform crossover of genetic algorithms, the parent’s 

chromosomes p1[ziq] , p2[ziq] and the children chromosomes o1[ziq] , o2[ziq] , 

q=1⋯L are gene arrays. The most popular crossover variant between real 

numbers is the uniform crossover. Genes situated in the q position of the 

children chromosomes zi are calculated as it follows [20]: 

• 𝛼 is a random vector of real numbers uniformly distributed with the same 

size as  

p1 , p2 , o1 , o2 where 𝛼q ∈ [0,1]. 

• Children are copied from parents and crossover is obtained with equations 

16 and 17:  

o1[zi] =p1[zi] for each 𝛼q > 0.5,o1[ziq] = p2[ziq]. (16) o2[zi] =p2[zi] for 

each 𝛼q > 0.5,o2[ziq] = p1[ziq]. (17) 

After crossing, the mutation operator involves the modification of the value of 

‘gene’ to maintain the genetic diversity from one generation of a population to 

the next. Mutation may be implemented by different methods: flip bit, random, 

boundary, uniform, nonuniform, or Gaussian. We have chosen here the 

Gaussian operator since it produced the best results for most fitness functions 

and gives good results [20, 21]. Essentially, this operator adds a unit 

Gaussian-distributed (with zero mean and unit variance) random value to the 

genes of each of the remaining (N −(Nc +Ne )) chromosomes. To implement 

the mutation, we add a random number generated by a Gaussian distribution 

with zero mean to all positions of the genes in each selected chromosome 

[11]. The new values of the genes, representing wavenumber positions in 

spectra, are then rounded to the nearest integer. The standard deviation of 

this distribution is the parameter called “scale” which is equal to 1 in the first 

generation, but this parameter is controlled during the next generations by 

another parameter called “shrink.” The standard deviation at the t th 

generation, 𝜎t is the same at all coordinates of the parent chromosome, and 

is given by the recursive formula [11]: 

 𝜎t =𝜎t−1 × 1 − shrink T t ). (18) 

( 
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Where T the number of generations. A low value of “shrink” produce a small 

decrease in the amplitude of the mutation on the indices of gene positions. 

These different steps are repeated until one of the termination criteria is 

satisfied: the maximum number of iterations MAX it has been reached or the 

weighted-average change in the fitness values over all generations is less 

than a tolerance 𝜖. 

1.3 U nsupervised classification 

1.3.1 Gaussian mixture model (GMM) 

The Gaussian mixture model (GMM) is a probabilistic soft clustering algorithm 

used to estimate the parameters of a distribution of random variables by 

modeling them by a mixture density. GMM considers that each component of 

the mixture characterizes a class. These models have a main advantage: It 

is a probabilistic method for obtaining a classification of observations. A 

probability of belonging to each of the classes is calculated and a 

classification is generally obtained by assigning each of the observations to 

the most probable class [32]. The GMM parameters are estimated using the 

iterative estimation of Expectation-Maximization (EM) algorithm. Let X be a 

mixture random variable with a probability density function f(x) defined as the 

weighted sum of the underlying components densities fk(x): 

K 

 f(x∕𝜃) = ∑𝜋k fk(x∕𝜃k). (19) 

k=1 

Where 𝜋k represents the prior probability of component k satisfying 

 and 0≤𝜋k ≤1 . K is the number of component Gaussian densities, 

𝜃 and 𝜃k denote, respectively, the parameters of the Gaussian model. We 

assume that the underlying random variables are following d-dimensional 

Gaussian distributions. Therefore: 

f  

where 𝜇k is the d-dimensional vector mean, | | Σk is the covariance matrix of 

dimen-K sion d×d , Σk denotes the determinant of Σk and 𝜃 = {𝜇k,Σk,𝜋k}(k = 1) 

represents the parameters of GMM to be estimated. The Expectation-

Maximization (EM) | | algorithm is the most widely used method for estimating 
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the parameters of a mixture model. It is an iterative technique maximizing the 

likelihood of the parameters of probabilistic models in the presence of latent 

(unobservable) variables. Given the sample X ={x1,⋯,xn} , the corresponding 

GMM likelihood relative to the model with parameter 𝜃 is given by: 

n 

i=1 

 f(X∕𝜃) = ∏f(xi∕𝜃). (21) 

