N

N

Network Traffic Classification for Detecting
Multi-Activity Situations
Ahcene Boumhand, Kamal Singh, Yassine Hadjadj-Aoul, Matthieu Liewig,
César Viho

» To cite this version:

Ahcene Boumhand, Kamal Singh, Yassine Hadjadj-Aoul, Matthieu Liewig, César Viho. Network Traf-
fic Classification for Detecting Multi-Activity Situations. ISCC 2023 - IEEE Symposium on Comput-
ers and Communications, Jul 2023, Tunis, Tunisia. pp.681-687, 10.1109/ISCC58397.2023.10218297 .
emse-04315939

HAL Id: emse-04315939
https://hal-emse.ccsd.cnrs.fr/emse-04315939
Submitted on 30 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

https://hal-emse.ccsd.cnrs.fr/emse-04315939
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Network Traffic Classification for Detecting
Multi-activity Situations

Ahcene Boumhand™, Kamal Singh*, Yassine Hadjadj-Aoul®, Matthieu Liewig®, and César Viho®
T Orange Labs, Rennes, France
firstname.lastname @orange.com
*Univ Jean Monnet, IOGS, CNRS, UMR 5516, LaHC, F - 42023 Saint-Etienne, France
firstname.lastname @univ-st-etienne.fr
8 Univ Rennes, Inria, CNRS, IRISA, Rennes, France
firstname.lastname @irisa.fr

Abstract—Network traffic classification is an active research
field that acts as an enabler for various applications in network
management and cybersecurity. Numerous studies from this field
have targeted the case of classifying network traffic into a
set of single-activities (e.g., chatting, streaming). However, the
proliferation of internet services and devices has led to the
emergence of new consuming patterns such as multi-tasking
that consists in performing several activities simultaneously.
Recognizing the occurrence of such multi-activity situations may
help service providers to design quality of service solutions
that better fit users’ requirements. In this paper, we propose a
framework that is able to recognize multi-activity situations based
on network traces. Our experiments showed that our solution is
able to achieve promising results despite the complexity of the
task that we target. Indeed, the obtained multi-activity detection
performance is equivalent or often surpasses state-of-the-art
techniques dealing with only a single activity.

Index Terms—Network traffic classification, multi-activity sit-
uations, machine learning

I. INTRODUCTION

Network traffic classification is a widely studied field with
a broad spectrum of applications in network management such
as assuring quality of service (QoS) and resource planning and
allocation. Numerous studies [1] have focused on classifying
network traffic into different activities according to different
levels of granularity such as the traffic type (e.g., chatting)
and the application type (e.g., Skype). However, these studies
considered only the case when a single activity (e.g., chatting,
or mailing, or streaming, etc.) is performed at a time.

In this paper, we target the specific case of multi-activity
situations that we define as being composed of two or several
simultaneous activities (e.g., mailing and streaming and etc.).
To our knowledge, our current study is the first to treat
such a concept as a network traffic classification task. As
a matter of fact, with the proliferation of devices, services,
and applications, multi-activity situations are occurring more
frequently in our daily routines. Therefore, recognizing such
complex situations will provide new ways for service providers
to analyse such composite patterns in real time. This will help
to better understand the service and user requirements and to
better adapt their network management solutions. Moreover,

the concept of multi-activity has been the subject of many re-
cent studies [2], [3] (particularly in the field of social sciences)
which have shown its widespread occurrence among various
communities of the population (e.g., adolescents, teleworkers)
and its potential impact on health and productivity.

In order to tackle the problem of multi-activity situations
detection, we propose a solution that allows a time window
of a network trace to be associated with a specific multi-
activity class. This solution consists in the two following main
contributions.

« At present, there exists only single-activity network traces
public datasets. Thus, we propose a new method that gen-
erates multi-activity network traces starting from single-
activity network traces.

o To recognize the occurrence of multi-activity situations,
we conceive a classifier that pre-processes a multi-activity
network trace and then assigns it into a predicted multi-
activity class. Additionally, as we base our classifier on
machine learning techniques, we conduct a comparison
between the performance of some recent models (e.g.,
LSTM with attention mechanisms, Transformer).

Classifying multi-activity network traces based on temporal
windows introduces new challenges that harden the network
traffic classification task. In fact, the interference of bidirec-
tional flows that belong to several activities as well as noise
flows creates a composite network traffic behavior that differs
significantly from single-activity network traffic behavior.

