
HAL Id: emse-04277942
https://hal-emse.ccsd.cnrs.fr/emse-04277942

Submitted on 17 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

The SAREF Pipeline and Portal-An Ontology
Verification Framework

Maxime Lefrançois, David Gnabasik

To cite this version:
Maxime Lefrançois, David Gnabasik. The SAREF Pipeline and Portal-An Ontology Verification
Framework. The Semantic Web – ISWC 2023, Nov 2023, Athenes, Greece. pp.134-151, �10.1007/978-
3-031-47243-5_8�. �emse-04277942�

https://hal-emse.ccsd.cnrs.fr/emse-04277942
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

The SAREF Pipeline and Portal — An Ontology
Verification Framework

Maxime Lefrançois[0000−0001−9814−8991]

and David Gnabasik[0000−0002−6052−7782]

Mines Saint-Étienne, Univ Clermont Auvergne, INP Clermont Auvergne, CNRS,
UMR 6158 LIMOS, F - 42023 Saint-Étienne France
{maxime.lefrancois,david.gnabasik}@emse.fr

Abstract. The Smart Applications REFerence Ontology (SAREF) de-
fines a modular set of versioned ontologies that enable semantic inter-
operability between different Internet of Things (IoT) vendor solutions
across various IoT industries. The European Telecommunications Stan-
dards Institute Specialist Task Force (ETSI STF) 578 recently completed
the ”Specification of the SAREF Development Framework and Work-
flow and Development of the SAREF Community Portal for User En-
gagement”. This project specifies the development pipeline and workflow
needed to accelerate the development of SAREF and its extensions along
with the development of software that automates the generation of ontol-
ogy portal content from SAREF sources on the public ETSI Forge. This
paper describes the SAREF Pipeline that provides an efficient and ro-
bust support infrastructure for the Continuous Integration and Delivery
of semantic ontology development.

Keywords: SAREF · ETSI · SmartM2M · Ontology · Semantic · IoT ·
Continuous Delivery · Quality control · Pipeline.

1 Introduction

The Smart Applications REFerence Ontology (SAREF) defines a modular set
of versioned ontologies that enable semantic interoperability between different
Internet of Things (IoT) vendor solutions across various IoT industries [5,17].
SAREF was promoted by the European Commission in collaboration with the
European Telecommunications Standards Institute (ETSI) SmartM2M techni-
cal committee to design a common data model to limit the fragmentation of
the Internet of Things (IoT) by enabling interoperability between solutions from
different vendors across various IoT industries, thus contributing to the devel-
opment of the global digital marketplace and the European data spaces.

The value of SAREF is strongly correlated with the size of its community of
users, and also to the agility of the SAREF developers to improve the SAREF
ontologies and react to raised issues. As such, SAREF users’ community and the
industry actors need be attracted to SAREF with clear web documentation and
a clear indication about how to provide their input and the kind of input that

2 M. Lefrançois and D. Gnabasik

they can provide. ETSI Specialist Task Force (STF) 578 recently completed the
”Specification of the SAREF Development Framework and Workflow and Devel-
opment of the SAREF Community Portal for User Engagement”. The ultimate
project goal is to enable SAREF users in various industries to contribute to and
maintain SAREF without requiring specialized or advanced ontology engineer-
ing skills, so as to lower the level of support needed by ETSI members, and
in particular SmartM2M members. Experts participating in STF 578 specified
the general development framework for the SAREF ontology and its extensions,
generally referred to as SAREF projects, in the ETSI TS 103 673 technical spec-
ification [13], and the sources of SAREF were migrated to the public ETSI Forge
portal https://saref.etsi.org/sources/.

This paper provides an overview of this ETSI TS 103 673 technical specifica-
tion, with an emphasis on the specification of requirements for SAREF project
repositories: git repositories that contain the sources of a SAREF project. It then
provides a functional and technical overview of the SAREF Pipeline software,
that automates checking the compliance of SAREF project repositories against
this specification, and automates the generation of the static documentation
website. The SAREF pipeline is openly available under an open BSD-3-Clause
license at https://saref.etsi.org/sources/saref-pipeline/. It has already been
used to accelerate the development of version 3 of SAREF and the 12 published
SAREF extensions, and to generate the contents of the public SAREF commu-
nity portal available at https://saref.etsi.org/

The rest of this paper is organized as follows. Section 2 describes related
work. Section 3 describes the modular architecture of the SAREF ontology core
and its extensions. Section 4 provides an overview of ETSI TS 103 673, especially
who and how SAREF ontology development proceeds, and which rules SAREF
project repositories must comply to. Section 5 describes the SAREF Pipeline
software and how it is configured for continuous integration and delivery. Sec-
tion 6 qualifies the impact, reusability and availability of the SAREF Pipeline
and discusses current work. Section 7 offers our conclusions.

2 Related Work

Automation in ontology engineering aims to accelerate the production of high
quality ontology artifacts by automating manual or redundant tasks and pre-
venting bad releases. For example linting tools1 supporting the ontology editing
process limit the difficulty of editing ontologies of good quality. Examples in-
clude Jena Eyeball,2 and RDFLint3. The latter is integrated in the extension

1 Linting, named after a UNIX pre-processor command for the C language, is an
approach that consists of statically analyzing software source code to detect errors,
bugs, or style mistakes.

2 https://jena.apache.org/documentation/archive/eyeball/eyeball-manual.

html
3 https://github.com/imas/rdflint

https://saref.etsi.org/sources/
https://saref.etsi.org/sources/saref-pipeline/
https://saref.etsi.org/
https://jena.apache.org/documentation/archive/eyeball/eyeball-manual.html
https://jena.apache.org/documentation/archive/eyeball/eyeball-manual.html
https://github.com/imas/rdflint

The SAREF Pipeline and Portal — An Ontology Verification Framework 3

RDF language support via rdflint4 of Visual Studio Code, and allows to execute
SPARQL queries, to validate SHACL constraints, or to validate that literals are
well formed. Command line interfaces available in software such as Apache Jena5

also help automating common tasks in ontology development.

