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Abstract

Transient two-phase flows within fibrous media are considered at lo-
cal scale. Upscaling these flows constitute a key procedure towards a
tractable description in an industrial context. However, the task remains
challenging as a time-dependent behaviour is observed within a geomet-
rically complex structure with interplay of various physical phenomena
(capillary effects, viscous dissipation,...). The usual upscaling strategies,
encountered in both soil sciences and composite materials communities
are reviewed, compared, and finally adapted to reach a method that is
relevant to describe fibrous media imbibition. Using finite element flow
simulations on statistical representative volume elements, the proposed
approach first considers several definitions for saturation in order to char-
acterise the flow dynamics as well as the characteristic length associated
with the transient behaviour. Next, two methods are proposed to assess
a resulting capillary pressure, demonstrating the importance to properly
define the capillary pressure acting on the interface. The first one consid-
ers the mean pressure jump at the interface while the second one uses a
machine-learning technique, namely Gaussian Process Regression, to re-
trieve the mean curvature of the interface. Those methods are found to
be both consistent and in agreement with the results from the literature.
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2 Reappraisal of upscaling descriptors for transient two-phase flows in fibrous media

Finally, a novel approach that stochastically describes the position of the
flow front through a presence distribution is detailed. The spread of the
front can be compared to the saturation length and its value has been
found to be small enough to be neglected at upper scale, justifying the
use of sharp interface models for similar porous media and flow settings.

Keywords: Upscaling, Capillary pressure, Two-phase flow simulations,
Gaussian Process Regression

Notations and abbreviations (text order)

RVE Representative Volume Element

SL Liquid saturation of the volume

Smax
L Maximum liquid saturation of the volume

t Time variable

Ca Capillary number

ηi Viscosity of phase i

vin Inlet velocity

γj Surface tension coefficient of interface j

P c
vol Resulting capillary pressure (volume definition)

p Fluid pressure field

〈·〉i Volume averaging operator over phase i

Ωi Domain associated with phase i

|ω| Volume/surface of domain ω

P c
vol,dyn Dynamic capillary pressure (volume definition)

τ Relaxation coefficient associated with P c
vol,dyn

JpKj Pressure jump at interface Γj

C Mean curvature

〈·〉LV Surface averaging operator over the liquid-vapor interface ΓLV
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P c
p Resulting capillary pressure (pressure jump definition)

P c
C Resulting capillary pressure (mean curvature definition)

Ω Computational domain

ρi Density of phase i

r̄ Average fibre radius

v Fluid velocity field

φ Level-set field

ASGS Algebraic SubGrid Scale

SUPG Streamline Upwind Petrov-Galerkin

Vf Fibre volume ratio

SRVE Statistical Representative Volume Element

L Characteristic length of the computational domain

sL(A) Liquid saturation of section A

smax
L (A) Maximum liquid saturation of section A

R Ratio between sL(A) and smax
L (A)

`s Saturation length

GPR Gaussian Process Regression

F Area containing the flow front

xF
i Coordinates of the vertices that shape the flow front

IxF Random variable which realisations give xF
i

`∗s Saturation length averaged over time

P c∗
p Asymptotic value of P c

p

P c∗
C Asymptotic value of P c

C

µ Mean value of the flow front distribution

σ Standard deviation of the flow front

σ∗ Asymptotic value of σ
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4 Reappraisal of upscaling descriptors for transient two-phase flows in fibrous media

1 Introduction

Multiphase flows in fibrous media are commonly observed in numerous fields

going from soil science [1–3] to composite manufacturing processes [4, 5] where

a carbon fibre preform that initially contains rarefied air is filled with a liq-

uid resin. A multiphase flow resin/air within a porous fibrous medium is thus

observed. This medium naturally shows several scales of description, starting

from the scale of the carbon fibre (∼ µm) to the scale of the industrial part

(∼ m). As flow models must be adapted to the scale of representation, con-

necting those microscopic and macroscopic scales has been a major concern

in the scientific community. As a first approach, a permeability tensor that

represents the ability of the fibrous structure to be crossed by a fluid is gen-

erally studied. This concept has been first introduced following Darcy’s works

to macroscopically describe a monophasic steady flow in a porous medium [6].

Besides, the complexity of a multiphase flow can hardly be reduced to a sin-

gle tensor. Such flows are indeed considerably more challenging to describe as

several phases are observed with a moving interface. The observed behaviour

becomes non-linear, time-dependent and sensitive to many parameters such as

fluid properties or boundary conditions. In addition to this, the vicinity be-

tween carbon fibres, around few micrometers, leads to consider capillary effects

and consequently a sentivity to surface tension coefficients [7, 8].

From early theoretical works, upscaling strategies from Representative

Volume Elements (RVE) have been proposed to transpose the microscopic de-

scription of multiphase flows in porous media towards an upper scale [3, 9–11].

Those have been mainly developed by the hydrogeology community for the

study of flows within soils or rocks. Later on, the composite materials commu-

nity have developed its own approaches, that are particularly suited for the

study of fibrous materials impregnation but that may suffer from a lack of
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sound theoretical ground. The novelty of this contribution consists in operat-

ing an explicit connection between both types of approaches, so as to retrieve

a rigourous, precise, and complete description that is adapted to the imbibi-

tion of fibrous media while carrying the specificities and constraints inherent

to composite materials.