The remainder of this paper is organized as follows. Section
II reviews a set of selected works that are related to network
traffic classification. In Section III, we present the main com-
ponents of our multi-activity detection methodology. Section
IV describes the experimental parameters that we leveraged to
instantiate our multi-activity detection methodology. Section
V depicts the performance of our solution together with a
comparison with some related works. In Section VI, some
of the potential improvements and technical choices regarding
our methodology are discussed. Finally, Section VII concludes
the paper while giving the main directions for future work.

II. RELATED WORK

In order to address the problem of network traffic classi-
fication, researchers and practitioners usually leveraged tradi-
tional techniques such as port-based methods and deep packet
inspection (DPI). However, as the properties of network traffic
evolved, the performance of those techniques was highly im-
pacted. Port-based methods assume a fixed mapping between
the ports utilized by the applications and the registered port
numbers by IANA (Internet Assigned Numbers Authority).
Such methods have become inefficient because the modern
applications use dynamic port numbers and thus any fixed
mapping is becoming rare. On the other hand, DPI techniques
base their approach on inspecting packets’ content in order
to search for specific patterns and signatures. Users’ privacy
concerns and the adoption of encryption techniques have
significantly affected the usefulness and effectiveness of DPI
techniques.

In this context, the usage of classical machine learning
(ML) techniques have emerged as one of the alternatives
for performing network traffic classification tasks. Network
traffic classification techniques that are based on classical ML
models (e.g., support vector machine, decision trees, random
forest) are able to achieve a high level of accuracy [4], [5]
by leveraging statistical characteristics of network flows (e.g.,
mean packet inter-arrival time) and without requiring to inspect
packets’ payloads. Posterior to that, the major recent successes
of Deep Learning (DL) models in other research domains have
inspired their adoption in the network traffic classification field
[6], [7]. Indeed, DL models are known for their ability to
extract features from data automatically and their high capacity
to learn and model complex patterns. These abilities allow DL
models to generally surpass other classical ML techniques.

Network traffic classification can be leveraged to infer
users’ activities according to three levels of granularity: traffic
type (e.g., chatting, streaming), application type (e.g., Skype,
Instagram), and the behaviors that are performed within a
specific application (e.g., send a message on WhatsApp, post a
tweet on Twitter). For the first level of granularity (zraffic type),
to differentiate between a set of traffic types (e.g., mailing,
VOIP), authors in [8] used a combination of K-means and
random forest (RF) over a set of statistical features (e.g.,
packet count send-receive ratio, mean time between packets’
arrival). Whereas in [9], authors proposed an attention aided
long short-term memory (LSTM) as well as a hierarchical
attention network (HAN) that receives a sequence of packets’
payloads. A similar approach was proposed in [10] by lever-
aging a two-dimensional convolutional neural network (CNN)
and a LSTM.

For the second level of granularity (application type), and to
distinguish between a given set of applications, authors in [11]
based their method on a Markov chain and a RF models
to analyse both the sequential behavior and the statistical
characteristics (e.g., packet size distribution) of a network flow.
In [12], multi-head attention was leveraged over a sequence of
packets’ payloads and metadata (e.g., packet position, packet

size), while in [7] a combination of gated recurrent units
(GRU) and one-dimensional CNN were leveraged over a set
of features quite similar to those in [12].

Finally, for the third level of granularity (user behavior), the
work in [13] focuses on classifying multiple user behaviors
within the Instagram application by using a support vector
machine (SVM) model. Some examples of user behaviors in
this context are login into the service or posting a video. For a
wider range of applications (e.g., browsing potential matches
on Tinder, posting to Facebook), the authors in [14] based
their work on a combination of an unsupervised algorithm K-
means and a supervised algorithm SVM. For a similar purpose
to [14], the authors in [15] based their work on a combination
of agglomerative hierarchical clustering and RF.

Despite their high level of achieved accuracy, one common
point in the previously cited works is that they treat only the
case when a single activity is performed at a time sequentially.
These techniques are therefore not capable to detect multi-
activity situations. Furthermore, single activities do not cover
all real-world scenarios where a user may perform two or
several activities simultaneously (e.g., chatting with a friend
on WhatsApp while listening to a podcast on Spotify). These
are some of the reasons that led us to investigate the detection
of multi-activity situations.

III. MULTI-ACTIVITY DETECTION METHODOLOGY

The aim of this section is to provide a thorough overview
of the methodology that we adopted to build a solution that
is able to recognize multi-activity situations based on network
traces and ML techniques.

