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Abstract—Enabling and automating interoperability in the
Semantic Web of Things involves complex semantic reasoning
tools to process knowledge graphs. To improve performance
and energy efficiency, such tools should be deployed as close
as possible to the devices, ideally on any available edge node.
However, edge nodes often lack sufficient resources, especially
memory. We propose a method to distribute reasoning in this
context. We then evaluate three algorithms to plan the distribution
over a network of heterogeneous nodes. These algorithms take
into account architectural constraints such as the position of
sensors and actuators and the available resources on each node,
while minimizing costly data exchanges on the network.

I. INTRODUCTION

Typical Internet of Things (IoT) infrastructures rely on
sensors and actuators to measure and influence physical
phenomena, but also on cloud servers to collect and process
data [1]. Such centralized infrastructures can cause latency
and bandwidth consumption, as well as bottlenecks and single
points of failure [2]. The edge computing approach proposes to
distribute data collection and processing on IoT nodes close to
sensors and actuators [3]. Such IoT nodes can be the sensors and
actuators themselves, but also intermediate network equipment.
Today, some IoT nodes offer storage and processing, but still
have limited resources in terms of memory, computing power,
and battery capacity [4].

The Web of Things (WoT) extends the IoT by leveraging web
protocols and standards, interconnection of IoT infrastructures
and even open application marketplaces. The integration of
semantic web technologies in the WoT unifies device and
data descriptions with ontologies, paving the way to interoper-
ability through easy data access, sharing and integration [5],
[6]. Semantic technologies allow a particular form of data
processing called semantic reasoning, that allows to logically
infer additional knowledge from rules and knowledge. Hence,
the Semantic Web of Things (SWoT) offers the perspective
of semantic interoperability through producing, consuming,
exchanging and reasoning about knowledge graphs.

To take full advantage of the combination of distributed
edge infrastructures and SWoT, the reasoning process should
be distributed on edge nodes. However, the large majority of
existing reasoners are too expensive, in terms of memory and
processing, to be directly embedded on resource-constrained
nodes. Among the few proposals, the low-memory embedded
reasoner LiRoT [7] has been designed to save device resources

and validated on Arduino Due1 and ESP322 devices. Still, one
of the remaining fundamental challenges is how to decompose
and distribute reasoning tasks over a set of heterogeneous
nodes with respect to their limited computational and memory
capabilities [8].

This paper proposes a method to distribute reasoning tasks
among nodes of an edge IoT infrastructure. This is done by
generating a distribution plan which distributes graphs onto
nodes, taking into consideration the semantic dependencies
between graphs, the available memory on each node, as well
as an estimation of the memory needed to produce each graph.
Our contributions are summarised as follows:

• We introduce a formal model of reasoning distribution
across edge WoT nodes.

• We propose an approach that generates a plan for dis-
tributed reasoning deployment over multiple nodes, while
both (i) respecting memory consumption constraints while
deploying reasoning algorithms, and (ii) attempting to
minimize data exchanges on the network. Given the NP-
hard nature of the problem, we propose three polynomial-
time algorithms.

• We provide a performance comparison of our proposed
algorithms and investigate the influence of distribution on
data exchange efficiency.

Our paper is divided as follows: Section 2 presents a literature
overview of reasoning distribution approaches. Section 3
provides an example. Section 4 states the problem as a
mathematical model. Section 5 approximates the memory
required to process reasoning tasks on each IoT node. Section
6 presents our algorithms for distributing graphs among nodes
and Section 7 evaluates them.

II. STATE OF THE ART

A. Distributing reasoning

Different kinds of semantic reasoning algorithms exist, the
most easily treatable being rule-based ones [9]. To guaranty
decidability [10], DL-safe rules are rules whose consequences
only contain terms and individuals that already exist in the
ontology, so that reasoning does not produce new individ-
uals [11]. But even then, the reasoning process complexity
keeps polynomial in worst case and a trade-off must be found
between processing time and memory space, especially for
constrained devices.

