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Measuring the morphological properties of complex multiphase systems is a crucial problem in many areas of science and industry and is particularly difficult in dense environments with limited optical access. This paper presents a new approach capable of extracting three-dimensional (3D) information from spherical particle systems based solely on two-dimensional (2D) projections of the system. Synthetic images of the system are generated using a stochastic geometrical model from a simulated 3D particle system with the same geometrical features as the studied system, which is projected into 2D images labeled with the appropriate 3D information.

These images are then fed to a convolutional neural network (CNN) for training before being tested on synthetic and experimental images. Validation results show that this technique successfully predicts the mean features of the studied systems, even for dense environments with overlapping particles, with high computational efficiency.

Introduction

Complex particulate systems are an important and widely studied feature of many industrial processes [START_REF] Black | Laser-based techniques for particle-size measurement: A review of sizing methods and their industrial applications[END_REF][START_REF] Gianinoni | Optical particle sizers for online applications in industrial plants[END_REF][START_REF] Honkanen | Digital imaging measurement of dense multiphase flows in industrial processes[END_REF] and research projects [START_REF] Clift | Micro-bubble size distribution measurements by laser diffraction technique[END_REF][START_REF] Poelma | Measurement in opaque flows: a review of measurement techniques for dispersed multiphase flows[END_REF]. These systems are generally defined as mixtures of two or more substances where one is suspended in another, either a gas in a liquid (bubble flow) [START_REF] Juliá | On the accuracy of the void fraction measurements using optical probes in bubbly flows[END_REF][START_REF] Karn | An integrative image measurement technique for dense bubbly flows with a wide size distribution[END_REF][START_REF] Lau | Development of an image measurement technique for size distribution in dense bubbly flows[END_REF], a solid in a liquid [START_REF] Kavanaugh | Use of particle size distribution measurements for selection and control of solid/liquid separation processes[END_REF][START_REF] Yu | Measurement technique for solid-liquid two-phase flow using a Normal-line Hough Transform method[END_REF], or one immiscible liquid in another (emulsions) [START_REF] Huang | Hydrocolloids in emulsions: Particle size distribution and interfacial activity[END_REF][START_REF] Maaß | Experimental comparison of measurement techniques for drop size distributions in liquid/liquid dispersions[END_REF].

Measuring the properties of these systems is essential to optimize and improve the performance of many processes involving multiphase flows [START_REF] Emmerich | Optical inline analysis and monitoring of particle size and shape distributions for multiple applications: Scientific and industrial relevance[END_REF][START_REF] Panckow | Photo-Optical In-Situ Measurement of Drop Size Distributions: Applications in Research and Industry[END_REF]. In chemical engineering for example, knowledge of particle spatial distributions is crucial to calculate mass and heat transfer rates and the reaction kinetics governing the efficiency of the process. In this context, the most important properties are the particle size distribution (PSD) of the dispersed field, the mean characteristic diameters (𝑑 43 , 𝑑 32 , 𝑑 10 , …), the volume fraction of the dispersed phase (𝜙), and morphological information such as the shape and irregularity of the particles.

Extracting this information is a non-trivial problem and many approaches have been investigated in the literature.

Laser-based methods involve the analysis of scattered light from a laser beam passing through the system. One of the most popular in-line method is focused beam reflectance measurement (FBRM) [START_REF] Heath | Estimating Average Particle Size by Focused Beam Reflectance Measurement (FBRM)[END_REF][START_REF] Ruf | Digital in-line holography for the characterization of flowing particles in astigmatic optical systems[END_REF], in which a highly focused rotating laser beam is passed at a fixed speed over the suspended particles and the duration of the backscattered light is measured. Although this only provides information on the chord length distribution of the particles, and post processing is required to retrieve the PSD, this technique has successfully been used to measure droplet size distributions in water oil emulsions [START_REF] Boxall | Measurement and Calibration of Droplet Size Distributions in Water-in-Oil Emulsions by Particle Video Microscope and a Focused Beam Reflectance Method[END_REF] and micro-bubble size distributions in air flotation processes [START_REF] Clift | Micro-bubble size distribution measurements by laser diffraction technique[END_REF], and has proven particularly valuable for the characterization of crystal-like particles [START_REF] Acevedo | Evaluation of focused beam reflectance measurement (FBRM) for monitoring and predicting the crystal size of carbamazepine in crystallization processes[END_REF][START_REF] Heinrich | Application of Laser-Backscattering Instruments for In Situ Monitoring of Crystallization Processes -A Review[END_REF][START_REF] Pandalaneni | Focused beam reflectance measurement as a tool for in situ monitoring of the lactose crystallization process[END_REF][START_REF] Pandit | Real-Time Monitoring of Biopharmaceutical Crystallization: Chord Length Distribution to Crystal Size Distribution for Lysozyme, rHu Insulin, and Vitamin B12[END_REF]. The second widely used laser-based technique in this context is digital inline holography (DIH), otherwise known as lens-free imaging [START_REF] Darakis | Microparticle characterization using digital holography[END_REF][START_REF] Lamadie | Digital holographic measurement of liquid-liquid two-phase flows[END_REF], in which particle characteristics are estimated from the laser diffraction patterns of the system. This approach has been used to study the position and size of particles in pipe flows [START_REF] Ruf | Digital in-line holography for the characterization of flowing particles in astigmatic optical systems[END_REF], microscopic setups [START_REF] Sheng | Digital holographic microscope for measuring three-dimensional particle distributions and motions[END_REF], and sprays [START_REF] Yang | Digital particle holographic system for measurements of spray field characteristics[END_REF], combined with a machine learning algorithm to study non-uniformly shaped particles [START_REF] Shao | Machine learning holography for measuring 3D particle distribution[END_REF]. However, while DIH is very efficient for 3D positioning and PSD measurements, it can only be used in optical dilute media.