It is easier to maximize the log-likelihood instead of the likelihood function 

itself. The log-likelihood function is given by: 

n 

i=1 

 log(f(X∕𝜃)) = ∑log(f(xi∕𝜃)). (22) 

Suppose that with each sample x, a latent variable z ∈ℝK is associated. The 

loglikelihood function of X by introducing the latent variables Z takes the 

following form: 

log(f(X∕𝜃)) =∑log(f(X,Z∕𝜃)) 

z 

 n K (23) 

=∑∑zik{log(𝜋k)+ log(N(xi∕𝜇k,Σk))}. i=1 k=1 

Where zik denotes the kth component of zi . To estimate the parameters of a 

Gaussian mixture, the expectation-maximization (EM) algorithm iterates 

between the following two steps until convergence: the Estimation step and 

the Maximization step. 

Estimation step: the current parameters are used to calculate the 

expectation of zik , denoted by 𝛾(zik) , as follows: 
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𝜋kN(xi∕𝜇k,Σk) 𝛾(zik) = .
 (24) 

Maximization step: after calculating the expectations of zik in previous step, 

the quantity Q(𝜃,𝜃 old ) must be maximized with respect to the different 

parameters of the model. 

 𝜃 new = argmax(𝜃) Q(𝜃,𝜃 old ) X,𝜃 old )log(f(X,Z∕𝜃 old )). (25) 

The new estimated parameters 𝜃new are given by: 

• The proportions: 𝜋k
new 

n 

• The averages: 𝜇knew ∑n 𝛾(z )x new new 

• The covariance matrices: k 𝛾(zik)(xi−𝜇k )(xi−𝜇k )t 

 
1.3.2 K‑means clustering 

K-method is one of the plainest alone unsupervised classification algorithms 

disposed partitioning a dataset X ={xi∕xi ∈ℝd}n
i=1 of n samples collected from d 

variables into K disjoint partition or clusters, P(X,K) = {Pk}K
k=1 expressed by 

their centroids, C={ck ∶ck ∈ℝd}K
k=1 . These clusters are estimated by minimizing 

thetotal  

intra-cluster variation defined as [42]: 

 n K 

 1, if xi ∈ Pk . (27) 

I(xi ∈ Pk) =0, otherwise 

D(C) = I(xi ∈ Pk)‖xi −ck‖2. 

i=1 k=1 

where I is the indicator function defined as: 

(26) 

{ 
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and xj −ck 
2 the Euclidean distance between the i th sample xi and the kth 

center ck . The K-means objective function ‖ ‖ 26 is optimized by the following 

iterative algorithm [42]: 

• Step 1: Initialize the K cluster centers C by choosing randomly K 

different samples of X. • Step 2: For each i ={1,…,n} , attribute the i th sample 

xi to the m th cluster Pm  

such that  

 m= kargmin={1,…,K}‖xi −ck‖2 
k 

• Step 3: For each k={1,…,K} update the k th cluster centroid c using:  

xi∈Pk xi 

 ck 

=Nk . (28) 

 whereNk is the number of samples belonging to the kth cluster Pk 

• Step 4: Repeat steps 1 to 3, until the algorithm converges. 