The overall architecture of our solution is composed of
two chained processes. In section III-A, we describe the first
process that enables us to create a multi-activity dataset start-
ing from a dataset of single-activity network traces. Different
steps are required to generate a multi-activity dataset. First, we
select repetitively network traces that belong to two different
activities, and then we merge them in order to generate
a multi-activity network trace. When applied systematically,
this process generates a complete multi-activity dataset. This
process is described in Figure 1. In section III-B, we depict
the second process of the architecture by listing its different
components that allow us to preprocess and then assign a given
multi-activity network trace into a predicted multi-activity
class (see Figure 2).

A. Multi-activity network traces dataset

1) Dataset of single-activity network traces: In the fol-
lowing, we consider the single-activity dataset as a set of NV
network traces (i.e., raw pcap files) D = {T1,T5,T3,...,Tn}
where each network trace is an ordered sequence of packets.
We suppose that each network trace is associated with only
one activity (label) that refers to the activity (e.g., mailing,
VoIP) that was performed when the corresponding trace was
captured. Furthermore, we define a set of functions that enable
us to access some properties of a network trace or perform an
operation on single or multiple traces:

e duration(T;): this function indicates the duration of a
network trace T;

e random(min, max): this function draws a real number
uniformly from the interval [min, max]

e duplicate(T;,d): this function creates duplicates of
the trace 7; until it reaches the duration d, then it returns
the duplicates as a set of traces

e RanDistr(S,d): distributes randomly a set of traces S
over a duration d. This produces a trace of duration d
that gathers the traces that are contained within S and
separates them with random no-activity durations.

o merge(T;,T;): this function produces an output trace
that gathers the packets that are incoming from the two
input traces and merge while sorting them according to
their arrival time.

2) Generation of multi-activity network traces: First, we
define a multi-activity situation as the performance of two
or several activities of different types simultaneously (e.g.,
mailing and streaming). Our current study focuses on the
specific case of two simultaneous activities, which corresponds
to the maximum number of activities studied in social sciences
[2], [3]. Multi-activity situations of a superior order will be
considered in future work.

Our goal is to generate a multi-activity network trace
starting from two single-activity network traces 7; and T
where we assume that T; has a longer duration than T}, as
described in Algorithm 1. To reach this goal, we first generate
a random multi-activity duration (MAp) that indicates the
duration during which the activities corresponding to 7; and
T; are supposed to be performed simultaneously and that does
not exceed the duration of T; (0 < MAp < duration(T;))
(see line 1). Posterior to that, if the generated multi-activity
duration is bigger than T, we duplicate T; until it reaches
the desired multi-activity duration (MAp). These duplicates
are gathered in a set named S (line 2). Then, the duplicates
of T; are spread along the duration of T; and are separated
by random durations of no-activity phases. This will create a
trace T; that has the same duration as T; and that alternates
between single-activity phases (i.e., phases of the activity that
corresponds to 7;) and no-activity phases (line 3). It is impor-
tant to notice that contrary to the timestamps of the packets
of T; that are kept the same during the merging operation, the
timestamps of the packets of 7 and its duplicates may receive
a delay to be shifted to the convenient position in TJ

In the final step, packets from the traces 7; and T; are
gathered in the output trace T,,; and reordered according to
their arrival time (i.e., timestamp) (line 4).

B. Multi-activity network traces classification

Herein, we describe thoroughly the steps that are involved
in preprocessing following with assigning a multi-activity
network trace to a predicted output class. This process is
shown in Figure 2.

1) Hypotheses and requirements: The proposed classifica-
tion must respect the following requirements:

e The system must be able to recognize multi-activity
situations the most accurately possible.

o The system must be able to recognize these situations
within 10 seconds.

These competing requirements dictate us to find a balance
between reaction time and providing the classifier with enough
information so it can perform its predictions accurately.

2) Fragmentation and labelling process: In this process,
incoming traces from the multi-activity network traces dataset
will undergo a fragmentation operation as a primary step for
preparing an adequate input for the classifier. Each multi-
activity network trace is split into time windows of W seconds.
This time window is a hyper-parameter that has to be chosen
wisely in a manner that enables us to satisfy the constraints
described previously. Specifically, the selected window size
has to fall within a range of values that are large enough to
provide the classifier with a sufficient amount of knowledge
to perform its inferences correctly. Moreover, the selected
window size has to be small enough to allow our proposed
framework to provide responses with a delay that is shorter
than 10 seconds.

3) Features extraction: Features or inputs of a ML model
are one of the main parameters that control the quality of the
trained model predictions. Indeed, a well-picked set of features
may not only improve the performance of the ML model but
can also play a prominent role in reducing the training time,
the risk of over-fitting, and the size of the ML model.