1.1 Saturation

The most straighforward upscaling quantity is the liquid saturation SL ∈ [0, 1]

that describes the proportion of liquid within the poral space. As imbibition

is considered here, SL increases over time from 0 to a maximal value Smax
L =

SL(t→∞) obtained when the two-phase flow reaches steadiness. The relation

SL = SL(t) characterises the global dynamics of the flow. The asymptotic

saturation value Smax
L is lower than 1 as the flow tends to entrap air bubbles

behind the front. This proportion of residual phase at final state is a concern

in many fields since it can be associated with a recovery ratio in hydrology

[12] or a void content in the composite materials community [13]. As bubble

entrapment phenomenon results from velocity inhomogeneity over the volume,

Smax
L value is expected to be directly dependent on the competition between

viscous and capillary effects. This is expressed through the capillary number

Ca that is defined here as:

Ca =
ηLvin
γLV

(1)

where ηL is the liquid viscosity, vin the inlet velocity and γLV the surface

tension coefficient from the liquid-vapor interface.

Studying the saturation finally describes a complex phenomenon through a

single time-dependent scalar. It is especially convenient at upper scales where

the two-phase flow can be modeled as a transport of saturation in an equivalent

homogeneous medium [14]. However, in the context of an upscaling procedure,
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6 Reappraisal of upscaling descriptors for transient two-phase flows in fibrous media

a global saturation only provides a rough description of the flow without spa-

tial information. As a consequence, a first improvement consists in defining

saturation at a more local scale. This is observed in the literature related to

composite materials processes where local saturation curves are often consid-

ered [15–19], they consist in representing saturation as a function of position

at a given time. A transition between two saturation regimes is observed, its

characteristic width is referred to as saturation length. This approach is par-

ticularly suited for the type of flow and geometry under consideration, that is

to say the impregnation of fibrous reinforcements as encountered in aeronau-

tical structural applications and that locally show a statistically homogeneous

nature. It thus may be complex to transpose to other specific contexts, like

wicking in 3D structures, where further difficulties arise, such as pore delays

[20].

1.2 Capillary effects

Capillary effects rising from surface tension phenomena act as a complemen-

tary force in the filling of fibrous microstructures. However, in a more general

context, it depends on the fluids under consideration as well as the pore struc-

ture. In the context of manufacturing processes of composite materials, it is

generally considered as a driving force that helps the impregnation [7]. In

any case, this contribution has to be upscaled. This is achieved through the

introduction of a resulting capillary pressure P c. Though the capillary pres-

sure term is widely encountered in literature, it may admit several definitions

and approaches. In literature and especially in the hydrogeology community,

it is generally defined at the volume scale [21]. A first definition P c
vol is thus

obtained as the difference between volume-averaged phase pressure:
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P c
vol = 〈pV 〉V − 〈pL〉L (2)

where pi is the pressure field associated to phase i. From now on, L will refer to

the liquid phase, V to the vapor phase and S to the solid one. Such a definition

(Eq.2) requires volume-averaging operator:

〈·〉i =
1

|Ωi|

∫
Ωi

· dV (3)

Those volume-defined capillary pressures are generally expressed as a

function of the saturation SL [22]. The determination of capillary pressure-

saturation curves constitutes a huge area of research as they are considered to

characterise the two-phase flow at a macroscopic level. They finally provide

a simple macroscopic relation that is convenient to use in practice especially

when transport of saturation is considered.

However, obtaining capillary pressure-saturation curves is challenging for

several reasons. First, an hysterisis phenomenon is classicaly observed between

the imbibition and drainage curves [23]. Besides, it has been shown that equi-

librium must be reached so that Eq.2 match the capillary pressure [24, 25].

This especially makes the experimental determination of P c
vol−SL curves very

time-consuming since for a given saturation value, the flow may take several

hours to stabilise towards a steady state [26]. In parallel, flows observed in

practice generally show a transient behaviour where the static equilibrium is

never met. This finally leads to consider dynamic capillary effects for which a

considerable amount of contribution can be found [23, 27, 28]. In the context

of these works, the instantaneous difference of phase pressure P c
vol,dyn is then

measured and related to the static pressure through the (de)saturation rate
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8 Reappraisal of upscaling descriptors for transient two-phase flows in fibrous media

[21]:

P c
vol,dyn = P c

vol − τ
∂SL

∂t
(4)

where the dynamic coefficient τ controls the rate to reach the equilibrium.

The value for this coefficient can span several orders of magnitude and its

dependancies are complex and still on study [23, 27–30]. It should be noticed

that P c
vol,dyn is sometimes referred to as dynamic capillary pressure which is

somehow ambiguous as the quantity does not rely on any rigourous justification

based on capillary laws.

1.3 Interfacial capillary pressure

In spite of its apparent simplicity and the convenience of its use, a capillary

pressure-saturation relationship can finally be complex to determine and raise

numerous modelling questions. More generally, assuming that capillary effects

match a global difference between phase pressures is not straightforward [31].

Mathematically, capillary action is taken into account through the Laplace’s

law (Eq.5) that only holds at the interface between two phases:

JpKj = γjC in Γj(t) (5)

where JpKj is the pressure field discontinuity at interface Γj , characterised by

its surface tension γj and by a mean curvature C .