1.3.3 Partition assessment by validity index 

A validity index is a mathematical function that can be used to compare 

numerous partitions predicted by the same clustering algorithm using 

different parameter values, such as the number of clusters. The majority of 

existing validity indices were defined as a function of compactness and 

separation measures of clusters, where compactness (or within-cluster 

distance) indicates the closeness of objects in the same cluster, and 

separation (or between-clusters distance) indicates the isolation of one 

cluster from another. The optimal partition maximizes cluster separation while 

minimizing cluster compactness. The Calinski-Harabasz (CH) [6], Dunn index 

(DI) [13], Davies-Bouldin (DB) [10], Pakhira–Bandyopadhyay–Maulik (PBM) 

[29], XieBeni (XB) [47], and Alternative Silhouette Width Criterion (ASWC) 

[34] are the most common validity indices described in the literature. These 

validity indices are briefly presented, using the mathematical notations, as 

follows: 

Calinski–Harabasz [6]. The ratio of inter and intra cluster variances is used 

to calculate this index: 

∑ 
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B 

 CH (P(X,K)) = W .  (29) 

N 

where B=
N

kj−c‖2 is the inter (or between) cluster variance, W= n−k
‖xi−cj‖2 

is the intra (or within) cluster variance, Nj is the number of samples belonging 

to the jth cluster, and c= n 
xi is the dataset’s barycenter. The best partition 

maximizes  

the CH index. 

Dunn index [13]. This indicator is defined as the rate between the minimum 

intercluster distance and the largest cluster perimeter: 

minp,q∈{1,…,K},p≠q{𝛿(Pp,Pq)} 

 DI(P(X,K)) =

 maxl∈{1,…,K}{Δ(Pl)} . (30) 

where 𝛿(Pp,Pq) = minxi∈Pp,xr∈Pq {‖‖xi −thl xr‖‖} is the closet distance between 

two sam-xi∈Pl,xr∈Pl ‖‖ i r‖‖ 

ples across clusters p and q, and Δ(P ) = max { x −x } is the maximum distance 

between two samples in the l cluster. The best partition maximizes the DI. 

Davies–Bouldin [10] This index is defined as a function of the ratio of the 

sum of within-cluster scatter to between cluster separations. When it has a 

small value it exhibits a good clustering: 

1k ∑l=k1 Rl. (31)  DB(k) = 

where Ri =maxl≠m,1≤l,m≤k SMl+l,Smm . The term l,mSj = N1j ∑pN=j 1‖xp −cj‖2 

represents the dispersion measure of the jth cluster. The M is the Euclidean 

distance between the centroids of lth and mth clusters. 
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Pakhira–Bandyopadhyay–Maulik [29] This index is defined as the square 

ratio between the largest normalized inter-cluster distance DN and the 

normalized sum of  

intracluster distances EN: 

 D 2 

 PBM (k) =NN) .  (32) 

E 

where 

DN = ⋯ ‖ ‖. (33) maxl,m=1, ,k cl −cm k 

and 

EN = ‖i‖. (34) c x̄‖ 

and x̄ is the mean of dataset. The best partition maximizes the 

PBM index. 

Xie–Beni [47] This index is defined as the ratio between the compactness 

𝜋 and the separation S of clusters. Mathematically, the XB index may be 

formulated as: 

𝜋 

 XB (k) = S .  (35) 

𝜋ci 
2 the average compactness of the clusters, where 

and  

S= minl≠mopt;1≤l,m≤k{
‖
‖cl −‖cm‖‖2} is the minimum separation measure between 

the ‖ clusters. K is defined as the number of clusters which minimizes the XB 

index.  

 Alternative Silhouette Width Criterion [34]. It is a variant of the original 

silhouette criterion obtained by considering the average silhouette of all points 

of the dataset: 

( 

‖
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 ASWC(k) = N1 ∑i=
k
1 ∑j

N
=i1 s(xi(j)) = 1 ∑i=

k
1 ∑j

N
=i1 

i(
b

j)
i(j) . (36) 

 N a +𝜖 

The term ai(j) = N1i ∑Nl=i1,li≠(jj)‖xl(j) −xi(j)‖2 is the mean distance of this i(j) m=1…k m≠k 
1 

Nm−6 jth object to all 2 other samples in the i th cluster. And 𝜖 is a small constant 

(e.g. 10 ) used to avoid division by zero when a = 0 . The term b = minopt; Ni 

l∑=1 xi(j) −xm(j)  

is the average distance of xi(j) to its nearest cluster. K is defined as the number 

of clusters which maximizes the ASWC index. 