The ROBOT tool [22] developed by the Open Biological and Biomedical
Ontologies (OBO)6 community provides ontology processing commands for a
variety of bio-medical / disease research tasks such as commands for converting
formats, filtering axioms, invoking a reasoner for logical validation and auto-
matic classification (where all direct inferred subClassOf axioms are added to
the ontology), creating and extracting import modules, verifying the correct ex-
ecution of SPARQL unit test queries, and running reports. Although ROBOT
itself is not a workflow manager, the various ROBOT commands are often com-
bined into automated workflows using a separate task execution system such
as GNU Make. The main release artifacts are an OWL file and an OBO file.
Since ROBOT was designed to enforce many of the OBO Foundry conventions,
ROBOT helps guarantee that released ontologies are free of certain types of
logical errors and conform to standard quality control checks, thereby increas-
ing the overall robustness and efficiency of the ontology development life cycle.
ROBOT also employs the OWL API library. Whereas ROBOT facilitates the
ontology engineering in the bio-medical research community, SAREF’s engineer-
ing mandate is the unified interoperability of IoT sensor networks from multiple
industries and use-cases.

Authors in [4] identified data standards and reporting formats that use ver-
sion control and summarize common practices in earth and environmental sci-
ences. Just as Agile methods aim to improve collaborations between software
project customers and developers, DevOps methods improve collaborations be-
tween developers and IT operations professionals. Jenkins, Travis CI, Circle CI,
Gitlab CI/CD, Github Actions, are all frameworks that allow to specify task
pipelines that will be executed automatically when, for example, a commit is
pushed to the server. Before the democratization of these frameworks, a few
preliminary approaches were proposed in the ontology engineering community
using Github applications7. For example VoCol [20] or OnToology [2]. Ontology
Development Kit (ODK) [27] uses Travis CI to run workflows with ROBOT.
CI/CD pipelines are reported for the publication of different ontologies, such as
the Financial Industry Business Ontology (FIBO) in [1], the International Data
Spaces Information Model (IDSA) in [3], and the CASE Cyber Ontology8. Spe-
cific GitHub actions are available on the GitHub marketplace for running RD-

4 https://marketplace.visualstudio.com/items?itemName=takemikami.

vscode-rdflint
5 https://jena.apache.org/documentation/tools/index.html
6 https://obofoundry.org/
7 https://docs.github.com/en/developers/apps
8 https://github.com/marketplace/actions/case-ontology-validator

https://marketplace.visualstudio.com/items?itemName=takemikami.vscode-rdflint
https://marketplace.visualstudio.com/items?itemName=takemikami.vscode-rdflint
https://jena.apache.org/documentation/tools/index.html
https://obofoundry.org/
https://docs.github.com/en/developers/apps
https://github.com/marketplace/actions/case-ontology-validator

4 M. Lefrançois and D. Gnabasik

FLint9, validating RDF syntaxes10,11, or validating RDF files against SHACL
shapes12 or ShEx [31].

3 SAREF - A Modular and Versioned Suite of Ontologies

As illustrated in Figure 1, the SAREF suite of ontologies is composed of on-
tologies that define generic patterns such as SAREF4SYST [12], a core ontol-
ogy SAREF Core [14] illustrated in Figure 2, and different extensions devel-
oped for distinct vertical domains: SAREF4ENER for energy [6], SAREF4ENVI
for environment [8], SAREF4BLDG for smart buildings [8], SAREF4CITY for
smart cities, SAREF4INMA for industry and manufacturing, SAREF4AGRI for
agriculture and food, SAREF4AUTO for automotive [9], SAREF4EHAW for e-
health and ageing well [10], SAREF4WEAR for wearables [11], SAREF4WATR
for water management [7], and SAREF4LIFT for smart lifts [15].

SAREF4SYST
Pattern for Systems,

Connections,
Connection Points

Pattern for
Features of
Interest and
Properties

Pattern for
Functions and

Commands

Pattern for
Measurements

SAREF Core

SA
R

E
F4

E
N

E
R

En

er
gy

SA
R

E
F4

E
N

V
I

En
vi

ro
nm

en
t

SA
R

E
F4

B
L

D
G

B

ui
ld

in
g

SA
R

E
F4

C
IT

Y

Sm
ar

t C
ity

SA
R

E
F4

IN
M

A

In
du

s.
&

 M
an

uf
.

SA
R

E
F4

A
G

R
I

A
gr

ifo
od

SA
R

E
F4

A
U

TO

A
ut

om
ot

iv
e

SA
R

E
F4

E
H

AW

eH
ea

lth
 /

A
ge

in
g

W
el

l

SA
R

E
F4

W
E

A
R

W

ea
ra

bl
es

SA
R

E
F4

W
AT

R

W
at

er

SA
R

E
F4

L
IF

T

Sm
ar

t L
ift

s

SA
R

E
F4

G
R

ID

Sm
ar

t G
rid

s

...

...

Fig. 1: The SAREF suite of ontologies with its different modules. Dashed blocks
are under development in ongoing projects.

SAREF Projects are formally endorsed by ETSI as Technical Specification
documents, and therefore adopt the semantic versioning approach as specified
by the ETSI version numbering system for documents.13 Each SAREF project
version is tagged with three numbers: a major, a technical, and a non-technical.
A major increment indicates a break in backward compatibility. A technical
increment indicates technical changes. A non-technical increment indicates an
editorial change.

9 https://github.com/marketplace/actions/setup-rdflint
10 https://github.com/marketplace/actions/rdf-syntax-check
11 https://github.com/marketplace/actions/validate-rdf-with-jena
12 https://github.com/marketplace/actions/validate-shacl
13 https://portal.etsi.org/Services/editHelp/How-to-start/

Document-procedures-and-types/Version-numbering-system

https://github.com/marketplace/actions/setup-rdflint
https://github.com/marketplace/actions/rdf-syntax-check
https://github.com/marketplace/actions/validate-rdf-with-jena
https://github.com/marketplace/actions/validate-shacl
https://portal.etsi.org/Services/editHelp/How-to-start/Document-procedures-and-types/Version-numbering-system
https://portal.etsi.org/Services/editHelp/How-to-start/Document-procedures-and-types/Version-numbering-system

The SAREF Pipeline and Portal — An Ontology Verification Framework 5

saref:Function saref:Command
saref:isCommandOf

saref:hasCommand

saref:Device

saref:hasFunction

saref:Service
saref:isOfferedBy

saref:offers

saref:represents

saref:Task
saref:isAccomplishedBy

saref:actsUpon

saref:State
saref:hasState

saref:Property

saref:Measurement

saref:UnitOfMeasure

saref:FeatureOfInterest

saref:isMeasuredByDevice
saref:isControlledByDevice

saref:measuresProperty
saref:controlsProperty

saref:relatesToProperty

saref:relatesToMeasurement

saref:makesMeasurement

saref:measurementMadeBy

saref:isPropertyOfsaref:hasProperty
saref:isMeasurementOf

saref:hasMeasurement

saref:isMeasuredIn

Fig. 2: An overview of the SAREF Core ontology V3.1.1 (adapted from [14])

4 The SAREF Development Framework and Workflow

4.1 The SAREF Development Workflow

In general, the development of SAREF ontologies follows the Linked Open Terms
(LOT) methodology [29], which adopts a V-model approach with conditional
jumps to previous development stages. The following roles are defined in [13,
Clause 5]:

Steering Board member: steers the development of SAREF extensions, com-
munity participation, and underlying infrastructure.