Imaging-based methods generally provide richer information than other available techniques and therefore more widely used. Image analysis algorithms combined with direct imaging can be used to measure properties other than the PSD [START_REF] Maaß | Experimental comparison of measurement techniques for drop size distributions in liquid/liquid dispersions[END_REF], such as the volume fraction of the dispersed phase [START_REF] Karn | An integrative image measurement technique for dense bubbly flows with a wide size distribution[END_REF], morphological information on irregular particles [START_REF] Suh | Deep learning predicts boiling heat transfer[END_REF], and the presence of clusters [START_REF] Zhang | A method for recognizing overlapping elliptical bubbles in bubble image[END_REF]. The image processing algorithms used have included deterministic methods such as the Hough transform [START_REF] Yu | Measurement technique for solid-liquid two-phase flow using a Normal-line Hough Transform method[END_REF], watershed segmentation [START_REF] Chen | Watershed segmentation for binary images with different distance transforms[END_REF], more sophisticated approaches to deal with overlapping particles (de Langlard et al., 2018a;[START_REF] Zafari | Resolving overlapping convex objects in silhouette images by concavity analysis and Gaussian process[END_REF][START_REF] Zhang | A method for recognizing overlapping elliptical bubbles in bubble image[END_REF][START_REF] Zou | Recognition of overlapping elliptical objects in a binary image[END_REF], and recently, machine learning methods [START_REF] Cui | A deep learning-based image processing method for bubble detection, segmentation, and shape reconstruction in high gas holdup sub-millimeter bubbly flows[END_REF][START_REF] Haas | BubCNN: Bubble detection using Faster RCNN and shape regression network[END_REF][START_REF] Kim | Deep learning-based automated and universal bubble detection and mask extraction in complex two-phase flows[END_REF][START_REF] Li | Machine learning shadowgraph for particle size and shape characterization[END_REF]. Most of these techniques extract 2D information from the detection of individual particles and cannot measure 3D properties. Although 3D information can be retrieved from multiple viewpoints, this requires a complex imaging setup with multiple optical access points [START_REF] Wang | 3-D Reconstruction of Bubble Flow Field Based on the Method of Multivision by Rough-Precise Location Algebraic Reconstruction Technique[END_REF][START_REF] Xue | Matching and 3-D reconstruction of multibubbles based on virtual stereo vision[END_REF], which is not always desirable or possible.

This article presents a new approach in which a deep learning algorithm is combined with stochastic geometrical models to extract 3D properties from 2D projected images of the system. The 3D stochastic geometrical model is used to generate a huge set of synthetic 2D images labeled with the 3D geometrical properties of the particle field and with the same geometrical properties as experimental images. This model can be used to reproduce any 3D particle field and generate 2D projections suitable to train a convolutional neural network (CNN) [START_REF] Dia | Using deep learning to retrieve 3D geometrical characteristics of a particle field from 2D projected images: Application to multiphase flows[END_REF].

To the best of our knowledge, this type of approach has only previously been used by [START_REF] Fend | Reconstruction of highly porous structures from FIB-SEM using a deep neural network trained on synthetic images[END_REF] to reconstruct highly porous 3D structures from focused ion beam scanning electron microscopy data.

The paper is divided into six sections. The following methods section provides a brief reminder of the principles of stochastic geometrical modelling and a description of the chosen machine learning algorithm. The third section describes the parameters chosen to measure the performance of the network and the results of tests on representative simulated flows. The fourth section presents experimental results for 3D dispersed phase volume fractions and PSDs retrieved from highly concentrated particle systems. The results obtained for experimental and liquid-liquid system images are presented in section 5 and the final section is an overall conclusion with perspectives.