1https://store.arduino.cc/products/arduino-due
2https://www.espressif.com/en/products/socs/esp32



Distributing reasoning on edge nodes can reduce the overall
latency by both allowing to perform different reasoning tasks
in parallel and reducing the distance traveled by messages [12].
Although some authors propose distributed reasoning for IoT
systems [1], [13]–[16], they do not take into consideration the
limited capabilities of constrained edge nodes.
Providing the same ruleset to all nodes and distributing data
across nodes both frees from necessitating a hierarchical
topology and allows for dynamic (re)configuration of the
distribution strategy when needed. Distributing a reasoning
process then consists in producing graphs on different nodes
and exchanging these graphs among nodes.

In our experiments, we equip each node with the same
reasoning configuration: the Lightweight Reasoner on Things
(LiRoT) [7] that enhances the classical RETE algorithm [17]
so that it can be deployed on constrained objects, with a subset
of RDFS rules 3 [18] and comparison rules4.

B. Distribution optimization approaches

Distributing computations on a set of nodes can be viewed
as a harder version of problems such as graph partitioning
[19] or “Generalized Assignment Problem” (GAP) [20]. GAP
is NP-Hard and can generally be formulated as an integer
linear programming problem, where the objective function and
constraints can be expressed as linear functions of a set of
decision variables [21]. However, unlike GAP, our problem
adds additional constraints, due to the fact that there exist
dependencies among graphs. Therefore reasoning processes
cannot be assigned to nodes independently. On top of that,
the memory consumption is a non-linear function of the
input triples. Different approaches exist for solving non-linear
problems. One approach is to divide the non-linear function
into several linear sections (piece wise linearization) [22]. We
use this approach to propose a distribution of the reasoning
process, while respecting the available memory size on each
node.

III. RUNNING EXAMPLE

We illustrate the rest of the paper with the example of a
classroom equipped with an edge architecture formed of four
ESP32 microcontroller-based nodes: N1 is placed on the door
and equipped with a temperature sensor, N2 is placed on the
board and equipped with a CO2 level sensor, a presence sensor
and a luminosity sensor, N3 is connected to a window, and
equipped with a sensor that measures the outdoor temperature
and an actuator, and N4 is connected to the room heater and
to a presence detector.

Two goals are pursued using this architecture:
• open or close the window to control both the room

temperature and CO2 level, when people are present in
the room

• turn on the heater to control the room temperature
when the room temperature is lower than the comfort

3https://www.w3.org/TR/rdf12-schema/
4Using predicates such as greaterThan and lessThan

temperature but higher than outside, when people are
present in the room, and off otherwise

The sensors observe their environment and provide values
accordingly 5 . For example, let the temperature measured be
8.5°C and the CO2 level 1050 parts per million (ppm), the
proximity sensor return its max value (meaning that it did not
detect any obstacle) and the luminosity sensor detects a low
value of 10 (max value being 255). Such observations can be
expressed as RDF triples such as:

:TemperatureSensor :hasValue "8.5"∧∧xsd :decimal .

:CO2Sensor :hasValue "1050"∧∧xsd :integer .

:ProximitySensor :hasValue "65535"∧∧xsd :integer .

:LuminositySensor :hasValue "10"∧∧xsd :integer .

A thermal comfort property is inferred based on
predefined thresholds on temperature values: TC_Cold under
16 Celsius degrees, TC_Hot over 30 degrees, and TC_Medium
between the two. The following triple is inferred:

:ThermalComfort :hasResult :TC_Cold .

An air quality property is inferred based on CO2 level
thresholds: it is considered AQ_Good if the level is below 960
ppm, AQ_Bad above 1760 ppm, and AQ_Average otherwise.
Similarly, a following triple is deduced:

:AirQuality :hasResult :AQ_Average .

From the thermal comfort and air quality properties, as
well as external data (e.g. from a weather API), the reasoning
process also respectively infers the appropriate window status
(open/close) and heater status (on/off), to be translated into
commands to the window (resp. heater) actuators:

:Window :hasStatus :WA_Closed .

:Heater :hasStatus :HA_On .

IV. PROBLEM FORMALIZATION

IoT network. We consider an architecture where each node
is a constrained device that manages a set of sensors and/or
actuators and hosts a network interface and a reasoner6. All
nodes embed the same reasoner and the same set of rules.
Let N = {N1, N2, · · · , Nn} be the set of n nodes in an IoT
edge network where each node is connected to all others. Let the
memory capacity of node Ni be Mi and M = {M1, · · · ,Mn}
the set of memory capacities in the network.