Technical Board member: maintains the SAREF public forge and portal.
Project Leader: performs SAREF project management tasks.
Ontology Developer: uses their in-depth understanding of ontology develop-

ment to interactively modify the ontology during the development cycle.
Ontology developers create and modify the different development artefacts,
provide new requirements to the ontology, validate whether they are satisfied
or not when implemented, and make decisions regarding what contributions
are included in the ontology.

Contributor: proposes contributions to the ontology given their domain-specific
knowledge.

Ontology User: is interested in any of the SAREF projects or in proposing a
new project.

6 M. Lefrançois and D. Gnabasik

Different workflows are established:

Workflow 1: new SAREF project versions [13, Clause 6.1].
Workflow 2: project version development [13, Clause 7.1].
Workflow 3: project release (publication) [13, Clause 8.1].

Workflow 1 applies to new versions of the SAREF Core, new versions of exist-
ing SAREF extensions, or initial versions (V1.1.1) of new SAREF extensions.
For example, Figure 3 illustrates the workflow for the development of different
project versions from the SAREF community of users. The project version de-
velopment workflow is founded upon the issues recorded in the corresponding
SAREF project issue tracker on the public ETSI Forge portal. The issue tracker
not only presents a single point of development interaction, but also tracks de-
velopment activity and discussions. Any update to a SAREF project version is
made through a change request that is posted as an issue in the corresponding
git repository of the public forge, where it is assigned an issue number. Issues
include change requests related to new ontology requirements, defects, or im-
provements in the ontology specification, in the ontology tests and examples,
or in the ontology documentation. Any contributor can create a new change re-
quest or review and discuss existing change requests. Steering Board members
then review these change requests. Ontology developers also review change re-
quests, propose, and review implementations of accepted change requests. The
project leader ensures that the change requests are approved by SmartM2M and
that the implementations of the change requests satisfy the requested change.

4.2 SAREF Project Repositories on the ETSI Forge

SAREF Projects may correspond to SAREF Core or a SAREF Extension. Each
SAREF Extension is assigned an identifier that is based on a four letter code.
SAREF Projects are hosted in a git repository on the public ETSI Forge https:

//saref.etsi.org/sources/. Release branches are used instead of tags to identify
releases, thus allowing continuous evolution of the documentation or examples
after the ontology version is published. SAREF project repositories therefore
have four different types of branches:

– issue-x branches to work on an issue,
– develop-vx.y.z branches to work on a version,
– prerelease-vx.y.z branches to work on the final validation of the ontology,
– release-vx.y.z branches for published versions.

Protection rules are defined to prevent ontology developers from directly pushing
their changes to development-vx.y.z branches or from directly accepting merge
requests in prerelease-vx.y.z branches. In addition, the saref-portal reposi-
tory14 contains the static resources of the SAREF public documentation portal,
and a file .saref-repositories.yml that references each of the SAREF projects
whose documentation needs to be generated on the portal.

14 https://saref.etsi.org/sources/saref-portal

https://saref.etsi.org/sources/
https://saref.etsi.org/sources/
https://saref.etsi.org/sources/saref-portal

The SAREF Pipeline and Portal — An Ontology Verification Framework 7

Approved

change request
is clear

implementation
is clear

Needs
Implementation

implementation
is clear

after discussion

implementation
startsimplementation

is not clear

Submitted

Needs
Clari��cation

change request
is not clear

Needs
Discussion

Work
In Progress

implementation
is not approved

Implementation
Available

implementation
ends

change request
is submitted

change request
is updated

Propose Closing

change request
is dismissed

implementation
is dismissed

Closedchange request
is closed

implementation
is approved

Fig. 3: The SAREF project version development workflow (adapted from [13])

4.3 SAREF Project Version Specification and Documentation

Clause 9 in the ETSI TS 103 673 technical specification [13, Clause 9] outlines
the rules to which each SAREF project repository must comply. All these rules,
summarized below, are automatically checked by the SAREF Pipeline.

Clause 9.2. The SAREF project version directory shall15 contain a README.md,
a LICENSE file, and folders requirements, ontology, tests, examples, documentation.

Clauses 9.3.1. and 9.3.2. The requirements directory should contain a file
requirements.csv. If present, this file shall be a UTF-8 encoded CSV file
with specific delimiter, quote character, and specific header row.

Clause 9.4.1. The ontology directory shall contain the ontology document of
the project version saref.ttl for SAREF Core, saref4abcd.ttl for SAREF
extension SAREF4ABCD. This file shall contain the sources of a consistent
OWL2 DL ontology in the Turtle 1.1 format.

Clause 9.4.2. If the document contains a base or prefix declarations, they shall
conform to the ones given in this clause.

Clause 9.4.3.1. specifies which ontology series IRI and which ontology version
IRI shall be used, along with version-related metadata such as owl:versionInfo,

15 ETSI draft editing rules disallow the use of the must keyword. The highest level of
specification enforcement is shall.

http://www.w3.org/2002/07/owl#versionInfo

8 M. Lefrançois and D. Gnabasik

vann:preferredNamespacePrefix, vann:preferredNamespaceUri, and owl:prior-
Version if applicable.

Clause 9.4.3.2. specifies which ontology metadata shall, should, or may be de-
fined, and which value and/or datatype they shall have if they are defined.
In general the use of Dublin Core terms is enforced. Ontology imports are
often a source of versioning problems. This clause stipulates that support-
ing ontologies are imported by their version IRI and not by the ontology
series identifier. For example, SAREF4LIFT V1.1.1 imports SAREF Core
V3.1.1, SAREF4SYST V1.1.2, and SAREF4BLDG V1.1.2. This rule effec-
tively avoids imported ontology versioning issues.