1.4 R esampling method: bootstrappingn 

The general principle of the Bootstrap method is to resample the initial 

samples a large number of times, the statistical inference being based on the 

results of the samples obtained. Moreover, the Bootstrap resampling method 

is the most commonly used in most applications because it considers that all 

observations X1,⋯,Xn are independent and identically distributed [14]. 

Suppose we are looking for information on a parameter 𝜃 of the population. A 

random selection of the population of a sample of size n is carried out, 

denoted by (X1,⋯,Xn) . Then, we calculate an estimator 𝜃
̂
 of 𝜃 which is based 

on a drawn sample and therefore its numerical value varies according to 

different random draws. For this, we force to calculate the bootstrap standard 

error of 𝜃
̂
 which is the  

following: 

 SEB (𝜃̂) =𝜃
̂(b))2. (37) 
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Then pick a large number of bootstrap draws T, and repeat for b=1⋯T . In our 

application, we consider the set of preprocessed data, x1,⋯,xn , which belong 

to the classes c1,⋯cj,⋯cn , with cj ∈{1⋯K} and K the number of classes known 

a priori. We realize T random draws in this dataset. For each new draw, t 

∈{1⋯T} we obtain a new set of n samples: x1(t(1)),⋯,xn(t(1)) which belong to 

the classes c1,⋯cj,⋯cn . The GMM (or K-means) classification is applied to 

this resampled set to estimate K classes. The result obtained gives us the 

membership of each observation to the classes ĉ1,⋯ĉJ,⋯ĉn . For each random 

draw, we measure the confidence interval and the number of well-classified 

samples, which allows us to calculate the average of good classifications over 

all T iterations. 

 Emoy =

 | .(38) 

The combination of the resampling method with the classification method 

allows to obtain a more precise estimation of the classifications of the samples 

and limits the influence of the random initialization in the unsupervised 

classification algorithm (GMM or K-means). 

 

Fig. 4  Synoptic representation of the proposed methodology for the failure analysis of textual 

dataset 
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1.5 Proposed methodology for evaluation of failure analysis 

discrimination 

In this section, we present the methodology proposed for the selection of 

variables by the genetic algorithm combined with K-means or GMM clustering 

and the validity index applied to textual data. Figure 4 shows the steps of the 

failure analysis modeling methodology by reducing the dimension using 

transformation and unsupervised variable selection techniques and 

representing the failure classes for this analyzed data. 

The first phase represents the pipeline preprocessing of the textual data. 

The data vectorization using the Word2Vec method is applied in phase 2 to 

convert our textual data into numerical dataset [33]. These are a set of neural 

network models that have the aim to represent words in the vector space. 

These models are highly efficient and performant in understanding the context 

and relation between words. 

The Phase 3 consists of two parts: the first is based on the application of 

dimensional reduction techniques on numerical data such as Auto-Encoders 

(AE), Variational Auto-Encoders (VAE) or Principal Component Analysis 

(PCA) methods to transform the original dataset ′ X in order to obtain a new p-

dimensional latent space X .Then, we apply on these reduced data the 

unsupervised variable selection method using the genetic algorithm 

combined with the clustering method such as K-means or GMM evaluated by 

different fitness functions as validity indices to identify discriminant variables. 

This process allows us to obtain an L-dimensional dataset instead of p-

dimensional with L<p<d. 

For representation purposes, Phase 4 shows the application of principal 

component analysis (PCA) on the final reduced space of variables. Useful 

information from the PCA is then represented in the form of scores (PC1 & 

PC2). The representation of plot scores in terms of PC1 and PC2 gives a 

qualitative indication of the separation process. Finally, to quantify the 

separability and compactness with respect to text clusters, we compute the 

validity indices DI, DB and CH on the L-dimensional dataset. 