Graphs. Let G = {G1, G2, · · · , Gg} be the set of the
considered g graphs. Each graph Gj is characterized by its

5Sensor observations are actually expressed according to the SSN ontology,
which is way more detailed than the content of this example. We herein only
provide simplified but sufficient RDF data for the reader to understand the
reasoning process. They should bear in mind however that the number of
triples required to perform some reasoning tasks may be several orders of
magnitude higher than what is presented in this example.

6As per our experimentation, we use the LiRoT reasoner [7].



size Sj and S = {S1, S2, · · · , Sg}. By extension, we define
the sizes of the union of two graphs and of a set of graphs
Γ ⊂ G as the sum of the sizes of the distinct triples in these
graphs: SG1∪G2 = SG1 + SG2 − SG1∩G2 , and:

SΓ =
∑
j

Sj −
j ̸=k∑
j,k

SGj∩Gk
,∀j | Gj ∈ Γ,∀k | Gk ∈ Γ (1)

We define three disjoint sets of graphs:
1) Input graphs: Ginput is the set of graphs built by the lifting

of sensors raw data, user input or APIs. For example, an
input graph describes the observation of the temperature
at 8.5. Each input graph is only produced once, by the
node hosting the considered data source.

2) Intermediate graphs: Ginter is the set of graphs pro-
duced by reasoners after applying rules on other graphs,
and aimed at being consumed to produce other graphs.
For example, the graph describing the thermal comfort
property of a room is an intermediate graph produced
from a temperature graph and used to produce actuation
decisions. Each intermediate graph can be produced
by any node possessing sufficient resources and having
produced/received its antecedent graphs.

3) Final graphs: Gfinal is the set of graphs produced by
a reasoner to describe a final goal, such as "open the
window". One and only one final graph is produced by a
reasoning task chain. As for intermediate graphs, they can
be produced by any node, but final graphs are consumed
on a definite node: the node hosting the targeted actuator.

G = {Ginput ∪Ginter ∪Gfinal} (2)

The Input Graph Production matrix P of size n∗g describes
on which nodes input graphs are actually produced, based on
the locations of the sensors. For a node i and a graph Gj :

Pi,j =

1 if Gj ∈ Ginput and
node i hosts the sensor that produces Gj

0 otherwise
(3)

The transposed graph production matrix of the running
example is:

PT =


1 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0

 (4)

Graph dependency. Reasoners consume graphs to infer new
ones. A graph Gj depends on another graph Gh if and only
if there exists a triple of Gj that can only be produced by
applying a rule and a triple of Gh validates one of the premises
of this rule. In this case, Gh is called an antecedent of Gj . The
set of antecedents of Gj is noted Aj . For later convenience,
we also denote A+

j = Gj ∪Aj .
Let D be a graph dependency matrix of size g ∗ g defined as:

Dj ,h =

{
1 if Gh ∈ Aj

0 otherwise (5)

Fig. 1. Possible distributed reasoning workflow for the running example.

The dependency matrix D of the running example is:

D =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 1 1 1 0 0
0 0 0 1 1 0 0 0


(6)

Reasoning Workflow. A reasoning workflow is a deterministic
plan to produce a final graph from a set of input graphs. It is
composed of several stages, the first one being applied to input
graphs, and the last producing the final graph. At each stage
except the last, multiple reasoning tasks may be conducted in
parallel on distinct nodes. We herein assume that all graphs
are produced at least once during the reasoning workflow.

V. MEMORY COST FOR REASONING ON AN IOT NODE

In this section, we estimate both the amount of working
memory required by a reasoner to produce an intermediate or
final graph, and the number of graphs that can be produced
on a given node. To do so, we consider a common node
setup composed of software performing storage and reasoning,
sensing, network communication, etc. The memory required
for running this setup is a constant that can be measured by
starting a node without loading any graph in it, and is noted
Msetup.