Clause 9.4.3.3. defines who can be considered a creator or a contributor to
the SAREF project version, and how they may be described in the on-
tology. In general persons are described using IRIs or blank nodes, which
then shall be instances of schema:Person and further described using a
schema:givenName and schema:familyName. Affiliations shall be described
as instances of schema:Organization.

Clause 9.4.4.1. defines which namespace shall be used for terms defined in the
ontology document, and which naming convention shall be used for classes
and properties.

Clause 9.4.4.2. enforces the use of rdfs:label and rdfs:comment metadata on
terms, which should at least have one rdf:langString datatype with the en

language tag.
Clause 9.4.5. specifies that the ontology shall satisfy the OWL2 DL profile,

with the exception that unknown datatypes may be used. It shall be con-
sistent, it should not present ontology development pitfalls as per the the
OntOlogy Pitfall Scanner! (OOPS!) [30], and every declared class should be
satisfiable.

Clause 9.5.1. and 9.5.2. The tests directory should contain a file tests.csv.
If present, this file shall be a UTF-8 encoded CSV file with specific delimiter,
quote character, and given header row.

Clause 9.6.1. The examples directory should contain example documents that
illustrate how the ontology can be used in practice. Every example document
shall be a consistent OWL2 DL ontology in the Turtle 1.1 format. Main
classes and properties should be illustrated with at least one example.

Clause 9.6.2. Specifies allowed prefixes and base declarations in examples.
Clause 9.6.3. The example document shall be declared as a dctype:Dataset. It

shall be asserted to conform to (dct:conformsTo) the SAREF project version
IRI. It additionally may conform to other SAREF project specific versions,
or some ontology published by international Standard Development Organi-
zations. Additional metadata elements shall be used.

Clause 9.6.4. The RDF graph in the example document, when augmented with
an ontology declaration that imports all the ontologies the example conforms
to, shall satisfy the OWL2 DL profile, with the exception that unknown
datatypes may be used, and shall be consistent.

Clause 9.7.1. The documentation directory should contain documentation sources
to provide human-readable documentation for the ontology and how it can be

http://purl.org/vocab/vann/preferredNamespacePrefix
http://purl.org/vocab/vann/preferredNamespaceUri
http://www.w3.org/2002/07/owl#priorVersion
http://www.w3.org/2002/07/owl#priorVersion
http://schema.org/Person
http://schema.org/givenName
http://schema.org/familyName
http://schema.org/Organization
http://www.w3.org/2000/01/rdf-schema#label
http://www.w3.org/2000/01/rdf-schema#comment
http://www.w3.org/1999/02/22-rdf-syntax-ns#langString
http://purl.org/dc/dcmitype/Dataset
http://purl.org/dc/terms/conformsTo

The SAREF Pipeline and Portal — An Ontology Verification Framework 9

used in practice. These documentation sources are for creators, contributors,
abstract, description, examples, references, acknowledgements. They shall
be a HTML snippet and have the extension .html or be a markdown snippet
and have extension .md.

Clause 9.7.2. Diagrams should be included in a directory documentation/diagrams,
and adopt graphical notations from [18].

5 Quality Control and Requirements Verification with
the SAREF Pipeline

The SAREF Pipeline software verifies the conformance to the specification sum-
marized in Section 4.3, and generates the HTML documentation of SAREF. It
can be run on a SAREF project repository, or on the saref-portal repository for
verifying all the SAREF projects and generating the complete documentation
of SAREF to be deployed on the public SAREF community portal. This section
provides technical details about this software, how the checks are performed,
and how it is used.

5.1 User Interface, Execution Modes, Error Reporting

The SAREF Pipeline operates in either a graphical mode (Figure 4) or a com-
mand line interface (Figure 5) depending upon the ontology developer’s prefer-
ence. Choosing an execution mode determines the thoroughness and coverage of
the pipeline tests and usually depends on the development stage:

develop some metadata such as version numbers are not checked;
release thorough check of the repository which must be clean (contain no

tracked and modified files);
portal pre-release run on the saref-portal repository to operate a strict check

and generate the documentation for all pre-release and release branches of
the source repositories;

portal release same as above, but only considers release branches.

The ontology engineer may also choose to skip some tasks such as the anal-
ysis of examples, the generation of the HTML documentation for terms, or the
generation of the HTML documentation altogether.

The SAREF Pipeline provides a detailed but easy-to-read global view of all
the identified warnings and errors. Violation of shall clauses trigger errors, while
violation of should clauses trigger warnings. The logs are formatted in HTML
in the GUI and markdown in the CLI, which is convenient to create nicely-
formatted issues rapidly to collaboratively deal with problems.16 In addition, a
log file in the JUnit report format is generated, which can be used by GitLab to
provide an overview of the issues in Merge Requests.17

16 example: https://labs.etsi.org/rep/saref/saref4agri/-/issues/1
17 Test reports in Merge Request on GitLab: https://docs.gitlab.com/ee/ci/

testing/unit_test_reports.html

https://labs.etsi.org/rep/saref/saref4agri/-/issues/1
https://docs.gitlab.com/ee/ci/testing/unit_test_reports.html
https://docs.gitlab.com/ee/ci/testing/unit_test_reports.html

10 M. Lefrançois and D. Gnabasik

Fig. 4: Graphical User Interface (GUI) of the SAREF Pipeline https://saref.
etsi.org/sources/saref-pipeline/

https://saref.etsi.org/sources/saref-pipeline/
https://saref.etsi.org/sources/saref-pipeline/

The SAREF Pipeline and Portal — An Ontology Verification Framework 11

Fig. 5: Command Line Interface (CLI) of the SAREF Pipeline https://saref.
etsi.org/sources/saref-pipeline/

5.2 SAREF Projects Dependency Management using Git

Since interdependent SAREF projects are often developed in parallel, depen-
dencies to other SAREF projects may be declared in a .saref-repositories.yml

file at the root of the repository. The SAREF Pipeline parses this file and
clones and/or pulls the latest changes of those repositories in a temporary folder
sources. It prompts the user for credentials for non-public repositories.