Computational methods

As mentioned above, the proposed approach (Figure 1) involves two computational tools, a stochastic geometrical model and a CNN.

For the synthetic images to be representative, the simulated particle system should have the same geometrical properties as the studied system, i.e. be statistically representative of the observed particle field. The 3D stochastic model used to generate the images should consist of a hard-core model of the particles, in this case spherical, that accounts for the statistical properties of the dispersed phase by eliminating all particle-particle and particle-wall interactions. Matérn type II point processes [START_REF] Matérn | Spatial Variation, Encyclopedia of Environmental Change[END_REF] were therefore chosen to generate the synthetic images.

Matérn type II point processes are derived from an underlying homogeneous Poisson point process in ℝ 𝑑 with intensity 𝜆. A point process is simulated and a thinning rule is applied based on a hard-core distance (𝑟 > 0) between the generated points, which removes the last arriving point from any pair of points less than 2𝑟 apart. This process can be considered a marked point process where the first mark 𝑟 (constant and positive) represents the hard-core radius and the second mark is the time of arrival of the points modeled using a uniform random variable.

The generation process for the synthetic images thus involves the following steps:

1. Choosing a 3D domain 𝑊 = ℝ 2 × [0, 𝑙], where 𝑙 > 0 is the length of the projection direction, consistent with the dimensions of the actual measurement volume.

2. Randomly positioning the particles inside 𝑊 according to a Poisson point process with intensity 𝜆. Each point is marked with a radius 𝑟 𝑖 , and a time of birth 𝑡 𝑖 , ∀ 𝑖 ∈ {1, . . . , 𝑛 𝑝 }.

3. Applying two thinning rules: i) Matérn's thinning rule, i.e. eliminating the last arriving point (max(𝑡 1 , 𝑡 2 )) of pairs (𝑥 1 , 𝑟 1 , 𝑡 1 ) (𝑥 2 , 𝑟 2 , 𝑡 2 ) with ‖𝑥 1 -𝑥 2 ‖ 2 ≤ 𝑟 1 + 𝑟 2 , and ii) de Langlard et al.'s thinning rule (de Langlard et al., 2018b) to eliminate particle-boundary interactions by removing points with a probability 1 -exp (-𝑈(𝑥, 𝑟, 𝑡)), where 𝑈: 𝑊 × ℝ + × [0,1] ⟶ ℝ + ∪ {+∞} is an interaction function. 4. Projecting the generated 3D particle field orthogonally onto a 2D grid to create a single synthetic image, as shown in Figure 1.

The model generates continuous-valued particles that are later discretized when the synthetic images are generated; the resolution of the images can thus be adjusted as required. The whole process is repeated 𝑁 times to assemble a training database, and the geometrical properties of each 3D model (size distribution, spatial distribution, etc.) are all stored along with the 2D images (cf. Figure 1, second step). Further details about the stochastic 3D model used here can be found in de Langlard et al. (de Langlard et al., 2018b).

This model can also be used when the distances between points are non-deterministic, and is therefore applicable to real systems. As demonstrated by [START_REF] Stoyan | On One of Matérn's Hard-core Point Process Models[END_REF], the thinning rules are generalizable to cases in which the 𝑟 marks follow a given probability law, and generalized expressions can always be obtained for distribution parameters such as the retention function and the intensity after thinning. The model can also be extended by changing the shape of the particles. Note that the training images must be of the same type as the experimental ones, and since a stochastic model is used, only binary images can be used to train the CNN. This means that the experimental data have to be acquired with a backlight setup based on a telecentric lens (cf. section 4) to limit blurring and perspective effects. The images also have to be binarized and denoised before being processed by the CNN (see Figure 1).

The CNN is the second pillar of the proposed approach. Convolutional neural networks are a class of deep learning algorithms designed to process data with a grid-like topology (e.g. images, grid cells, financial series…). These algorithms are classed as supervised in the sense that they require both data and labels to be trained to perform a given task. They can be used to solve classification and regression problems but here, only regression CNNs were considered, because the problem involves continuous values.

A CNN broadly consists of four layers (Figure 2):  An input layer that processes the data provided to the network.

 A feature extraction or convolutional layer, which combines convolutional operations, a non-linear activation function (e.g. ReLU, sigmoid), and a pooling operator (e.g. max pooling, average pooling) to automatically extract relevant features from the images.

 A fully connected (FC) layer at the end of the network consisting of multiple interconnected neurons whose weights are adjusted to teach the network to identify important features.

 An output layer, which presents the predictions.