The amount of working memory required to produce graph
Gj is defined as the sum of:

• the memory size of Gj and of the union of all its
antecedent graphs: in worst case, if all antecedents are
disjoint, it equals SA+

h
= Sj +

∑
h Sh,∀h | Gh ∈ Aj

• the memory required for reasoning over these antecedent
graphs: it consists of the variables and data structures
used to perform reasoning and depends on the reasoning
algorithm7, on the numbers of distinct conditions in the
ruleset (denoted Rcond, constant), and on the number of
triples in the graphs. Thus, by saturating all conditions
for a RETE network with all triples of the antecedents,

7For the sake of simplicity, we herein base our model on the regular RETE
algorithm, even though the algorithm implemented in the LiRoT reasoner
provides several optimizations that reduce this cost.



removing the matches of identical triples and merging
permutations, the worst case scenario leads to the order
of

∑
Rcond

(SAjCRcond
) · t, where t is the size of a pointer

to a triple.

If multiple reasoning tasks are to be conducted on the same
node, Msetup should only be counted once, as well as each
antecedent graph. The total amount of memory consumption
is of the order:

Msetup + S⋃
j A+

j
+

∑
Rcond

(SAjCRcond
) · t (7)

As expected, in worst case, RETE produces an exponential
space complexity wrt. the number of triples. Recall that the
number of rules is considered constant in our case. We consider
an approximation of formula 7 as a linear function of the
number of explicit triples, of the form fmem : SAj

7→ K.SAj
+

Msetup. We use the piece-wise linearization technique [22]
where different non-linear regions are approximated by different
linear pieces. For our WoT use case which involves a low
number of triples, we assume a linear curve for the region.
This is supported by different experiments conducted in [7],
[23] which observed approximately linear curves for memory
consumption vs. number of triples, up to 1000 triples and
with the RDFS ruleset. We rely on an empirical method for
determining K for the first linear piece.

As explained earlier, the number of RDFS individuals is
fixed, and so is the maximum number of triples that can be
produced for a given application. Hence, it is possible to run
a set of reasoning tests that will produce all possible results.
Measuring the maximum amount of consumed memory Mmax

will provide a reference value for K, as the ratio Mmax divided
by number of input triples S⋃

j Aj
,∀j | Gj ∈ G 8. We can

then approximate the first linear piece with:

SAj
≤ Mmax

SAG

.SAj
+Msetup (8)

Hence, for any set of graphs Γ, a node i having a maximum
amount of memory Mi can produce all elements of Γ as long
as:

S⋃
j Aj

≤ S
AΓ

Mi−Msetup
Mmax

,∀j | Gj ∈ Γ (9)

We substitute the constant K = Mmax

SAΓ
:

Mi ≥ K.S⋃
j Aj

+Msetup, ∀j | Gj ∈ Γ (10)

VI. APPROACH FOR DISTRIBUTED REASONING

This section presents several approaches to determine, for
each reasoning process and each graph, which node will
produce it, while minimizing the overall amount of data
exchanged on the network, and according to the inputs defined
in the previous sections.

8This can be done either by realizing all computations on the same - powerful
enough - machine, or by running each reasoning process independently and
taking the maximum value of this ratio [7].

A. Algorithm characteristics

1) Decision variables: We introduce two sets of Boolean
decision variables X,Y, defined as:

xi,j =

{
1, if Ni should obtain Gj over the network
0, otherwise (11)

yi,j =

{
1, if Ni should produce Gj

0, otherwise (12)

2) Objective function: As (wireless) communications are
energy-intensive on small battery-powered devices, we aim at
taking into consideration and minimizing the amount of data
exchanged among nodes.

Let Cost be total size of the data exchanged among nodes
throughout a whole reasoning process. It is the sum of the
sizes of all graphs that should be received by all nodes. Thus,
the objective function of our approach is to minimize:

Cost =

n∑
i=1

g∑
j=1

xi,jSj (13)

3) Constraints: The constraints are derived from the memory
costs for inferring graphs, see section V.

Capability. Input graphs are only produced by the nodes that
have the required capability, e.g. only nodes hosting temperature
sensors can produce a temperature observation graph.

yi,j ≤ Pi,j ∀i ∀j (14)

Existence & unicity. Each graph should be produced at least
on one node.

n∑
i=1

yi,j ≤ 1 ∀j (15)

Dependency. To produce a graph, a node should either
produce or receive all of its antecedents.

yi,j Dj ,h ≤ xi,h + yi,h ∀i ∀j ∀h (16)

Memory. The memory consumed on each node should not
exceed the node available memory (see Section V).