If the ontology document or if an example imports one of these SAREF on-
tologies in a specific version, then this folder is checked out at the corresponding
branch (release, prerelease, or develop branch) before the ontology file is loaded.

Other checks use git operations. For example in Clause 9.4.3.1 the SAREF
Pipeline computes the ontology version IRI from the version number in the
branch name (not possible if on a issue-x branch), and the desired value for
owl:priorVersion based on the list of release-x.y.z branches.

5.3 Testing Requirement Satisfaction with Themis

Requirements (requirements.csv file) and tests (tests.csv file) are sent to the
Themis service [16] which automatically generates OWL Axioms based on Lexico-
Syntactic patterns analysis of the tests, and checks that the ontology contains
the generated axioms.

https://saref.etsi.org/sources/saref-pipeline/
https://saref.etsi.org/sources/saref-pipeline/
http://www.w3.org/2002/07/owl#priorVersion

12 M. Lefrançois and D. Gnabasik

5.4 Checks based on SHACL

SHACL shapes [23] are used for verifying clauses 9.4.3.1 (ontology IRI and on-
tology version IRI), 9.4.3.2 (ontology metadata), 9.4.3.3 (creators and contribu-
tors), 9.4.4.2 (ontology terms metadata), and 9.6.3. (example declaration). The
general process is as follows:

Step 1: The SAREF Pipeline loads the RDF graph containing SHACL shape
stubs18 for the clause being verified;

Step 2: The RDF graph containing the SHACL shapes is updated with infor-
mation that is computed on-the-fly;

Step 3: The RDF graph of the ontology or the example being tested is evaluated
against the SHACL shapes;

Step 4: The conformance result (a RDF Graph) is queried for warnings and
errors, which are logged.

Updates in Step 2 include:

– adding localized violation messages (all clauses);
– computing the expected ontology series IRI, objects for the owl:versionIRI,

owl:versionInfo and owl:priorVersion annotations, and preferred prefix and
namespace metadata (Clause 9.4.3.1);

– removing some metadata checks when running in develop (relaxed) mode
(Clause 9.4.3.2);

– expliciting the target nodes for shapes that verify metadata for terms: only
those terms that have the namespace of the ontology are required to have a
label and a comment in that ontology (Clause 9.4.4.2);

– computing to which ontology the example shall conform to (Clause 9.6.3).

5.5 Checks using OWL API and Hermit

Checking Clauses 9.4.5 and 9.6.4 involves the use of the OWL API library [21].
Violations to the OWL2 DL profile are logged, except those related to undefined
datatypes19. Then the consistency of the ontology or example is verified using
Hermit [19], and optionally a maximum of 10 inconsistency explanations are
logged. Finally, the coherence of each class in the signature except owl:Nothing
is checked, and optionally a maximum of 10 incoherence explanations are logged.

As the SAREF Pipeline generally relies on Apache Jena and Git for depen-
dency management, a specific OntologyParser realization class was developed
such that OWL API can consume Jena RDF Models, and potentially checkout
repositories in specific branches while resolving imports.

Before checking examples, the dctype:Dataset and dct:conformsTo declara-
tions are replaced by owl:Ontology and owl:imports, respectively. This way, OWL

18 Stubs for SHACL shapes are available at https://saref.etsi.org/sources/

saref-pipeline/-/tree/master/src/main/resources/shapes
19 Violations of type UseOfDefinedDatatypeInDatatypeRestriction, UseOfDefined-

DatatypeInLiteral, UseOfUndeclaredDatatype, and UseOfUnknownDatatype

http://www.w3.org/2002/07/owl#versionIRI
http://www.w3.org/2002/07/owl#versionInfo
http://www.w3.org/2002/07/owl#priorVersion
http://www.w3.org/2002/07/owl#Nothing
http://purl.org/dc/dcmitype/Dataset
http://purl.org/dc/terms/conformsTo
http://www.w3.org/2002/07/owl#Ontology
http://www.w3.org/2002/07/owl#imports
https://saref.etsi.org/sources/saref-pipeline/-/tree/master/src/main/resources/shapes
https://saref.etsi.org/sources/saref-pipeline/-/tree/master/src/main/resources/shapes

The SAREF Pipeline and Portal — An Ontology Verification Framework 13

API can resolve imports and check the consistency of the example plus the on-
tologies it conforms to. In addition, all the classes in the signature of the example
and the ontologies it conforms to are checked for coherence.

5.6 Documentation generation

The last phase in the SAREF Pipeline execution is the generation of the doc-
umentation in a folder site, that is ultimately served on the SAREF Portal
https://saref.etsi.org/ using an Apache 2 web server. Documentation is
generated for ontology versions, examples, and terms, and an .htaccess docu-
ment is generated to implement content negotiation and redirection from every
ontology IRI to its most recent version IRI.

For ontology versions and examples, the source Turtle file is first copied to
an appropriate directory. Then different other RDF serializations are generated
in RDF/XML, N-triples, N3, and JSON-LD. Finally, an HTML documentation
is generated. See for example https://saref.etsi.org/core/v3.1.1/. For each
SAREF term t, an RDF Graph is created with the result of a SPARQL de-
scribe t query evaluated on the last version of the ontology that defines this
term. This graph is augmented with rdfs:isDefinedBy metadata that point to
each ontology version IRI that defines this term, and custom ex:usedBy meta-
data that point to each ontology version IRI that uses this term. For terms
also different RDF serializations are generated and an HTML documentation is
generated. See for example https://saref.etsi.org/core/Command

The HTML documentation generation process is inspired by LODE [28], but
developed as a set of 61 named template, select and function SPARQL-
Generate queries,20 which are executed using version 2.0 of the SPARQL-Generate
engine [24,26].21 This transformation is executed on the RDF Graph of the on-
tology augmented with the RDF Graph of imported ontology versions, explicit
entity declarations, and annotations with literal values (especially labels and
comments) for all the entities that are used but not declared in this ontology.
This allow the SPARQL-Generate transformations to generate class and property
hierarchies, and add tooltips for all terms with the appropriate label and com-
ment. It also incorporates the documentation snippets from the documentation

folder, optionally converting markdown snippets to HTML if required.