As a consequence, a rigourous upscaling procedure cannot retrieve a volume

definition of capillary pressure. All these arguments lead to reavalute the com-

mon volume definition of capillary pressure. To be consistent with the physics

of the problem, as well as the upscaling procedure, a resulting capillary pres-

sure computed at the interface level should be considered [25, 32]. Starting

from Eq.5, a surface averaging over the liquid-vapor interface can be carried
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out through an operator 〈·〉LV :

〈·〉LV =
1

|ΓLV |

∫
ΓLV

· dS (6)

This gives two other approaches for considering resulting capillary pressure.

A first one consists in averaging the pressure jump [33, 34] while the second

integrates the mean curvature over the interface [11, 24, 34, 35]:

P c
p = 〈JpKLV 〉LV (7)

P c
C = γLV 〈C 〉LV (8)

As capillary pressure becomes defined at interface level, its dependan-

cies to time or saturation can be reappraised. Indeed, capillary pressure does

not correspond anymore to a volume scale driving force that may depend on

the proportion of each phase. Instead, the resulting capillary action can be

expected to be only a function of the porous geometry and surface tension co-

efficients. This is in agreement with the composite materials literature [7, 36]

in which capillary pressure is considered as an intrinsic property of the porous

medium and fluids.

1.4 Description of the flow front

Finally, a novel method to characterise the flow front is proposed in this

work. As the flow front is fragmented and discontinuous within the complex

poral structure, modeling it in a deterministic way may be criticised [19].

Consequently, a statistical modelling is proposed where the flow front is

characterised by a presence distribution. At an upper scale, this allows us to
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10 Reappraisal of upscaling descriptors for transient two-phase flows in fibrous media

assess the mean position of the flow front as well as its spread across the poral

structure, which is particularly relevant in the study of complex porous media.

This paper will first recall the numerical strategy for the simulation of

transient two-phase flow (Section 2.1). Next, the proposed upscaling procedure

will be detailed (Section 2.2). Then the results will be presented (Section 3)

and discussed (Section 4).

2 Materials and methods

The physical modelling of transient two-phase flow is now detailed. Such a

problem is solved within a stabilised finite element framework that has been

presented in previous studies and that will be briefly recalled here. Particu-

liar attention is paid to the generation method of fibrous geometries and to

boundary conditions. Then the proposed upscaling method will be explained.

2.1 Numerical simulation of a two-phase flow within a

fibrous medium

2.1.1 Physical problem and conservation laws

Two-phase flows with a moving interface are here adressed by solving two

coupled problems. The first one corresponds to the fluid problem and consists

in solving mass and momentum conservation equations on the computational

domain Ω (Fig.1). Both liquid and vapor phases are assumed to be newtonian

fluids and the flow incompressible. As the invading phase under consideration

shows a high viscosity and low velocity, a sufficiently low Reynolds number

can be assumed:

Re =
2r̄ρLvin
ηL

� 1 (9)
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where ρL is the liquid density and r̄ the average fibre radius. Consequently, the

convective and transient terms of Navier-Stokes’ equations can be discarded.

As a consequence, Stokes equations are here considered [37]. Let us consider

that phase i ∈ {L, V } occupies a domain Ωi(t) at time t. The following problem

is solved:

∇ · v = 0

ηi∆v −∇p = 0

 in Ωi(t) (10)

As an interface condition, no-slip is prescribed on the fibres.

Capillary effects are taken into account through Laplace’s relationship al-

ready introduced in Eq.5 where j ∈ {LV,LS, SL} (Fig.1). The contributions

associated to the solid phase in Eq.5 vanish, as the fibres are supposed to

be non-deformable. As a numerical consequence, the solid domain ΩS is not

meshed. Surface tension coefficients and viscosities are chosen to be consis-

tent with experimental measurements [38] encountered in direct manufacturing

processes of composite materials, and can be found in Table 1.

The model requires to locate the phases and the liquid-vapor interface ΓLV

in order to compute capillary terms or to apply the proper fluid properties. The

interface is here modeled implicitly with a level-set method. The method leans

on a scalar field φ that describes the signed distance between each point of the

computational domain and the liquid-vapor interface [39]. Therefore the zero

iso-value of the field correponds to the liquid-vapor interface. The whole field

is then convected in the fluid velocity field v to describe the moving interface

[37]:

∂φ

∂t
+ v ·∇φ = 0 in Ω (11)

with Ω = ΩL ∪ ΩV . The resolution of Eq.11 requires both initial and bound-

ary conditions. The initial level-set field corresponds to a plane liquid/vapor
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12 Reappraisal of upscaling descriptors for transient two-phase flows in fibrous media

interface, close to the inlet boundary. A boundary condition, usually on the

inlet boundary, is prescribed as a non-zero constant value for which the sign

indicates which phase enters the volume. Finally, to ensure that the field φ re-

mains a distance function throughout the computation, a reinitilisation step

is performed [40, 41].

2.1.2 Numerical strategy for solving the physical problem

The problem described in the previous section (Eqs. 10,11) is solved with a

finite element approach through an in-house implementation in Z-set software1.