Unfortunately, there is no generic way to determine the optimal network shape (e.g. the number of convolutional layers, number of neurons, number of layers in the FC layer, the learning rate) in advance. This problem is typically solved using prior experience of CNNs for initial guesses and empirical trials to choose the best architecture. Here, two separate networks were used, one to determine the volume fraction and one to measure the PSD. 32,64,128, and 256 filters, with a kernel size of 3 × 3. These layers also contain an activation function, ReLU, are followed by a 2 × 2 max pooling layer, producing flattened feature maps that are fed to the FC layer. The FC layer contains three sub-layers with 512, 128 and 64 neurons, respectively, and a dropout of 50% is applied after each layer to reduce overfitting. Finally, the output layer consist of a single neuron representing the predicted value, 𝜙 ̂.

2. The second network, CNN PSD (Figure 2, bottom panel), used to predict the 3D PSD, has the same architecture except for the output layer which is a vector of size n (note that the output size can be adjusted depending on the studied system). Since the estimated parameter is a distribution, the sum of the elements in the vector is normalized to 1 using the softmax function.

Network training strategy

After setting the number of layers and the parameters of the CNN, optimal hyper-parameters were determined by gradient-based optimization. The dataset (𝑁 = 22 400) used to train the network was split into three categories; an initial training set (𝑁 𝑡 = 16 000), a validation set (𝑁 𝑣 = 2 000) used to monitor the overall performance of the network at each iteration, and a final testing set (𝑁 𝑒 = 4 400) used to evaluate the performance of the network. All the generated images corresponded to a measurement volume of 25.79 × 25.79 × 53 mm 3 in keeping with the experimental setup. The parameters of the stochastic model were varied uniformly to account for the variety of possible experimental images in real life applications. The intensity of the particles, 𝜆, was adjusted between 100 to 250, while the PSD was modeled as a truncated lognormal function, ℒ 𝑡𝑟 (𝜇, 𝜎 2 , 𝑎, 𝑏), with 𝜇 varied randomly from -7.5 to 0.06, 𝜎 from 0 to 2.5, and 𝑎 and 𝑏 equal to 0.005 and 0.08 respectively (check Table 1).

As mentioned above, CNN training datasets have to be labeled with the target information. Here, all the numerical images were generated over a 5.5 h period and each image, i, was labeled with the corresponding 3D volume fraction 𝜙 𝑖 = 𝑣 𝑖 𝑉 𝑖 (with 𝑣 𝑖 is the volume of the particles, and 𝑉 𝑖 is total volume) and number weighted PSD (PSDi) across n classes. The hyper-parameters were then optimized using mean absolute error (MAE) as the loss function. The MAE measures the average absolute difference between true 𝑌 = {𝑦 1 , … , 𝑦 𝑁 𝑡 } and predicted values 𝑌 ̂= {𝑦 ̂1, … , 𝑦 ̂𝑁𝑡 }:

MAE(𝑌, 𝑌 ̂) = 1 𝑁 𝑡 ∑|𝑦 𝑖 -𝑦 ̂𝑖| 𝑁 𝑡 𝑖 ,
Finally, a series of tests were conducted to identify the best number of epochs, the optimal learning rate, and the size of the mini-batches. Slight differences in computational times were observed, so these parameters were optimized as follows:

1. Number of epochs: the CNN was trained using mini-batches due to limited computational resources, with one epoch corresponding to one training run over all the mini-batches. The network training convergence was reached after 100 epochs, therefore the number of epochs was then fixed at 150 with a callback to stop the training run if the MAE increased for 10 straight epochs, to avoid overfitting.

2. Learning rate: The learning rate was adjusted from a starting value of 10 -4 , with a decay rate of 20% every 50 epochs, down to a final learning rate of 4 × 10 -6 , 3. Mini-batch size: the mini-batch size was set to 32.

The CNNs were trained using a supercomputer cluster equipped with GPUs each with 640 tensor cores and a memory of 32 GB. The training processes took about 30 min for each CNN.

Since the accuracy of the predictions cannot be determined for regression CNNs, the performance of the networks was determined using the MAE and the relative error (RE) for the volume fraction predictions, and using the MAE only for the PSD. Since the volume fraction is a scalar quantity, MAE calculations are straightforward, but for the PSD, which is a vector, the overall MAE, MAE ̅̅̅̅̅̅ , was calculated by comparing the average values of 𝑃𝑆𝐷 𝑖 and 𝑃𝑆𝐷 𝑖 ̂.

Numerical validation

The performance of CNN ϕ was evaluated using the testing dataset, with hold-up values ranging from 0.5 to 12.2%, and the PSD varied between images.

The results of the predictions compared to the ground truth are shown in Figure 3. The MAE of 0.21 ± 0.26 highlights the overall accuracy of the network's predictions. The density of particles in the images naturally increases with the particle volume fraction, making the images more complex to process (compare insets (c) and (a) in Figure 3, for instance). Significant patterns that the network uses to refine its predictions may also disappear. Nevertheless, while the relative errors of the predictions increase with the particle volume fraction, they are all of the correct order of magnitude, confirming the robustness of the approach. Figure 3 shows for instance that below 𝜙 = 10% (93% occupied area in the images), more than 77% of the network predictions are within the 95% confidence interval.