The documentation generation tool does not yet generate multilingual docu-
mentation, although initial efforts towards internationalization has been done.22

20 Available in the main/resources/documentation folder of the saref-pipeline
21 SPARQL-Generate 2.0 with generate, template, select, and function

queries has no dedicated publication yet. More information can be ob-
tained from the website and presentation at https://ci.mines-stetienne.

fr/sparql-generate/, and https://www.slideshare.net/maximelefrancois86/

overview-of-the-sparqlgenerate-language-and-latest-developments
22 See https://labs.etsi.org/rep/saref/saref-pipeline/-/blob/master/src/

main/resources/documentation/en.properties

https://saref.etsi.org/
https://saref.etsi.org/core/v3.1.1/
http://www.w3.org/2000/01/rdf-schema#isDefinedBy
http://example.org/#usedBy
https://saref.etsi.org/core/Command
https://ci.mines-stetienne.fr/sparql-generate/
https://ci.mines-stetienne.fr/sparql-generate/
https://www.slideshare.net/maximelefrancois86/overview-of-the-sparqlgenerate-language-and-latest-developments
https://www.slideshare.net/maximelefrancois86/overview-of-the-sparqlgenerate-language-and-latest-developments
 https://labs.etsi.org/rep/saref/saref-pipeline/-/blob/master/src/main/resources/documentation/en.properties
 https://labs.etsi.org/rep/saref/saref-pipeline/-/blob/master/src/main/resources/documentation/en.properties

14 M. Lefrançois and D. Gnabasik

5.7 Continuous Integration and Delivery

The SAREF Pipeline is configured to run using the Continuous Integration and
Continuous Delivery (CI/CD) features of the ETSI Forge, which is an instance
of GitLab. Each SAREF project repository is configured such that the SAREF
Pipeline is run in different modes and with different options depending on the
type of branch where a commit is pushed:

issue and develop branches run java -jar saref-pipeline.jar develop -s (re-
laxed mode without generating the static portal), then publish an HTML re-
port file to the snapshot area of the SAREF portal (deleted after one day) at
https://saref.etsi.org/snapshot/$CI_PIPELINE_ID/report.html, even
if the pipeline identified errors;

pre-release branches run java -jar saref-pipeline.jar release -t (do not
generate the static portal for terms) then publish the generated report and
partial static portal to the snapshot area of the SAREF portal at https:

//saref.etsi.org/snapshot/$CI_PIPELINE_ID/report.html, even if the
pipeline identified errors;

release branches run java -jar saref-pipeline.jar release -t and, if suc-
cessful, trigger the CI/CD pipeline on the master branch of saref-portal

The CI/CD process on the master branch of the saref-portal project is a three
stage process:

Step 1: run java -jar saref-pipeline.jar release-portal,
Step 2: publish the generated report and static portal to the staging area of

the SAREF portal (deleted after one week) at https://saref.etsi.org/
staging/$CI_PIPELINE_ID/,

Step 3: if the portal in the staging area seems fine, this step can be manually
triggered to publish the generated static portal to https://saref.etsi.

org/.

6 Discussion and Current Work

Compared to the existing approaches listed in Section 2, the SAREF Pipeline
is developed for a modular and versioned suite of ontologies, each having its
sources in a separate git repository. It is usable both as GUI, CLI, and in
CI/CD pipelines, and integrates many different semantic web technologies such
as Apache Jena, OWL API, the Hermit reasoner, OOPS!, SHACL, Themis,
SPARQL-Generate. It produces detailed error reporting, and generates a pub-
lic documentation portal for the whole suite of SAREF ontologies and the
terms they define. The SAREF Pipeline is publicly available under the open-
source ETSI Forge license (BSD-3-Clause LICENSE) at the stable URL https:

//saref.etsi.org/sources/saref-pipeline. It is further registered on Zen-
odo with DOI 10.5281/zenodo.7913535 and has therefore an associated canoni-
cal citation. Its documentation, in terms of the list of checks it operates, is part

https://saref.etsi.org/snapshot/$CI_PIPELINE_ID/report.html
https://saref.etsi.org/snapshot/$CI_PIPELINE_ID/report.html
https://saref.etsi.org/snapshot/$CI_PIPELINE_ID/report.html
https://saref.etsi.org/staging/$CI_PIPELINE_ID/
https://saref.etsi.org/staging/$CI_PIPELINE_ID/
https://saref.etsi.org/
https://saref.etsi.org/
https://saref.etsi.org/sources/saref-pipeline
https://saref.etsi.org/sources/saref-pipeline
https://zenodo.org/record/7913535

The SAREF Pipeline and Portal — An Ontology Verification Framework 15

of the ETSI TS 103 673 technical specification which benefits from the ETSI
standardization principles in terms of openness, maintenance, availability, and
stability.23 The SAREF Pipeline already had an impact in raising the quality
level of all the SAREF ontologies, and publishing the public SAREF community
portal https://saref.etsi.org/. Although originally tailored for the SAREF
ontology development framework, it is currently used by projects outside ETSI
to prepare new candidate extensions to SAREF. For example the newly created
ETSI work item for SAREF4ENER V1.2.1, is based on contributions from the
H2020 InterConnect project.24

Extensions to ETSI TS 103 673 and the SAREF Pipeline are planned in
the context of the ongoing ETSI STF 65325, which aims at consolidating the
suite of SAREF ontologies into a more homogeneous and predictable struc-
ture, using operationalized ontology patterns. The initial observation that mo-
tivated STF 653 is that, even within the SAREF developer community, mod-
eling and naming choices are sometimes varied and conflicting. The primary
technique to resolve modeling discrepancies was to use namespaces to label
the concepts and terms in each module. Choosing a distinct namespace for
each module makes it easy to identify from which module a term originates.
However, this approach poses several problems. First, it is sometimes difficult
as a user of these ontologies to remember what the namespace is for each
term. We have, for example, a variety of subclasses of saref:Property spread
across the namespaces of the different extensions, depending on when they were
first defined: saref:Temperature, saref:Humidity, saref:Power, s4ener:PowerMax,
s4ener:PowerStandardDeviation, s4inma:Size, saref:Light, s4envi:LightProperty.
Second, experience shows that it is sometimes necessary to move a term from one
module to another. For example SAREF4CITY V1.1.1 introduced the concept of
s4city:FeatureOfInterest, and it was decided during the development of SAREF
Core V3.1.1 that this concept would be moved into the core ontology. So it is
now identified by saref:FeatureOfInterest, and the SAREF4CITY implementa-
tions had to be modified. This problem would not have arisen if an approach
based on a unique namespace had been adopted. Also, some SAREF developers
decided to extend saref:Property not using classes, but using instances. Example
include s4envi:Frequency, s4wear:SoundLevel, s4wear:BatteryRemainingTime,
s4watr:Conductivity, s4wear:Temperature. Ongoing work in STF 653 therefore
aims at defining ontology patterns to guide the development of SAREF exten-
sions, and operationalizing them in the SAREF Pipeline.