The validity of the numerical strategy has been proved in various contributions

[37, 42–48]. The fluid problem is solved using linear approximations for both

velocity and pressure fields, associated with an ASGS strategy [49, 50]. The

implementation of capillary conditions at interfaces will not be detailed here

but further explanations can be found in [43]. Then, the level-set field is also

approximated by linear functions and its convection (Eq.11) is stabilised by a

SUPG method [51]. Both fluid and level-set problems share the same mesh and

are weakly coupled. An exemple of simulation within a fibrous microstructure

is represented in Fig.2.

2.1.3 Generation of fibrous microstructures

The porous medium under consideration is made of long carbon fibres. As a

consequence, it is common to work within the plane that is tranverse to the

fibre axis [46]. This leads us to consider a 2D flow around a set of disks.

Fibrous microstructures have thus been randomly generated, from an input

value of fibre volume ratio Vf , and through an algorithm detailed in a previous

contribution [46]. In that paper, it was shown that the generated microstruc-

tures are statistically representative of real fibrous structures with respect

1http://www.zset-software.com/
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to both mechanical response and geometrical considerations. In that sense,

the microstructures can be considered as Statistical Representative Volume

Elements (SRVE) [52]. The geometries are thus able to grasp the inherent

randomness of the medium. To our knowledge, studying the impregnation of

fibrous media from such volumes through transient two-phase flow simulations

is a novelty, as similar studies are generally based on idealised representations

of fibrous structures, using unit cells for instance.

In [46], a (S)RVE size has been determined for permeability considering steady

flow simulations. It has been remarked that RVE is met for a size L such that

L/r̄ ≈ 80. However, for significantly lower value of L/r̄, the results have been

found to yield permeabilities very close to the asymptotic value. As a result,

the RVE size has been set at 50 as a satisfactory trade-off between the sta-

tistical representativity and the computation cost. Fibre density will be kept

here at 50% to consider an intermediate value.

2.2 Upscaling methods

2.2.1 Saturation

Saturation SL is defined here as the proportion of liquid volume |ΩL| over the

overall poral volume |Ω|:

SL =
|ΩL|
|Ω|

(12)

It is thus defined at the volume scale and gives a global characterisation of

the flow. Its temporal evolution translates the overall dynamics of the flow.

It especially depends on the flow control that is prescribed through inlet/out-

let boundaries of the volume (Fig.3). The imbibition of the fibrous structure

is mainly driven by the boundary conditions prescribed at the inlet/outlet

boundaries. Depending on whether a pressure drop or a flow rate is prescribed,

the dynamics of impregnation can be significantly different. Consequently, as
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14 Reappraisal of upscaling descriptors for transient two-phase flows in fibrous media

discussed in the next paragraph, the type of flow control influences direclty

the time evolution of SL.

When the same constant flow rate is prescribed at the inlet/outlet bound-

aries, the time evolution of SL is first linear as the incompressible fluid is

forced to travel the same distance at any time (Fig.3). Then, saturation

converges towards an asymptotic value Smax
L as the flow reaches steadiness.

On the contrary, if a pressure drop between the inlet and oulet boundaries

is prescribed, the time evolution of SL is non-linear and a clear transition

between flow regimes is complex to identify. As the liquid fills the pore space,

the overall volume viscosity increases and the fluid displacement induced by

the pressure drop becomes increasingly smaller. Consequently, the average

fluid velocity may drop by several orders magnitude between the beginning

and the end of the simulation. This may alter the flow behaviour over time,

particularly the competition between viscous and capillary effects which is

represented through the capillary number Ca [53] (Eq.1).

In infusion-based manufacturing processes for composite materials, a pressure

drop is imposed at the industrial part scale. At the local scale under considera-

tion, this would lead to prescribe different pressure values on opposite sides of

the domain. However, the aim of this study is to characterise the upscaling of

local flows. For this purpose, it seems necessary to have a strong control on the

flow regime throughout the simulation: a flow rate control will be prescribed

on the volume in the rest of the study. A wall condition (i.e. v = 0) is applied

on the boundaries that are parallel to the imposed flow. Note that, although

the microstructure is periodic, no periodic boundary condition has been used

here. Indeed, in the case of a two-phase flow a periodic boundary condition

should ensure the periodicity of the velocity, but should also guarantee that

the same phase is considered on the corresponding nodes of both boundaries.
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Since the mechanical response is supposed to be independent of such bound-

ary conditions as soon as the geometry can be regarded as a RVE, which is

the case here [46], wall conditions have been considered throughout this study.

The slope of the SL = SL(t) curve, as well as Smax
L , provide a global yet

rough description of the flow. The characterisation can be carried further by

giving a more localised definition. Let us consider a section A of surface |A|

whose normal vector is along the imposed flow-rate (Fig.4). At a given time

t, this section contains a liquid surface |AL|. This allows to define a local

saturation sL(A) associated with section A as:

sL(A) =
|AL|
|A|

(13)

This provides a time characterisation of the flow that also depends on the

position. The sL(A) values are expected to be zero as long as the flow does not

reach the section under consideration. Then a transition until a maximum value

smax
L (A) should occur [18]. This value allows to characterise the steady flow

that sets in section A. The transition time between the transient and steady

states thus give an information about the local dynamics of the flow. However,

it is more suitable to deal with a space variable as retrieving a physical time

from numerical simulation of two-phase flow can be difficult [43, 54]. In the

literature, local saturation is expressed as a function of the position considering

that each section reaches full saturation. This asumption does not hold here

as the void content at final state is not necessarily negligible. This leads to

introduce the following quantity R:

R(t; A) =
sL(t; A)

smax
L (A)

(14)



691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736

Springer Nature 2021 LATEX template

16 Reappraisal of upscaling descriptors for transient two-phase flows in fibrous media

It describes, at time t and for a given section A, how reached the steady

state is. As a consequence, R = 0 indicates that the fluid has not reached the

section A yet. Inversely, the value R = 1 means that the flow is steady. For

any value between 0 and 1, the flow is considered as transient. The value of

R can be represented at a given time t as a function of the section position.