To validate the PSD estimates, 50 further sets of 100 images were generated using a truncated lognormal function with a fixed particle intensity of 𝜆 = 200. The variance 𝑠 2 and the mean diameter 𝑑 ̅ were chosen to cover a wide range of narrow and wide unimodal distributions with mean diameters ranging from 500 µm to 5 mm. Predictions were made for each image using the trained CNN PSD and binned in 13 size classes. The predictions were then averaged (𝑃𝑆𝐷 ̂) and compared to the ground truth distribution (𝑃𝑆𝐷) obtained from the corresponding function.

The MAE ̅̅̅̅̅̅ values obtained (check Table 2) were lower than 0.03 in 60% of the considered cases, corresponding to good agreement between the predicted and ground truth distributions (see Figure 4). For the broadest distributions (variance ≥ 10 -3 ), corresponding to a maximum occupied surface fraction of about 80%, 82% of the MAE ̅̅̅̅̅̅ values are less than 0.03. As expected on the other hand, the network performs less well for very narrow distributions (variances range from 10 -5 to 10 -4 ), as there were no such distributions in the training dataset. The results for four typical cases are presented in Figure 4. 

Experimental validation

After validating the approach on simulated data, experimental validations were performed, first using calibrated spherical poly(methyl methacrylate) (PMMA) beads (diameter precision ± 1%) submerged in brine stirred in a rectangular mockup unit and second, using existing data from an emulsion in a cylindrical stirred tank.

4.1.Validation with calibrated beads

Particle suspensions are particularly convenient for validation as they reproduce the main features of two-phase flows but without the coalescence and breakage events that frequently occur with bubbles and droplets. With solid particles moreover, the properties of the dispersed phase are clearly defined. Here, calibrated spherical PMMA particles were stirred in 1 L of brine (330 g NaCl dissolved in 1 L of water) using a four blade propeller.

Brine was chosen so that the density of the continuous phase could be adjusted to that of the dispersed phase to avoid creaming effects and guarantee a homogeneous dispersion of the particles in the flow.

A lognormal distribution of particle sizes cannot be reproduced experimentally using calibrated beads because of time and cost constraints (a 1.48% volume fraction corresponds to about 10000 particles for instance).

Therefore, only four sizes of PMMA particles were used (0.39, 0.5, 0.79 and 1.59 mm in diameter), with four volume fractions and a fixed PSD. The number of particles used in each experiment was determined by weighing them with a benchtop precision scale (± 0.2 mg), to evaluate uncertainties on the measured hold-up values. The various experimental configurations are listed in Table 3. The mixture was placed in a rectangular tank with external dimensions of 25 × 15 × 6.7 cm 3 and a capacity of 1.1 L, fitted with two optical quality windows. The mixture was agitated using a propeller at 2000 rpm to produce a homogenous flow (Figure 5). Two-dimensional projections of the 3D particle field in the tank were acquired using a backlight setup to avoid perspective effects. A Photron FASTCAM Mini UX100 CMOS camera was attached to an Opto engineering TC16M096 bi-telecentric lens placed 26.2 cm from the center of the tank. The tank and sensor were uniformly illuminated with an Opto engineering collimated green light source (peak wavelength, 525 nm; beam diameter, 120 mm).

The captured images consisted of 1280 × 1024 squared pixels, corresponding to a field of view of 33.7 × 29.9 mm² (scale factor, 2.6 × 10 -2 mm/px). The images were binarized, cropped to 980 × 980 squared pixels (25.8 × 25.8 mm 2 ), and resized to 256 × 256 squared pixels to facilitate coding. The tank was 5.3 cm wide along the optical axis and covered the entire telecentric field of view, such that the total measurement volume was 35.3 cm 3 . The images were captured at 50 frames per second, with an exposure time of 1/81 920 s, avoiding any motion blur. A set of 4 365 images was acquired for each experiment (Figure 1, first step).