2 Background 

2.1 Data formalization 

Data description and analysis is an essential step that precedes modeling 

process of defected microelectronic samples. An accurate representation of 

the data is necessary to understand the failure analysis flow using one or 

more triplets (Step type, Sub-step technique, Equipment) proposed by 

experts. We have a set of textual data on microelectronic production failure 

analysis. This dataset consists of two parts [15]: the first is the description of 

failure X¬𝜆 and the second is the analysis flow paths of failure 𝜆 . In formalizing 



   

22 
 

our approach, we use the following notations. Let X ={xij}n
i=

,m
1,j=1 represents 

the input space of given dataset where n is the number of instances and m is 

the number of variable span. We define the description of failure  

X¬𝜆 ={xij
¬𝜆}n

i=
,d

1,j=1 as pre-triplet data, where d≤m . This indicates on demand 

the  

 

Fig. 5  Expert decision failure analysis process 

information given before an expert proposes the analysis to determine the 

failure mode (FM). Figure 5 represents an illustration of expert decision of 

failure analysis. 

Let Λ={𝜆ij}n
i=

,q
1,j=1 ∈ℝn×q represents the Failure analysis decision path 

recorded by expert per sample. It includes the whole process of diagnostics 

stacked horizontally [15]: Equipment, Sub-step technique, Step type. The 

purpose of analyzing faults is to find the source of the failure using one or 

more triplets (Step type, Substep technique, Equipment). Then the input 

space X can be described using a matrix representing a joint observation 

space of xij
¬𝜆 and 𝜆ij: 

x¬𝜆 ⋯ x¬𝜆 𝜆 ⋯ 𝜆
 
q x

 

⋯ 𝜆 𝜆 ⋯ 2 
⎞⎟⎟⎟⎠ 

 X =⋮ ⋱ ⋮ ⋮ ⋱ ⋮21 2 
q 

⎜⎜⎝xn¬1𝜆 ⋯ xnd¬𝜆 𝜆n1 ⋯ 𝜆nq 

⎛ 

⎜ 
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2.2 P reprocessing pipeline 

Preprocessing text includes eliminating noise by removing whitespace and 

punctuation, correcting spelling errors, deleting duplicate instances, 

converting text to lowercase, and removing stop words and words with less 

than three letters. Here, we will go over the phases in the preprocessing 

pipeline [15]: 

• Symbol and alphanumeric removal: This technique eliminates words from 

the document that do not contribute to the intelligent pattern or the sample 

of analysis, such as symbols and sometimes-alphanumeric words. They 

are just stop words and inflexions that are employed to highlight meaning, 

hence their removal [5]. 

• Tokenization and Thresholding: Tokenization is the process of utilizing a 

separator to convert or break a sentence into a token. Thresholding is a 

method for removing words that are shorter than a specific length [5]. The 

threshold in this paper is set at two. 

• Stemmatization and Lemmatization: this is the process of removing affixes 

(prefixes and suffixes) from textual features [15]. 

• Abbreviation: abbreviations are common in FRACAS, thus, it is important 

to replace them with their full meaning. To help with this, we have put up 

an abbreviation dictionary. 

2.3 Vectorization data 

The technique of translating text into numerical form is known as text 

vectorization. Vectorization can be done in a variety of ways, the most 

common of which are Bag of Words, TF-IDF (Term Frequency–Inverse 

Document Frequency), Word2Vec, and GloVe. The Word2Vec method was 

chosen because it is an effective approach for converting text to numerical 

data in the context of FRACAS [15]. Word2vec is built on the deep learning 

concept of a fixed-length real-valued vector representing words. Word2vec is 

a prediction-based approach that comes in two flavors [49]: continuous bag-

of-words (CBOW) and skip-gram (SG). Small neural networks are used in 

both the CBOW and SG models to learn the mapping of words to a vector 

space point. Therefore, each word represents a vector. Finally, we construct 

a high dimension matrix. Each row in matrix represents every training 

instance and the columns are the generated word vectors. 