As stated before, our problem resembles a harder variant of
NP-hard problems such as graph partitioning and GAP. There
is no polynomial-time algorithm to solve it unless P ̸= NP .
Thus, we propose 3 algorithms to find approximate solutions:
2 greedy (Greedy and GreedyPlus) and 1 heuristic (Heur)
algorithms.

B. Greedy algorithms

Intuitively, the Greedy algorithm 1 tries to produce a given
intermediate or final graph on the node which already has the
most required bytes (sum of the sizes of antecedent graphs)
for this given graph. First the input graphs are placed on the
sensor nodes where they are produced (line 18). Values of X are
updated, as well as the specific cost of producing a given graph
on each node (function ProductionCost), that only counts the
antecedent graphs that need to be obtained over the network.
The idea is to save the data corresponding to the antecedent



graphs already available on the local node. This is calculated
using matrix O that represents the "economy" of not transmitted
bytes. The algorithm iterates over all graphs according to their
topological order in the dependency workflow (lines 20 - 31),
and attempts to find the best node for each graph. Then it
checks if the node has sufficient memory available. If yes then
it allocates the graph in question on this node, otherwise it
moves to the next best node.

Greedy is fast but not always optimal because it cannot see
the combinations and allocations that could happen in further
iterations.

GreedyPlus iterates further (lines 35 - 46), for every node,
over either the graphs obtained from the network or the graphs
that obtain their antecedents from the current node. For such
graphs, it estimates the potential global savings if these graphs
are rather produced on the current node. If the current node
has sufficient memory and if it turns out advantageous, then it
shifts the production of that graph to this node.

C. Linear Optimization algorithm

We now propose an approach to solve our problem using
linear optimization tools.

1) Optimal solver: The optimal solver (OPT-solver) is our
baseline solver for the equations formulated in Section VI-C.
OPT-solver relies on the python PuLP library9.

PuLP allows to define any linear programming problem by
creating its variables and related equations. We did so for all
inputs and equations 13 to 16 and 10. While running its core
solver, it does an exhaustive search and outputs the optimal
values of the decision variables as well as the value of the
objective function, in our case: X,Y and Cost. OPT-Solver
runs in exponential time.

2) Heuristic algorithm: The Heur algorithm (Algorithm 2)
implements our linear optimization approach. After fixing the
input graphs on the nodes where they are produced, the heuristic
algorithm first solves a relaxed version of the linear program
(line 5). The solution obtained is fractional whereas we need
binary values. It thus tries to heuristically round off the values
of decision variables. It first sets the value of the highest
decision variable to 1, then solves again the relaxed version of
the linear program and moves on to the next variable. In case
of infeasability, it backups initial values, sets the value of the
decision variable in question to 0 and processes with the next
potential variable.

Heur relies on the PuLP library as well. We implemented 2
functions to query the PuLP library: FixValueInSolver()
is used to prevent PuLP from modifying the value of a decision
variable in further iterations, and SolveRelaxedLP() obtains
continuous decision variables from PuLP, instead of binary.

Its complexity is O(NGOLP + N2G) where OLP is the
complexity of solving the relaxed linear program.

D. Solutions for the running example

We ran the Heur algorithm for our example with two different
sets of values: in the first one, all constrained nodes possess

9https://pypi.org/project/PuLP/

Algorithm 1: Greedy and GreedyPlus
1 Input: N,G,M, S,A, D, P
2 Output: X,Y
3 Function ProductionCost(X,Y):
4 oj,h ← 0, ∀j,∀h /* initialize economy matrix O */
5 Cost← 0 /* initialize total cost of solution */
6 foreach i = 1 · · ·n do
7 foreach j = 1 · · · g do
8 foreach h = 1 · · · g do

/* if node has a graph h then it has
dj,h · Sh bytes that we need */

9 if yi,h OR xi,h then oi,j ← oi,j + dj,h · Sh;
10 if yi,j · dj,h = 1 & yi,h ̸= 1 then
11 xi,h ← 1

12 foreach i = 1 · · ·n do
13 foreach j = 1 · · · g do
14 Cost← Cost+ xi,j · Sj

15 return X, O,Cost;