The images underwent three steps of preprocessing, starting with a simple binarization using an arbitrary gray level threshold (𝑇𝐻 = 20). Morphological area opening using a disk shaped element of 5 pixels was then applied to denoise the images, removing features such as micro bubbles and dust particles, which appear as small white dots in the background. The particle contours were then smoothed using an opening operation (erosion followed by dilatation) with the same structuring element. These morphological operations produce images that are similar to synthetic images (cf. Figure 6). However, small differences between binarized and simulated particles can be observed on pixel-by-pixel inspection. The variance between the images can be quantified using the intersection over union (IoU) ratio between the set of ground truth (synthetic) particles and the set of binarized particles:

IoU = |𝐴 ∩ 𝐴 ̂| |𝐴 ∪ 𝐴 ̂|
Where 𝐴 and 𝐴 ̂ stand for the simulated and binarized particles respectively, ∩ and ∪ are respectively the intersection and union operators, and the vertical bars denote cardinality. The IoU values obtained for all unconnected particles in the dataset (Table 4) show that the discrepancy between the shapes of the modeled particles and real particles is greater for smaller particles. Moreover, Figure 6 shows that while the model underestimates the size of small particles, larger particles are enlarged in the binarized images. Regardless therefore of the training and the architecture of the machine learning network used, discrepancies between the predictions and the ground truth can be expected, especially for the smallest particles.

Note that applying the same morphological operations to the synthetic images did not improve the agreement between the synthetic and binarized images. These results indicate that the chosen approach was effective for all experimental images. As observed in the numerical experiments, the predictions tend to become less reliable when the particle density in the image increases. Whereas more than 25% of the predictions fell within the confidence interval at = 1.48% , this proportion decreased to 12%, 6% and finally 1% at volume fractions of 2.91%, 4.31% and 5.67%, respectively.

Moreover, Table 5 shows that while the relative error was within the confidence interval (𝑅𝐸 ≤ 0.05) for the first two experiments, the errors were an order of magnitude larger at higher volume fractions. Figure 8 compares the predicted PSDs with the ground truth for the same four experiments. Figure 8 shows that at the two lower volume fractions considered, the CNN correctly recovered the PSD with only a slight underestimation of the proportion of smallest particles, probably because of the imperfections of the binarization procedure. At higher volume fractions, the PSD was not accurately recovered, the proportion of larger particles being overestimated, presumably because of particle overlap. The poorer agreement with the actual PSDs at higher particle volume fractions is reflected by an increase in the corresponding MAE ̅̅̅̅̅̅ s (Table 6). 

4.2.Validation for a liquid-liquid system

The approach was further validated using previously acquired data [START_REF] Amokrane | Development of a CFD-PBE coupled model for the simulation of the drops behaviour in a pulsed column[END_REF]. Further information on the experimental setup and the fluids can be found in Khalil et al. [START_REF] Khalil | Study of droplet size distribution during an emulsification process using in situ video probe coupled with an automatic image analysis[END_REF]. The volume fraction and the PSD were retrieved from 3 870 images. In this experiment, the volume fraction could be controlled but the PSD of the dispersed phase was unknown. The predicted PSDs were therefore compared with values obtained by the Hough transform [START_REF] Amokrane | Development of a CFD-PBE coupled model for the simulation of the drops behaviour in a pulsed column[END_REF]. The two machine learning networks, CNN ϕ and CNN PSD , were retrained on a new simulated dataset corresponding to the experimental setup, consisting of 240 × 240 pixel images in three channels (240 × 240 × 3 px 3 ) as before. The two distributions match closely (MAE ̅̅̅̅̅̅ = 0.012 ± 0.047), but the CNN predicts greater proportions of larger particles, suggesting that it performs better than the HT for large particles and particles that intersect with the image boundaries.

Conclusion and perspectives

This article describes a new image processing technique for dense flow imaging, combining a stochastic geometrical model with convolutional neural networks to retrieve 3D properties of particle systems using only 2D projected images. Using this approach, the volume fraction of the dispersed phase and the particle size distribution are predicted directly from the images. A stochastic model was developed to generate training images labeled with the targeted 3D properties of the system. Two CNN architectures were built, one to quantify the volume fraction of the observed particle field and the other to recover the PSD. After numerical validation on simulated images, the approach was validated on experimental images of calibrated beads and of an emulsion in a tank. Results confirm that average 3D quantities can be measured using this approach from a single optical access, even for flows with high-dispersed phase volume fractions. In particular, this new approach remains effective in the presence of high particle overlap, where traditional image-processing techniques typically fail.

The approach is also computationally efficient, with the analysis of thousands of images typically completed in less than 30 min. Moreover, the method is easy to implement and can readily be re-purposed by transfer learning to study different types of multiphase flows, making it suitable for many applications in chemical engineering.

These encouraging results highlight the value of combining a stochastic geometry model with deep learning to predict 3D information. Note that while a lognormal function was used for the PSD in this study, the model can be trained to predict any type of discrete distribution. The model could also be extended to study ellipsoidal particles, which are more representative of gas-liquid flow. This should be relatively straightforward since Matern type II models for ellipsoidal shapes have already been described in the literature (de Langlard et al., 2018b).

Future work will focus in the short term on improving the stochastic model by including spatial heterogeneity and more complex shapes (e.g. cap-shaped or skirted particles); to better account for spatial inhomogeneities in the flow images and the variety of particle shapes typically encountered in dispersed phases of multiphase flows.