3 A pplication & results 

First, we propose to apply our VAE-GA methodology on real data such as the 

E-Mail dataset of raw textual email messages [R50]. Then, we compare this 
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proposed methodology with other methods such as VAE, GA, AE, PCA, and 

the combination between AE or PCA with GA. 

3.1 Real dataset: E‑mail‑classification (spam/no spam) 

The considered dataset plays a crucial role in assessing the performance of 

any spam filter.The E-Mail dataset of raw textual email messages is mainely 

used to divide emails into two categories Spam (122 emails) and No spam 

(835 emails) [43]. 

The necessary stages that must be checked during the data mining of email 

messages are summarized into the following: 

NLP preprocessing : This is the first stage that is executed whenever an 

incoming mail is received. This step consists of tokenization, stemming, noise 

removal and stop word removal. 

Text Vectorization : This is the second stage that is the process of 

converting text into numerical representation. We have chosen the Word2Vec 

since this method is an efficient method for transforming text to numerical 

data. 
Table 1  Performance of VAE, 

GA, AE, PCA, and the 

combination between VAE, AE 

and PCA with GA evaluated 

based on K-means or GMM 

clustering methods applied on 

the E-Mail textual dataset 

The Bold in the tables 

means the best results 

After these stages, we test the performance of the methods proposed 

above on this dataset by calculating the precision of correct classifications. 

Table 1 shows the results of the application of VAE, GA, AE, PCA, and the 

combination between VAE, AE, and PCA with GA evaluated based on K-

means or GMM clustering methods. 

We can see that the three methods VAE-GA, GA and VAE give the best 

GMM clustering accuracy. The VAE-GA method gives the best performance 

Methods Clustering Accuracy 

(%) 
VAE K means 60.8  

VAE GMM 77.5  

GA K means 66.7  
GA GMM 72.4  

PCA K means 60.8  

PCA GMM 65  

AE K means 58.6  

AE GMM 65.8  

VAE- GA K means 68.4  

VAE- GA GMM 80.7 

AE- GA K means 64.5  

AE - GA GMM 71.4  

PCA- GA K means 62.3  

PCA- GA GMM 68.4  
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with a GMM clustering accuracy percentage of 80.7% . After that, we propose 

to apply Bootstrap resampling method on these three methods with T=1000 

draws and calculate the mean of correct classification and confidence interval 

(CI) of GMM clustering. Table 2 shows that our proposed VAE-GA 

methodology yields better and much stable GMM clustering results than 

applying dimension reduction method like VAE and variable selection method 

like GA separately. 

3.2 F ailure analysis dataset 

STMicroelectronics provided the dataset for this study, covering a three-year 

period from 2019 to 2021. The data have the same format as defined in the 

FRACAS  

Table 2  Average accuracy and confidence interval of GMM clustering for three methods: VAE-

GA, GA and VAE after applying Bootstrap resampling technique to textual data observations 
Methods CI Mean 

(%) 
VAE [68.5 80.8] 74.3  

GA [67.1 76.4] 71.5  

VAE - GA [77.8 81.5] 79.8  

The Bold in the tables means the best results 

system. Following the previous methodology, we transform the data from 

vertical stacking to horizontal stacking. i.e., each failure description (objective, 

context, etc.) followed by the whole path of triplet analysis is considered as 

one observation and represented on the same row in the dataset. The data 

are reduced to 12033 observations after the transformation and filtration, and 

we preserve 19 preprocessed variables excluding dates. We vectorize these 

data using Word2vec technique after acquiring clean processed data based 

on the pre processing pipeline. The Gensim’s Word2vec settings are kept the 

same, with the exception that the vocabulary size is set to 1000 and the 

minimum word count is set to three. Finally, a matrix of dimensions 

12033×1000 is obtained with 50.7% positively skewed features and 49% 

negatively skewed features. 