16 Function Greedy():
17 xj,h ← 0, ∀j,∀h /* initialize X */
18 Y← P /* initialize Y */
19 X, O ← ProductionCost(X,Y)
20 foreach j = 1 · · · g do
21 foreach iter = 1 · · ·n do

/* get best node index for graph j */
22 i∗ ← argmaxi oi,j
23 if Mi∗ ≥ K.S⋃

j Aj
+Msetup, ∀j (see eq. 10) then

24 yi∗j ← 1
25 yi,j ← 0,∀i ̸= i∗

26 break
27 else
28 oi∗,j ← 0 /* to get next best node */

29 if yi,j = 0, ∀i then return infeasible;
30 X, O ← ProductionCost(X,Y)
31 return X,Y, Cost

32 Function GreedyPlus():
33 /* Run Greedy then see if we can improve more */
34 X,Y, Cost ← Greedy()
35 foreach i = 1 · · ·n do
36 foreach j = 1 · · · g do
37 if (xi,j = 1 OR yi,h = 1, ∀h | h ∈ Aj) &

Mi ≥ K.S⋃
j Aj

+Msetup, ∀j then
/* see if Cost reduces when j produced

locally. */
38 Xbackup,Ybackup ← X,Y
39 xi,j ← 0
40 yi,j ← 1
41 yi−,j ← 0, ∀i− ̸= i
42 X, Costnew ← ProductionCost(X,Y)
43 if Costnew > Cost then
44 X,Y← Xbackup,Ybackup

45 X, Cost← ProductionCost(X,Y)
46 else Cost ←Costnew ;

47 return X,Y



Algorithm 2: Heuristic algorithm
1 Input: N,G,M, S,A, D, P
2 Output: X,Y
3 foreach j = 1 · · · inputgraphs do
4 FixValueInSolver(yn,j ← Pn,j)

5 X,Y← SolveRelaxedLP()
6 foreach j = inputgraphs · · · g do
7 i∗ ← argmaxi(Y)
8 iter ← 0 /* to iterate over nodes */
9 while iter < n do

10 Xbackup,Ybackup ← X,Y
11 FixValueInSolver(yi∗j ← 1)
12 X,Y← SolveRelaxedLP()
13 if feasible then
14 ∀i ̸= i∗ FixValueInSolver(yi,j ← 0)
15 break;
16 else
17 X,Y← Xbackup,Ybackup

18 yi∗,j ← 0
19 i∗ ← next best in argmaxi(Y)
20 iter ← iter + 1
21 continue;
22 if infeasible then return Infeasible;

23 return X,Y

80KB of memory and the size of graphs is 750 B; in the
second, the memory sizes vary among nodes and the size of
graphs is 1850 B. The graphs received and produced on each
node are respectively shown on Tables I and II.

Node Node Memory Graphs produced Graphs received
N1 80KB G1, G5 -
N2 80KB G2, G4, G6 -
N3 80KB G3 G7, G8 G4 G5, G6

N4 80KB - -
TABLE I

DISTRIBUTION PLAN FOR THE RUNNING EXAMPLE WITH EQUAL MEMORIES.
COST IS 2250 B

Node Node Memory Graphs produced Graphs received
N1 200KB G1, G5, G7, G8 G3, G4, G6

N2 150KB G2,G4, G6 -
N3 150KB G3 -
N4 200KB - -

TABLE II
DISTRIBUTION PLAN FOR THE RUNNING EXAMPLE WITH VARIOUS

MEMORIES. COST IS 5550 B

VII. NUMERICAL RESULTS AND EVALUATION

We evaluate the performance of our algorithms in terms of
quality of results and processing time. We performed 1000
simulations, with the following varying parameters: K =
15, Msetup = 44KB (corresponding to LiRoT [7]), the node
memory randomly varied between 100KB and 300KB, the
number of nodes randomly varied between 5 and 50, the
number of workflow stages varied from 2 to 5, the number
of graphs randomly varied between 10 to 50, the input graph
size randomly varied between 300 to 3000 bytes, and the other
graph sizes randomly varied between 300 to 500 bytes. These

simulations were performed using python scripts on a PC with
64G RAM and Intel(R) Xeon(R) W-2223 CPU @ 3.60GHz.