Assuming an imbitition from the left side to the right one as depicted in

Fig.4, R(A; t) is expected to go from 1 to 0. The transition zone between

those asymptotic values is associated to a saturation length `s corresponding

to partially saturated zone. As the poral structure is isotropic, we expect this

saturation length to stabilise towards a constant value. Even if the volume

does not reach the rigorous RVE size, `s should be compared to the domain

characteristic length so as to give first conclusions about the separation of

scales.

2.2.2 Resulting capillary pressure

The resulting capillary pressure is here computed at the interface level from

Eqs. 7 and 8. The methods to evaluate these quantity in practice are now

detailed. An expression for the macroscopic capillary pressure is first obtained

from the average pressure jump at the interface (Eq.7). To do so, elements of

the mesh that are cut by the interface (i.e. the zero iso-value of the φ field)

are scanned. For each one, the difference of mean pressure on either side of

the interface is computed. This gives a distribution of local capillary pressure

from which the median value is taken. This quantity will be referred to as

pressure jump capillary pressure and denoted as P c
p .

A second possibility to compute the capillary pressure is to consider the

average mean curvature (Eq.8). Such an approach is usually avoided as it

requires a double derivative computation which is numerically sensitive. As the
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liquid-vapor interface is generally non-continuous and fragmented, one must

first isolate each continuous piece of ΓLV . Considering the linear approximation

of the fields, every interface piece corresponds to a small set of continuous

segments which have first to be smoothened so that the mean curvature can

be computed.

As a method suitable for small dataset while providing a good smoothing

of the curves, a Gaussian Process Regression (GPR) technique is here selected

[46, 55, 56]. Here, each continuous piece of interface is seen as a parametric

curve. For each one, a GPR is carried out with the arc length as input and

each cartesian coordinates as outputs. Then the mean curvature can be easily

computed for each continous piece of the interface. This yields a distribution

of mean curvature from which the median value is taken to retrieve a repre-

sentative scalar quantity. This will be referred to as mean curvature capillary

pressure and denoted as P c
C . Despite the efficiency of the method, a consider-

able number of GPRs is required leading to significant computational costs.

Those methods for computing the interfacial capillary pressure are vali-

dated with the following test case: a 2D bubble with a unitary radius (i.e. a

unitary curvature) is placed in a square domain (Fig.5). As a unitary surface

tension coefficient is chosen, the capillary pressure is expected to be equal to

one. In addition, a very low pressure drop is prescribed on the volume to make

the bubble move slighly on the fixed mesh (Fig.5). As the pressure drop has

a low intensity, no geometrical change of the bubble is observed and a sim-

ple translation occurs. This aims at assessing the robustness of the methods

throughout the simulation.

The results of both methods are compared in Fig.6 for a given mesh. The

relative error with respect to the expected unitary capillary pressure is plotted.
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As for all the presented graphs, time t is normalised by the final time tf . Even

though both curves show a certain variability, it lies under 1% in absolute

value. Furthermore, the median error for both capillary pressures gives very

satisfactory results. The mesh convergence has also been studied as represented

in Fig.7. As expected, the finer the mesh, the smaller the error. It should be

remarked that mean curvature capillary pressure gives more precise results for

a given mesh. The technique is especially very performing for coarse meshes.

As regards the pressure jump capillary pressure, the precision of the method is

enhanced by the enrichement of the elements cut by interface [43, 57]. Finally,

both methods quickly converge towards the expected theoretical value. This

gives us confidence in both of the proposed approaches.

2.2.3 Statistical description of the flow front

A new method to define the flow front position in the homogenised equivalent

representation is now detailed. The main idea is to assume that the tran-

sient behaviour is only localised in a band, the characteristic length of which

corresponds to the flow front width, as depicted in Fig.8. Outside this area,

the behaviour is assumed to be steady. Indeed, a static equilibrium between

phases is supposed to be met upstream while the fluid have not reached the

downstream area yet. Inside F (Fig.8), the liquid-vapor interface is generally

non-continuous. The presented approach considers the position of the inter-

face within F through a statistical description. Considering our numerical

approach, the interface corresponds to a set of segments for which endpoints

position are denoted as xF
i = (xF

i , y
F
i ). The coordinate that follows the flow

direction is considered as a realisation of a random variable. In the example

described in Fig.8, this corresponds to the abscissa of the points that compose

the interface and it is denoted as IxF . This random variable is expected to
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follow a Gaussian law, as the interface is mainly centred around a certain po-

sition and its density then decays symmetrically from it.