3.3 C hoice of the parameters for genetic algorithm 

A critical phase of GA is the right choice of its parameters, presented in 

Subsection 2.2, in order to ensure the convergence of the algorithm to the 

optimal solution. 

The initial parameters have been fixed as follows: the maximum number of 

generations T=100 , the fraction of crossover Fc = 0.8 , the elites number Ne 

=2 , the tolerance 𝜖 =10−6 . These values have been used for several 

implementation of GA since they give good results [3]. In this paper, a grid 

research was used to choose the GA optimal parameters from the following 
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sets of possibilities: the size chromosome L∈{10,20,⋯,100} , the population 

size N ∈{100,200,⋯,500} , and the number of cluster K∈{2,3,⋯,20} . The 

fitness function can be handled with K-means or GMM Clustering methods 

evaluated by the validity indices commonly used to quantify class separability 

of failure analysis data in microelectronics field. 

For each setting of the parameters, the variability of GA with different 

fitness functions is evaluated using the validity indices such as DI, DB and 

CH on the PC score plots obtained by PCA method. Table 3 displays the 

results of optimizing GA parameters: fitness function, number of clusters and 

number of variables. We find  

Table 3  The values of validity 

indices DB, DI and CH for 

subdata matrix to variables 

selected by different fitness 

function of GA algorithm. A 

higher value of DI and CH and 

lower value of DB means better 

discrimination within the group 

of failure analysis data 

The Bold in the tables means the best results 

that K means-DB or GMM-DB fitness function with L=20 and K=16 give the 

best values of the validity indices DI, DB and CH for the both application of 

GA combined with k-means or GMM clustering. These values, presented in 

Table 3, confirm that the GA with GMM-DB fitness function allows a better 

clustering of the analyzed observation of textual data compared to other GA 

algorithms based on other clustering techniques. Note that the application GA 

algorithms with K meansASWC, K means-CH, K means-XB, GMM-PBM and 

GMM-XB as fitness function give quite good discriminating results among the 

clusters of failure analysis data. 

3.4 R esults and discussion of the proposed methodology for 

discriminating failure analysis 

After selecting the best parameters of the GA algorithm, we propose to apply 

our methodology of combination between the VAE dimension reduction 

method and the GA variable selection method. The objective of this 

Fitness function of GA DI DB CH L & K 

K-means with DB 0.70 0.68 12350 L=20 & K=16 

GMM with DB 0.75 0.67 13340 L=20 & K=16 

K-means with DI 0.42 1.03 4421 L=20 & K=17 

GMM with DI 0.48 0.98 4854 L=20 & K=17 

K-means with XB 0.68 0.77 10320 L=20 & K=16 

GMM with XB 0.72 0.74 11810 L=20 & K=16 

K-means with CH 0.55 0.78 11850 L=20 & K=17 

GMM with CH 0.65 0.71 12240 L=20 & K=17 

K-means with ASWC 0.59 0.77 10580 L=20 & K=17 

GMM with ASWC 0.62 0.76 10780 L=20 & K=17 

K-means with PBM 0.70 0.68 12670 L=20 & K=16 

GMM with PBM 0.68 0.67 12560 L=20 & K=16 
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methodology VAE-GA is to reduce the dimension of textual data by the VAE 

method, which projects the  

 

Fig. 6  Score plots showing the discrimination according to the clusters of textuals data set in 

terms of PC1 vs. PC2. PCA was applied on a the numerical sub-data matrix of the latent variables 

selected by the VAE-GA, b the numerical sub-data matrix of the variables selected by the GA, c 

the numerical sub-data matrix of the latent variables extracted by the VAE, d the numerical data 

matrix over all variables 
Table 4  The values of validity indices DB, DI and CH applied on sub-data matrices of latent 

variables selected by the VAE-GA, the GA, the VAE and the full data, respectively. A higher value 

of DI and CH and lower value of DB means better discrimination within the group of failure 

analysis data 
Methods DI DB CH 

VAE 0.84 0.65 14720 

GA 0.75 0.67 13340 

VAE - GA 1.22 0.58 17080 

Over all variablesI 0.11 1.62 10300 

The Bold in the tables means the best results 

Table 5  The values of validity indices DB, DI and CH for sub-data matrix of variables selected 

by the VAE-GA, AE-GA, and PCA-GA techniques, respectively. A higher value of DI and CH and 

lower value of DB means better discrimination within the group of failure analysis data 
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Methods DI DB CH 