23 https://www.etsi.org/standards/standards-making
24 https://portal.etsi.org/webapp/WorkProgram/Report_WorkItem.asp?WKI_ID=

68491
25 https://portal.etsi.org/xtfs/#/xTF/653

https://saref.etsi.org/
https://saref.etsi.org/core/Property
https://saref.etsi.org/core/Temperature
https://saref.etsi.org/core/Humidity
https://saref.etsi.org/core/Power
https://saref.etsi.org/saref4ener/PowerMax
https://saref.etsi.org/saref4ener/PowerStandardDeviation
https://saref.etsi.org/saref4inma/Size
https://saref.etsi.org/core/Light
https://saref.etsi.org/saref4envi/LightProperty
https://saref.etsi.org/saref4city/FeatureOfInterest
https://saref.etsi.org/core/FeatureOfInterest
https://saref.etsi.org/core/Property
https://saref.etsi.org/saref4envi/Frequency
https://saref.etsi.org/saref4wear/SoundLevel
https://saref.etsi.org/saref4wear/BatteryRemainingTime
https://saref.etsi.org/saref4watr/Conductivity
https://saref.etsi.org/saref4wear/Temperature
https://www.etsi.org/standards/standards-making
https://portal.etsi.org/webapp/WorkProgram/Report_WorkItem.asp?WKI_ID=68491
https://portal.etsi.org/webapp/WorkProgram/Report_WorkItem.asp?WKI_ID=68491
https://portal.etsi.org/xtfs/#/xTF/653

16 M. Lefrançois and D. Gnabasik

7 Conclusion

The SAREF Pipeline integrates the SAREF development and documentation
generation pipeline, as part of the SAREF Development Framework. It auto-
matically checks the conformance of SAREF project repositories to the technical
specification ETSI TS 103 673. It has been applied on all the SAREF ontolo-
gies, and was used to generate the public SAREF community portal https:
//saref.etsi.org/. It is made available as open source under an open license
to the semantic web community for the development of new SAREF extension,
and could be adapted for other ontology development projects. ETSI TS 103 673
and the SAREF pipeline speed up the evolution of the current and future ex-
tensions of SAREF, and help reducing the costs of developing these extensions.

To summarize its main benefits, the SAREF Pipeline provides an efficient
and robust support infrastructure for the continuous integration and continuous
delivery of the modular and versioned suite of SAREF ontologies, which cover
multiple application domains of the IoT. In particular, the SAREF Pipeline:

– Operates on a modular and versioned suite of ontologies;
– Operationalizes conformance checking against ETSI TS 103 673;
– Combines several semantic web technologies to automate checks;
– Is used by ontology developers as a GUI, and by CI/CD pipelines as CLI;
– Produces detailed error reporting, and generates documentation;
– Has been used to verify all SAREF ontologies, and is used to shape new

SAREF extensions.

Acknowledgements

The development of the SAREF Pipeline has been funded by ETSI STF 578.
The authors thank the other experts involved in this project, who contributed
to the definition of the SAREF development workflow detailed in Section 4.1,
and to online web services OOPS! and Themis that are called by the SAREF
Pipeline. Ongoing development is funded by ETSI STF 653.

Resource Availability Statement: Source code of the SAREF Pipeline is available
from the ETSI Forge.26 It is also registered on Zenodo with DOI 10.5281/zen-
odo.7913534.27 The canonical citation is [25].

26 https://saref.etsi.org/sources/saref-pipeline
27 https://doi.org/10.5281/zenodo.7913534

https://saref.etsi.org/
https://saref.etsi.org/
https://saref.etsi.org/sources/saref-pipeline
https://doi.org/10.5281/zenodo.7913534

The SAREF Pipeline and Portal — An Ontology Verification Framework 17

References

1. Allemang, D., Garbacz, P., Gradzki, P., Kendall, E., Trypuz, R.: An infrastruc-
ture for collaborative ontology development, lessons learned from developing the
financial industry business ontology (FIBO). In: Formal Ontology in Information
Systems. IOS Press (2022)

2. Alobaid, A., Garijo, D., Poveda-Villalón, M., Santana-Perez, I., Fernández-
Izquierdo, A., Corcho, O.: Automating ontology engineering support activities with
ontoology. Journal of Web Semantics 57, 100472 (2019)

3. Bader, S., Pullmann, J., Mader, C., Tramp, S., Quix, C., Müller, A.W., Akyürek,
H., Böckmann, M., Imbusch, B.T., Lipp, J., et al.: The international data spaces
information model–an ontology for sovereign exchange of digital content. In: The
Semantic Web–ISWC 2020: 19th International Semantic Web Conference, Athens,
Greece, November 2–6, 2020, Proceedings, Part II. pp. 176–192. Springer (2020)

4. Crystal-Ornelas, R., Varadharajan, C., Bond-Lamberty, B., Boye, K., Burrus, M.,
Cholia, S., Crow, M., Damerow, J., Devarakonda, R., Ely, K.S., et al.: A guide to
using github for developing and versioning data standards and reporting formats.
Earth and Space Science 8(8) (2021)

5. Daniele, L., den Hartog, F., Roes, J.: Created in Close Interaction with the Indus-
try: The Smart Appliances REFerence (SAREF) Ontology. In: Proceedings of the
Formal Ontologies Meet Industry workshop (FOMI 2015), Vol. Lecture Notes in
Business Information Processing. vol. 225, pp. 100–112. Springer, Cham (2015)

6. ETSI: SmartM2M; Extension to SAREF; Part 1: Energy Domain. ETSI Technical
Specification 103 410-1 V1.1.2. (05 2020)

7. ETSI: SmartM2M; Extension to SAREF; Part 10: Water Domain. ETSI Technical
Specification 103 410-10 V1.1.1. (07 2020)

8. ETSI: SmartM2M; Extension to SAREF; Part 2: Environment Domain. ETSI
Technical Specification 103 410-2 V1.1.2. (05 2020)