This method requires the identification of the flow front which can be diffi-

cult in practice. Here, the domain is divided into rectangles in the direction of

flow (Fig.9). For each rectangle, the most downstream point of the interface is

fetched (x∗ for the dark blue rectangle in Fig.9) and its associated piece of in-

terface is retrieved (the green piece of interface in Fig.9). This method allows

a good reconstruction of the interface even if some errors of attribution may

occur (Fig.10).

3 Results

Results obtained through the methods detailed previously are now presented.

Transient two-phase flow simulations have been carried out in a numerically

generated fibrous microstructure with a fibre density Vf equal to 50% and

a capillary number Ca equal to 10−3. This value is frequently chosen in the

composite materials community as it has been shown to minimise the vapor

content at final state, optimising therefore the impregnation quality [58, 59].

3.1 Global and local saturations

The global saturation SL is first considered. An example of temporal evolu-

tion for SL has been represented in Fig.11. As noticed previously, such a curve

shows two regimes: a linear transient phase and a subsequent convergence to-

wards a two-phase equilibrium as the liquid has filled-in the volume. Despite

the simplicity of this behaviour, several upscaling descriptors with physical

meaning can be extracted. The slope of the first phase can be computed to

characterise the global dynamics of the flow. Then, the time to reach stabil-

ity may be compared between different microstructures with the same fibre
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density and simulation parameters. At last, the asymptotic saturation value

Smax
L corresponds to the residual proportion of vapor phase which is usually

referred to as a void content in the composite materials community. Due to the

flow incompressibility hypothesis, Smax
L may overestimate the experimentally

observed values as density inside bubbles cannot change. These three descrip-

tors (i.e. saturation curve slope, filling time and maximum saturation) will be

studied more precisely through a statistical further study.

Saturation defined at section level is now under consideration. It can be first

represented as a function of time for different sections of a same geometry. The

observed behaviour follows the expected sigmoid as represented in Fig.12 for

three given sections. As noticed previously, it is suitable to transpose the curve

into the spatial domain to retrieve a saturation length. This has been achieved

by considering the ratio R introduced in Section 2.2.1 as depicted in Fig.13 at

three given times. From the transition width of these curves, saturation length

`s can be derived at any given time. As a consequence, it can be considered as

time-dependent as depicted in Fig.14. To recover a representative scalar quan-

tity, saturation length is considered to be globally stable around a finite value

`∗s, represented by a dashed line in Fig.14. In the case under consideration, this

saturation length value is found to be around 7.6r̄. This means that the RVE

size is sufficient here for the flow to settle in steady regime.

3.2 Resulting capillary pressure

The resulting capillary pressure is computed throughout the simulation dura-

tion. Both methods that have been presented previously are considered. The

temporal evolution of P c
p and P c

C is represented in Fig.15.

It can be observed that both behaviours are in very close agreement. The

curves eventually converge towards very similar asymptotic values. These will
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be denoted by a star in exponent (i.e. P c∗
p and P c∗

C ). We have here:

P c∗
p ≈ P c∗

C = 12.7 kPa (15)

The time to reach stability can be interpreted as the time necessary to loose

memory of the initialisation state. A certain amount of time is therefore

required to reach a physically consistent state. This is the behaviour of a

statistically isotropic porous medium [46], however stability might not be

met for more complex poral structure materials [44]. Comparing Fig.11 and

Fig.15, it must be noticed that the capillary pressures P c
p and P c

C converge

while the global saturation is not stable yet. This shows that interface-defined

capillary pressure becomes here independent of both time and saturation.

The results are in agreement with other recent works in which capillary

pressure defined at the interface level tends to converge after a certain time.

This reinforces the idea that capillary pressure, as defined here, can be con-

sidered as a function of the geometry and the interface properties only. Based

on such a definition, it can be regarded as independent on the saturation.

Consequently, considering an interfacial capillary pressure avoids the use of

saturation-capillary pressure relationship which limits have been highlighted

previously.

3.3 Statistical description of the flow front

A methodology to describe the flow front in terms of probability of presence

has been described in Section 2.2.3. An example of distribution of flow front

at a given time t is represented in Fig.16. The distribution can be modeled by

a Gaussian law N (µ, σ; t) as justified in Section 2.2.3. However, this trend
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is not necessarily clear in practice. Indeed, identifying precisely the flow front

can be difficult [60, 61]. Attribution errors such as depicted in Fig.10 may lead

to alter the observed distribution. Yet, such a modeling will be kept as a first

approach.

The temporal evolution of the flow front distribution is represented in Fig.17.

The mean value µ(t) shows a linear trend over time. The standard deviation

σ(t) starts to increase before being roughly stable around a value σ∗. From

Fig.17, this asymptotic value is estimated at σ∗ = 5.6r̄.

4 Discussion

Results from the proposed upscaling procedure have been presented in the

previous section. These have now to be compared to experimental observations

or to other numerical studies.

4.1 Saturation

Analogous curves to those represented in Fig.11 can be found in the litera-

ture for similar boundary conditions [17, 18]. Even for different geometries

and scales, as long as a flow rate is prescribed, the saturation increases lin-

early until reaching a plateau. Asymptotic saturation value Smax
L should also

be compared to void content obtained in other study for similar Ca. However,

most of the contributions on fibrous media set at an intermediate mesoscopic

scale: a dual-scale medium is thus considered as the liquid phase flows within

and around yarns (i.e. bundle of fibres) [16, 17, 58, 62, 63]. This work focuses

more specifically on the fibre scale: only microvoids are studied here.