PCA-GA 0.78 0.66 14250 

AE-GA 0.55 0.78 10520 

VAE - GA 1.22 0.58 17080 

The Bold in the tables means the best results 

data on a new latent space, and then selects the discriminant latent variables 

in an unsupervised way by the GA method. Figure 6 shows the PC score plots 

for the analysis of the discrimination of failure analysis data. These figures 

show that the use of latent variables selected by VAE-GA (Fig. 6a) allows 

better discrimination and good representation of failure analysis data than the 

use of variables selected by GA solely (Fig. 6b) or the latent variables 

extracted by the VAE solely (Fig. 6c) or using the all-entire variables (Fig. 6d). 

The result of the embedding space visualization is a confirmation of the good 

disentanglement of VAE-GA latent space. 

To confirm Fig. 6 results, we calculate the validity indices as metrics in 

order to quantify the results of compactness and separation between clusters 

of failure analysis data. Table 4 shows the DB, CH and DI validity indices 

scores obtained on the numerical sub-data matrix for the latent variables 

selected by the VAE-GA, the numerical subdata matrix for the variables 

selected by the GA, the numerical sub-data matrix for the latent variables 

extracted by the VAE, and the numerical data matrix over all variables. These 

values confirm that the VAE-GA provides better GMM clustering of failure 

analysis data compared to applying the GA and AVE methods separately. 

To complete this study, we propose to compare our proposed VAE-GA 

methodology with other combination techniques of variable selection and 

dimension reduction such as principal component analysis with genetic 

algorithm (PCA-GA) and Autoencoders with genetic algorithm (AE-GA). Table 

5 shows the DB, CH and DI validity indices scores obtained on the numerical 

sub-data matrix for the variables selected by the VAE-GA, PCA-GA and AE-

GA techniques, respectively. These values confirm that the VAE-GA provides 

better GMM clustering of failure analysis data compared to applying the PCA-

GA and AE-GA methods. 

Now, as we got a good representation of our decision space one can define 

families of our decision space and select one or more representatives of each 

class, which may be used later for further predictive and inferential studies. 

4 C onclusion & perspective 

First, we proposed a methodology based on the association of a genetic 

algorithm with a k-means or GMM clustering evaluated by different fitness 

functions for the identification of discriminating variables for the study of 

textual data of failure analysis in microelectronics field. We have proposed to 
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apply a preprocessing pipeline to handle the different representation of the 

textual data and convert it to numerical data using Word2vec algorithm. 

Based on several metrics used to quantify the separation and compactness 

between clusters of failure analysis data, we showed that the variables 

selected by the GA using GMM clustering and Davies Bouldin provide the 

best discrimination of the textual data compared to other combinations of 

variables selection algorithm. Secondly, we proposed a new algorithm, 

denoted by VAE-GA, combining a dimensional reduction technique using 

variational autoencoders (VAE) and a variable selection technique based on 

genetic algorithm. The PCA score plots on latent variables selected by VAE-

GA allow better discrimination and good representation between clusters of 

failure analysis data than using GA and VAE separately or even using the 

whole set of original data. Thirdly, the variables selected by our VAE-GA 

methodology are also giving better representation of the space than the 

variables selected by the combinations PCA-GA and  

AE-GA. 

A first perspective of this work is to validate our results and optimize the 

model by exchanging with experts from STM. A second perspective is to 

extract representatives of the obtained clusters and associate them with a 

certain probability distribution for further predictive and inferential analysis 

about the decision space. 
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