Some algorithms may not render results in certain cases:
• Some reasoning stages may require more memory than

any node can provide. In this case, no algorithm can find
a solution. However, there are some cases when some
algorithms fail, while OPT-solver can find a solution. The
percentage of cases when a solution is found is as follows:
OPT-solver 98.8%, Heur 96.7%, Greedy and GreedyPlus
97.1% for the parameters considered in this paper.

• Our algorithms run in polynomial time whereas OPT-
Solver runs in exponential time. As the problem is NP-
hard, in some cases the OPT-solver kept running for more
than 11 hours and was aborted. Otherwise it generally
finished in 10 to 100s.

Gain vs. centralized. We first compare the network efficiency
gain obtained by our 3 algorithms. The gain is the sum of the
input and final graph sizes divided by Cost. It is relative to
a centralised approach which has a network efficiency of 1.0
as it requires to send/receive all input/final graphs to/from a
centralised reasoner.

Gain =

∑
j Sj | j ∈ Ginput ∪Gfinal

Cost
(17)

Figure 2 shows the complimentary cumulative distribution
function (CCDF) of the network efficiency gain. Note that
CCDF shows the probability (Y-axis) of achieving a perfor-
mance value greater than or equal to a given point (X-axis).

We can observe that the gain exceeds 1.0 in 80% (OPT-
solver) to 60% (Greedy) cases. Thus, our distributed algorithms
are better in the above cases since they save bandwidth as
compared to a centralized approach. GreedyPlus is more than
2 times as efficient in 10% of cases, more than 1.5 times
as efficient in 26% of cases and more than 1.0 times as
efficient in 68% cases. For other cases the gain was less than
1.0: this is because the distributed algorithm pays the cost of
distributing the workflow as compared to a centralized solution.
This happens when the workflows are complex, memories
are too low and some graphs are required multiple times for
multiple workflows.

Gain vs. OPT-solver. We evaluate the performances of our 3
algorithms compared to the baseline by comparing their costs
to that of OPT-solver, using the ratio:

Ratio =
Cost(Algorithm)

Cost(Opt− solver)
(18)

Figure 3 depicts the CCDF. GreedyPlus generally performs
best: its ratio is higher than 0.8 in approx. 70% cases. Next
come Heur and Greedy which reach 0.8 or above in only
approx. 50% cases.

Table III provides the execution times of the different
algorithms. Greedy is the fastest and is able to find a solution
in maximum 2.16s. GreedyPlus is slightly slower, as expected,
as it runs post-processing steps after Greedy. Surprisingly,
Heuristic is even slower than OPT-solver in some cases.
Heuristic calls SolveRelaxedLP(). In general, relaxed linear
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programming problems can be solved in polynomial time. Thus,
while Heuristic is a polynomial time algorithm, we suppose
that the implementation of the interface functions with the
PuLP library is not as optimized as the solver itself, and that
the important number of calls to these functions slows down
the algorithm. Lastly, OPT-solver took a huge amount of time
in solving a few number of cases and had to be abandoned
after running for 11 hours.

From above, we find that GreedyPlus represents a good
compromise in terms of speed and performance.

VIII. CONCLUSION

This paper proposes an approach to distribute reasoning
processes over constrained WoT nodes in an edge architecture,
while minimizing data exchanges among nodes. We formulate

Algorithm Min. Avg. Max. Complexity
Opt-solver 0.11s 91.6s 4731.4s Exponential

(abandoned) (40184.2s)
Heuristic 0.42s 20.31s 200.7s O(NGOLP +N2G)
Greedy 0.004s 0.43s 2.16s O(N2G+NG3)

GreedyPlus 0.025s 1.53s 10.96s O(N2G3)
TABLE III

COMPARISON OF EXECUTION TIMES DIFFERENT ALGORITHMS

this problem as a linear programming problem. We propose
three polynomial time algorithms: two “greedy” ones and
one heuristic based on a linear optimization solver. Our
evaluations show that distributing computations can actually
lead to reducing the network bandwidth consumption, compared
to a centralized approach. We also find that the most advanced
greedy algorithm provides a good compromise between perfor-
mance and speed. In the future, we intend to study different
optimization objectives and introduce additional parameters.
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