9. ETSI: SmartM2M; Extension to SAREF; Part 7: Automotive Domain. ETSI Tech-
nical Specification 103 410-7 V1.1.1. (07 2020)

10. ETSI: SmartM2M; Extension to SAREF; Part 8: eHealth/Ageing-well Domain.
ETSI Technical Specification 103 410-8 V1.1.1. (07 2020)

11. ETSI: SmartM2M; Extension to SAREF; Part 9: Wearables Domain. ETSI Tech-
nical Specification 103 410-9 V1.1.1. (07 2020)

12. ETSI: SmartM2M; SAREF consolidation with new reference ontology patterns,
based on the experience from the SEAS project. ETSI Technical Specification 103
548 V1.1.2. (06 2020)

13. ETSI: SmartM2M; SAREF Development Framework and Workflow, Streamlin-
ing the Development of SAREF and its Extensions. ETSI Technical Specifica-
tion 103 673 V1.1.1. (2020), https://www.etsi.org/deliver/etsi_ts/103600_
103699/103673/01.01.01_60/ts_103673v010101p.pdf

14. ETSI: SmartM2M; Smart Applications; Reference Ontology and oneM2M Map-
ping. ETSI Technical Specification 103 264 V3.1.1. (02 2020)

15. ETSI: SmartM2M; Extension to SAREF; Part 11: Lift Domain. ETSI Technical
Specification 103 410-11 V1.1.1. (07 2021)

16. Fernández-Izquierdo, A., Garćıa-Castro, R.: Themis: a tool for validating ontologies
through requirements. In: Software Engineering and Knowledge Engineering. pp.
573–753 (2019)

17. Garćıa-Castro, R., Lefrançois, M., Poveda-Villalón, M., Daniele, L.:
The ETSI SAREF Ontology for Smart Applications: A Long Path of

https://www.etsi.org/deliver/etsi_ts/103600_103699/103673/01.01.01_60/ts_103673v010101p.pdf
https://www.etsi.org/deliver/etsi_ts/103600_103699/103673/01.01.01_60/ts_103673v010101p.pdf

18 M. Lefrançois and D. Gnabasik

Development and Evolution, pp. 183–215. Wiley-IEEE Press (2023).
https://doi.org/10.1002/9781119899457.ch7

18. Garijo, D., Poveda-Villalón, M.: Best practices for implementing fair vocabularies
and ontologies on the web. Applications and practices in ontology design, extrac-
tion, and reasoning 49, 39 (2020)

19. Glimm, B., Horrocks, I., Motik, B., Stoilos, G., Wang, Z.: Hermit: an owl 2 reasoner.
Journal of Automated Reasoning 53, 245–269 (2014)

20. Halilaj, L., Petersen, N., Grangel-González, I., Lange, C., Auer, S., Coskun, G.,
Lohmann, S.: Vocol: An integrated environment to support version-controlled vo-
cabulary development. In: European Knowledge Acquisition Workshop. pp. 303–
319. Springer (2016)

21. Horridge, M., Bechhofer, S.: The owl api: A java api for owl ontologies. Semantic
web 2(1), 11–21 (2011)

22. Jackson, R.C., Balhoff, J.P., Douglass, E., Harris, N.L., Mungall, C.J., Overton,
J.A.: Robot: a tool for automating ontology workflows. BMC bioinformatics 20(1),
1–10 (2019)

23. Knublauch, H., Kontokostas, D.: Shapes Constraint Language (SHACL). W3C
Recommendation, W3C (Jul 20 2017)

24. Lefrançois, M., Zimmermann, A., Bakerally, N.: A SPARQL extension for gener-
ating RDF from heterogeneous formats. In: European Semantic Web Conference.
pp. 35–50. Springer (2017)

25. Lefrançois, M.: Saref pipeline (May 2023). https://doi.org/10.5281/zenodo.7913535,
https://doi.org/10.5281/zenodo.7913535

26. Lefrançois, M., Noorani, B., el mehdi, K., Alqawasmeh, O., Alqawasmeh, O.,
Zimmermann, A., Ariff, A., Kolchin, M., Ceriani, M.: sparql-generate/sparql-
generate: 2.0.12 (Oct 2022). https://doi.org/10.5281/zenodo.7141122, https://

doi.org/10.5281/zenodo.7141122

27. Matentzoglu, N., Mungall, C., Goutte-Gattat, D.: Ontology development kit
(Jul 2021). https://doi.org/10.5281/zenodo.6257507, https://doi.org/10.5281/
zenodo.6257507, if you use this software, please cite it as below.

28. Peroni, S., Shotton, D., Vitali, F.: The live owl documentation environment: a
tool for the automatic generation of ontology documentation. In: Knowledge Engi-
neering and Knowledge Management: 18th International Conference, EKAW 2012,
Galway City, Ireland, October 8-12, 2012. Proceedings 18. pp. 398–412. Springer
(2012)

29. Poveda-Villalón, M., Fernández-Izquierdo, A., Fernández-López, M., Garćıa-
Castro, R.: LOT: An industrial oriented ontology engineering framework. Engi-
neering Applications of Artificial Intelligence 111 (2022)

30. Poveda-Villalón, M., Gómez-Pérez, A., Suárez-Figueroa, M.C.: OOPS! (ontology
pitfall scanner!): An on-line tool for ontology evaluation. International Journal on
Semantic Web and Information Systems (IJSWIS) 10(2), 7–34 (2014)

31. Publio, G.C., Gayo, J.E.L., Colunga, G.F., Menendéz, P.: Ontolo-ci: Continuous
data validation with shex. In: Proceedings of Poster and Demo Track andWorkshop
Track of the 18th International Conference on Semantic Systems co-located with
18th International Conference on Semantic Systems (SEMANTiCS 2022) (2022)

https://doi.org/10.1002/9781119899457.ch7
https://doi.org/10.5281/zenodo.7913535
https://doi.org/10.5281/zenodo.7913535
https://doi.org/10.5281/zenodo.7141122
https://doi.org/10.5281/zenodo.7141122
https://doi.org/10.5281/zenodo.7141122
https://doi.org/10.5281/zenodo.6257507
https://doi.org/10.5281/zenodo.6257507
https://doi.org/10.5281/zenodo.6257507

	The SAREF Pipeline and Portal — An Ontology Verification Framework