The fraction of residual vapor phase retrieved here is significantly higher than

values commonly found in the literature. These generally lie between 1% and

10% for similar capillary numbers. It should be noticed that fibre fraction
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within yarns can reach really high values, around 75% [44]. For such a compac-

ity, the fibrous arrangement tends towards a regular hexagonal packing. This

entails an overall regular advancement of the flow front and thus a lower final

void content. Moreover, further mechanisms such as air compressibility and

dissolution [60] tend also to diminish the residual proportion of vapor phase.

As regards local saturation, making a comparison with other studies can be

complex. Indeed, most of them are located at a mesoscale involving a much

larger saturation length. Here, the computed saturation length is around 25

µm for a mean fibre radius of 3.5 µm. Considering the directly upper scale

on the order few millimeters [44], the scales seem to be well seperated. This

means that at upper scales, the width of the unsaturated zone present at fi-

bre scale can be neglected. In other terms, in 2D, the moving interface within

the yarns can be wisely modeled by a 1D front in the equivalent homogeneous

medium as it can be done with a level-set method.

4.2 Capillary pressure

A consistency between both methods to assess a resulting capillary pressure has

been shown previously. Close asymptotic values are thus obtained and should

be now compared to experimental results. Capillary pressure assessment in fi-

brous media has been a concern of the composite materials community over

the past twenty years [7, 36, 63–65]. However, a huge dispersion of the results

can be observed in practice as depicted in Fig.15. Therefore, the comparison

of our results with those found in the literature can be a difficult task, espe-

cially because fibre volume ratio or the geometries can be different. However,

the orders of magnitude remain consistent. Moreover, the mean value of the

capillary pressure results found in the literature is 12.2 kPa. This value is very

close to the asymptotic capillary pressure retrieved in this study (Eq.15). In
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addition, it seems appropriate to consider some of the presented experimental

results as relevant bounds for capillary pressure. Considering Fig.15, results

from [64] represents a relevant lower bound while Pucci et al. measurements

[7] give a satisfactory upper bound.

Analytical models have been also established to assess capillary pressure within

fibrous media [66–71]. The macroscopic contribution of capillary pressure is

then expressed as:

Pc =
γSV − γSL

r

Vf
1− Vf

(16)

where r is the fibre radius. For our material data and replacing r by the

mean fibre radius r̄, this equation (Eq.16) estimates the resulting capillary

pressure at 8.2 kPa as represented in Fig.15. Even if this value is lower than

ours, it provides a satisfactory estimation. Indeed, we are considering here a

single random microstructure: a further statistical assessment of the capillary

pressure should be performed. In addition, the stochasticity of the geometry

under consideration (i.e. radius randomness, fibre position randomness,...) may

alter the expression of Eq.16.

4.3 Statistical description of the flow front

In Section 3.3, the flow front distribution has been characterised by a Gaussian

law. The advancement of distribution mean value has been shown to be linear

over time for flow rate inlet control conditions. This is consistent with the

saturation curve represented in Fig.11. We can thus write:

µ(t) ∝ SL(t) (17)

The standard deviation σ(t) of the flow front distribution can be physically

interpreted as a bandwidth within which the transient behaviour is contained.
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This is very close to the concept of saturation length that has been introduced

previously. It should be remarked that both `s and σ∗ have comparable values.

Seeing these quantities as characteric length for the transient behaviour, both

approaches appear to be consistent. Once again, it can be concluded that the

spread of the flow front can be neglected at upper scales. This may justify the

use of deterministic approach at both mesoscale and macroscale. Moreover, this

reaffirms the relevance of considering a sharp interface at upper scales. This

conclusion directly depends on the kind of porous medium under consideration

as well as the flow parameters such as the capillary number [25]. In a more

general case, the tools presented here provide a detailed description of the flow

and give a thorough upscaling procedure.

Finally, in the context of this work, results arising from saturation (Section

3.1) and from the consideration of a flow front distribution (Section 3.3) are

in close agreement. As noticed previously, this latter technique requires the

identification of the flow front which can be challeging in practice. As a result,

it seems preferable to use saturation-based methods for similar porous media

and flow settings.

4.4 SRVEs and statistical mechanical response

In Section 2.1.3, the microstructures under consideration have been qualified

as Statistical Representative Volume Elements, following the results from a

previous study [46] and the definition from [52]. Indeed, our geometries are

randomly generated and have been found to provide both a mechanical and

geometrical representativity. In other words, given the SRVE nature of the

generated geometries, the mechanical response of a single microstructure will

be representative of a whole family of other geometries generated with similar
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fibre ratio volume and with analoguous flow conditions.

To illustrate it, the response of six randomly generated volumes with Vf equal

to 50% are presented in Fig.18 and Fig.19, for Ca = 10−3. It can be seen that

the responses are indeed very close, both in terms of saturation or capillary

pressure, even if an intrinsic dispersion is naturally observed. Since the present

work aims at demonstrating the basics of the stochastic upscaling methodol-

ogy dedicated to transient flows in composites manufacturing, a single SRVE

has been considered. Obviously, a more exhaustive study is requested to fur-

ther investigate the statistical upscaled flows in the space of the physical and

geometrical descriptors.