Also, more complex CNN architectures will be studied in order to improve the results and treat irregular shapes [START_REF] Ma | Flow Reconstruction and Prediction Based on Small Particle Image Velocimetry Experimental Datasets with Convolutional Neural Networks[END_REF][START_REF] Murata | Nonlinear mode decomposition with convolutional neural networks for fluid dynamics[END_REF]. 

List of symbols and abbreviations

Figure 1 .

 1 Figure 1. Schematic outline of the main steps of the workflow. 1-Acquisition and preprocessing of experimental images. 2-Generation of a simulated dataset and training of the neural network. 3-Prediction of 3D properties from experimental data.

Figure 2 .

 2 Figure 2. Visualizations of the architectures of the two CNNs used in the study: one to predict the volume fraction (CNN ϕ , upper row) used and the other to determine the PSD (CNN PSD , lower row). The plots were generated with PlotNeuralNet (Iqbal, 2018).

Figure 3 .

 3 Figure 3. Scatter plot of the predicted 3D volume fraction 𝜙 ̂ as a function of the ground truth 𝜙. The insets show examples of the images from the testing dataset, with 𝜙 (𝑎) = 1.3%, 𝜙 (𝑏) = 5%, and 𝜙 (𝑐) = 11.3%, respectively. The points are color

Figure 4 .

 4 Figure 4. Comparison of CNN PSD predictions with the ground truth for a representative selection of simulated mean particle diameters and particle size variances. The inset in each panel is a typical image of the corresponding particle field. Error bars represent the standard deviations of the predictions.

Figure 5 .

 5 Figure 5. (a) Side-view sketch of the experiment setup with from left to right, the high speed camera, bi-telecentric lens, tank, and collimated green light-source. (b) Front view of the tank. (c) Computer with a typical example of a captured image on the screen (𝜙 = 2.91%).

Figure 6 .

 6 Figure 6. Comparison between binarized raw data (𝐴 ̂) and simulated particles (𝐴). Non-intersecting regions are colored in green for pixels in 𝐴 ̂ but not in 𝐴 and in magenta for pixels in 𝐴 but not in 𝐴 ̂.

Table 4 .

 4 Intersection over union area for simulated and binarized particles of different sizes. dataset was generated to retrain CNN ϕ considering only four particles sizes to mimic the experimental conditions. The distributions of 𝜙 ̂ values obtained are shown in Figure 7 in separate boxplots for each volume fraction (hold-up).

Figure 7 .

 7 Figure 7. Boxplot representations of the distribution of predicted hold-up values obtained for each experimental particle volume fraction. Examples of the experimental images are shown below the corresponding hold-up value. Each boxplot consists of a red box extending from the first (𝑄 1 ) to the third (𝑄 3 ) quartile of the distribution and whiskers extending to 1.5 × [𝑄 3 -𝑄 1 ]. Outlier values beyond this range are shown as scattered points. The first bisector (solid line) and 95% confidence interval (shaded area) are shown to visualize the differences between the average prediction (numerical value on the left of each box) to the corresponding experimental hold-up 𝜙.

Figure 8 .

 8 Figure 8. Comparison of predicted particle size distributions (𝑃𝑆𝐷 ̂) with the ground truth (𝑃𝑆𝐷) for the four considered particle volume fractions 𝜙.

  Images of water droplets in a emulsion with tetra-propylene hydrogen (TPH, density 𝜌 = 760 kg/m 3 ; viscosity 𝜂 = 1.26 × 10 -3 Pa • s; surface tension 𝛾 = 43 × 10 -3 N/m) were obtained using an in-situ video camera placed inside a cylindrical stirred tank reactor (internal volume, 1 L; internal height, 𝐻; Figure 9 (b)). Emulsions with hold-ups of up to 5% were stirred at 500 rpm with a three-flat-blade propeller (diameter, 60 mm) placed 𝐻/3 above the base of the vessel. Images were acquired after 60 min of stirring to ensure that a steady state had been reached. The probe consisted of a CCD camera with LED back lighting (Figure 9 (a)). Images were obtained of the emulsion flowing through a 1500 μm wide gap between the LED and the lens. The images were 710 × 480 px 2 in size with a resolution of 2 μm/px allowing the detection of droplets larger than 8 μm in diameter. The images were then split into two 480 × 480 px 2 square images (Figure 9 (c)); to double the number of acquired images.

Figure 9 .

 9 Figure 9. Schematic diagrams of the setup used to obtain images of a water-in-TPH emulsion. (a) Diagram of the video probe used to capture the images of the emulsion flowing through the gap between the lens and the LED. (b) Diagram of the double-jacketed cylindrical tank containing the emulsion, the video probe and the propeller used to stir the mixture. (c) Examples of the raw images obtained, after binarization, and after cropping.

Figure 10 .

 10 Figure 10. Validation results for a liquid-liquid system (water-in-TPH emulsion). (a) Examples of the predicted volume fraction for different experimental volume fractions (the droplet density in the images), (b) Comparison of predicted and Hough transform PSDs (𝑃𝑆𝐷 ̂ 𝑣𝑠 PSD HT ).

Figure 10

 10 Figure 10 (a) shows the predicted hold-up values obtained beneath corresponding experimental images. The values are consistent with the actual number of droplets over a wide range of hold-up values. The mean predicted hold-up of 4.74% is in agreement with the expected value of 5% (RE = 0.052). Figure 10 (b) compares the mean predicted PSD computed from the 3 870 images to the distribution obtained using the Hough transform.

  𝑖th particle 𝑡 𝑖 Time of birth of the 𝑖th particle 𝑛 𝑝 Total number of particles 𝑛 Number of outputs for 𝐶𝑁𝑁 𝑃𝑆𝐷 𝑁 𝑡 Number of training images 𝑁 𝑣 Number of validation images 𝑁 𝑒 Number of testing images 𝑁 Total number of generated images (𝑁 = 𝑁 𝑡 + 𝑁 𝑣 + 𝑁 𝑒 ) ℒ 𝑡𝑟 Truncated Lognormal law 𝑎 First support of the truncated law 𝑏 Second support of the truncated law 𝑛 𝑗 Number of particles in the 𝑗th class 𝑑 𝑗 Diameter of the 𝑗th class (m) 𝑣 𝑖 Total volume of the dispersed phase in the 𝑖th image (m 3 ) 𝑉 𝑖 Total volume of the mixture in the 𝑖th image (m 3 ) 𝜙 𝑖 Volume fraction of the 𝑖th image 𝜙 ̂𝑖 Predicted volume fraction of the 𝑖th image 𝑃𝑆𝐷 𝑖 Particle size distribution of the 𝑖th image 𝑃𝑆 ̂𝐷𝑖 Predicted particle size distribution of the 𝑖th image Density (kg/m 3 ) 𝜙 Hold-up or Volume fraction of the dispersed phase

Table 1 .

 1 Details on the synthetic dataset.

	Dataset

Table 2 .

 2 Overall MAE for PSD predictions from all 50 simulations. Results for the four cases presented in Figure4are highlighted in bold.

	Variance 𝑠 2					
	(𝑚𝑚)					
		10 -5	10 -4	10 -3	10 -2	10 -1
	Mean 𝑑 ̅					
	(𝑚𝑚)					
	0.5	0.059	0.021	0.009	0.009	𝟎. 𝟎𝟎𝟗
	1.0	0.085	0.027	0.009	0.009	0.009
	1.5	0.071	0.027	0.012	0.010	0.010
	2.0	𝟎. 𝟎𝟗𝟔	𝟎. 𝟎𝟒𝟑	0.014	0.011	0.011
	2.5	0.114	0.068	0.018	0.011	0.011
	3.0	0.115	0.080	𝟎. 𝟎𝟐𝟒	0.013	0.011
	3.5	0.123	0.083	0.034	0.014	0.012
	4.0	0.115	0.077	0.041	0.015	0.012
	4.5	0.114	0.088	0.047	0.018	0.013
	5.0	0.131	0.108	0.058	0.022	0.013

Table 3 .

 3 Details of the volume fractions and size distributions used for validation experiments with calibrated bead

	suspensions.

Table 5 .

 5 Comparison between the average predicted value of the volume fraction (𝜙 ̂) and the actual value (𝜙); std, standard deviation; RE, relative error; MAE, mean absolute error.

			Average			
	Experiments	𝜙 (%)(± scale	surface	𝜙 ̂ (%) (± std)	𝑅𝐸	𝑀𝐴𝐸 (± std)
		error)				
			fraction (𝑠/𝑆)			
	1	1.48 ± 0.002	45.6%	1.49 ± 0.19	0.008	0.15 ± 0.12
	2	2.91 ± 0.003	71.8%	2.95 ± 0.31	0.017	0.25 ± 0.19
	3	4.31 ± 0.005	85.4%	4.76 ± 0.44	0.105	0.52 ± 0.37
	4	5.67 ± 0.006	92.4%	6.51 ± 0.39	0.148	0.84 ± 0.38

Table 6 .

 6 𝑀𝐴𝐸 ̅̅̅̅̅̅̅ for the four experimental PSD prediction.

	Experiment	MAE ̅̅̅̅̅̅ (±std)
	1	0.018 ± 0.006
	2	0.019 ± 0.006
	3	0.024 ± 0.068
	4	0.031 ± 0.008

Abbreviations

3D

Three-dimensional