5 Conclusion

This work contributes to bridge the approaches developed by hydrogeology and

composite materials communities in order to reach an upscaling method that

is adapted to the impregnation of fibrous materials. From an in-depth anal-

ysis of the methods encountered in literature, a re-examination of the usual

upscaling descriptors has been performed, so that they can relevantly charac-

terise the imbibition of fibrous materials.

From 2D SRVEs, flow simulations have been performed through a stabilised

finite element method. Upscaling methods have been then identified from the

developments of various scientific communities. Those have been adapted to

the context of random fibrous media at microscale and further strategies have

been proposed.

First, the notion of saturation, that usually describes the proportion of liquid

within the poral space, has been considered both at volume and section scales.

Their temporal and/or spatial evolution naturally leads to upscaling descrip-

tors related to saturation dynamics or void content. Results are consistent and
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the some identified discrepancies with the literature has been justified. Local

saturation allows to determine a saturation length within which the transient

behaviour is supposed to be contained. This length represents around 15% of

the domain size. This allows us to conclude that the scales are well separated

as the domain encompasses the entire transient behaviour. At upper scales,

the width of the unsaturated zone may be neglected for the standard compos-

ite materials under consideration.

Then two methods have been proposed to assess a resulting capillary pressure

from the interface behaviour. Both approaches have been validated on a test

case and show an excellent agreement. A convergence of the capillary pressure

is observed over time. It is thus independent of the saturation and only de-

pends on the interface properties and inlet flow control. This may avoid the

use of cumbersome relationship between saturation and capillary pressure. Our

values of capillary pressure have been then shown to be in accordance with

other analytical and experimental results.

A novelty of this approach is to describe the flow front through a statistical

modelling. After identifying the position of the flow front, a presence distribu-

tion of the flow front is retrieved. In a first approach, this can be considered

as a Gaussian law whose parameters behaviour are consistent with our pro-

posed approach. In the situation under consideration, the spread parameter

of the distribution is significantly lower than the characteristic length of the

upper scale. This again jutifies deterministic modeling of the flow front at up-

per scales, for fibrous materials in the context of direct manufacting processes.

However, in the case of larger anisotropic porous media, the distribution spread

may not be negligible anymore and the proposed statistical characterisation

may be particularly relevant.

Finally, the proposed strategy allows a thorough upscaling of the microscopic
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behaviour while justifying or reappraising some of the usual methods found

in the literature. Both capillary number and fibre volume ratio has been kept

constant here. Further studies should consider them as input variables of a

more comprehensive model in which the presented upscaling descriptors are

the output. This will allow to build a dataset so as to perform a more com-

plete statistical characterisation of the upscaling.

This contribution focuses on the upscaling methods so as to retrieve a novel

procedure that is suited for the impregnation of fibrous materials. The up-

scaling descriptors that have been highlighted are mostly scalar quantities

and provide a thorough macroscopic characterisation of the flow under con-

sideration. In future contributions, the influence of the flow settings and pore

structure (i.e. Ca and Vf ) on those descriptors will be investigated in order to

extract constitutive laws ruling the imbibition of fibrous structures.
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γSV (N/mm) γSL (N/mm) γLV (N/mm) ηV (Pa.s) ηL (Pa.s)
54.7 × 10−3 25.9 × 10−3 50.8 × 10−3 1.71 × 10−5 2.76 × 10−3

Table 1: Fluid properties chosen for the numerical simulations.

Figure 1: Imbibition in a fibrous medium: domains, boundaries and notations.

Figure 2: A simulation example of transient two-phase flow within a generated
fibrous microstructure: (a) location of the phases (blue: liquid, grey: vapor),
(b) normalised velocity magnitude.
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Figure 3: Temporal evolution of global saturation SL for different inlet
boundary conditions.

Figure 4: Notions of saturation and saturation length.
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Figure 5: Test case for the validation of the resulting capillary pressure com-
putation : parameters, boundary conditions and mesh (1655 nodes). A pressure
drop of low intensity ε is prescribed.
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Figure 6: Relative error between ref-
erence value and the two methods to
assess the resulting capillary pressure
for a given mesh (1215 nodes).
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Figure 7: Mesh convergence for the
two methods to assess the resulting
capillary pressure.
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Figure 8: Statistical approach
to describe the flow front.

Figure 9: A method to identify
the flow front.
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Figure 10: Example of flow front identification.
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Figure 11: Temporal evolution of the
global saturation.
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Figure 12: Temporal evolution of the
saturation of three sections charac-
terised by their abscissa x.
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Figure 13: Spatial evolution of the
ratio R for three given times.
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Figure 14: Temporal evolution of
the saturation length normalised
by the mean fibre radius.
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Figure 15: Temporal evolution of the resulting capillary pressure defined at
the interface level: proposed methods and literature.
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Figure 16: Distribution of flow
front at t/tf = 0.73.
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Figure 17: Distribution of flow
front over time: mean value,
dispersion and standard devia-
tion.
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Figure 18: Time evolution of the global saturation for six randomly generated
microstructures (Vf = 50%, Ca = 10−3).
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Figure 19: Time evolution of the resulting capillary pressure for six randomly
generated microstructures (Vf = 50%, Ca = 10−3).
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