At this level, fragments that are issued from the previous
process are represented as time series of L time steps where
each time step is a sub time-window of size % seconds. This
representation will allow us to have a fine-grained description
of each fragment as the features will not be computed over
the entire window but over each sub time-window.

Statistics over packet sizes and inter-arrival times are widely
used in the network traffic classification field and have shown
their usefulness in differentiating between traffic types in
numerous works like in [5], [16]. Thus, in our work, the
following features are computed over the packets that are
contained within each time step of the time series: mean,
variance, skewness, kurtosis of packet size and packet inter-
arrival time, the sum of packet size, and packets’ count.

4) Classifier: Since we base our solution on ML based
algorithms, the classifier can behave in two modes: (i) the
training mode where it receives the set of features associated

Algorithm 1 gen-multi-activity-trace(T;,T};)

I: MAp < random(0,duration(T};))
multi-activity duration

2: S < duplicate(T;,MAp)
reaches MAp

3: T; < RanDistr(S,duration(T;))
duplicates of T; along the duration of T;

4 Toyr < merge(T;, T;) > gather then reorder the packets
of T; and T} in the trace Toy;

> generate the
> duplicate 7; until it

> spread the

—

Des
@ - N
— o11o101\‘ Des
) = a S }DE-W* m—) 01101010110101 =) cald
ﬁ 0110101 |:—:| Q
@ STEP1 STEP 2
Dataset of Select two single- Generate a multi- A multi-activity Dataset of
single-activity activity network activity network network trace multi-activity
network traces network traces

traces

_

trace

J

() Generate K samples

Fig. 1. Process of creating a synthetic multi-activity dataset from a single-activity dataset. (Images from freepik.com and flaticon.com)

Dataset of STEP 1
multi-activity

network traces Select a multi-

activity network
trace

« Chatting & Streaming
« Mailing & Video calling

« Voice calling & Chatting ‘
Output classes

Classify a fragment
into one output class

STEP 2

Split multi-activity
network trace into
fragments of W
seconds

STEP 3

Discard the
current

Fragments of W
seconds

A multi-activity
Fragment

Extract features

Fig. 2. Process of training a multi-activity classifier. (Images from freepik.com and flaticon.com)

with a fragment along with its label to tune its parameters,
and (ii) the inference mode where the classifier can be fed
with a set of features associated with a fragment and infer its
predicted multi-activity class.

IV. EXPERIMENTAL SETUP

In this section, we depict the resources, tools, and hyper-
parameters that we selected to instantiate the methodology that
has been described in Section III.

To generate synthetic multi-activity network traces, we
leveraged the ISCXVPN2016 dataset [5] as a source for single-
activity network traces. This dataset is publicly available and
has been used in several previous works to train and test their
traffic classification models. It can also serve as a common
base to compare our solution to other related works. The
ISCXVPN2016 dataset is constituted of a set of network
traces (28 GB of raw pcap traces) that are labeled according
to the particular activity that was performed when the trace
was captured along with the application within which the
activity was performed (audio call on Skype, audio streaming
on Spotify). Due to the storage and computational complexity
of the multi-activity traces generation process, we restrained in

the current study our single-activity network traces selection
on the following set of activities and applications: Chat (Face-
book, Hangouts), Email, Streaming (Spotify, Youtube), VoIP
(Skype, VoIPBuster). The application of the multi-activity
traces generation process on this selected set of single-activity
traces yielded into a multi-activity dataset whose traces are
labeled with one of the following six labels: Chat & Mailing
(C1), Chat & Streaming (C2), Chat & VoIP (C3), Mailing
& Streaming (C4), Mailing & VoIP (C5), and Streaming &
VoIP (C6). The resulting dataset was then split into three sets:
the training set (60%), the validation set (20%), and the test
set (20%).

For the multi-activity traces classification process, we set the
configuration parameters W and L to 10 and 40, respectively
(see section VI). This means that the classifier receives as
input a time window of 10 seconds that is represented as time
series (i.e., segmented into sub-time windows) of 40 timesteps
where each timestep is constituted of the set of features that
are described in section III-B3 and that are computed over the

0.25 (.e., }1—8) seconds related to this timestep.

To implement the classifier, we leveraged a set of two
ML models that are RF and XGBoost, and three DL models

that are Bi-LSTM with attention mechanisms, 1D-CNN with
attention mechanisms and a Transformer model.

During the hyper-parameters tuning process, we set both
ML models (i.e., RF and XGBoost) to the default hyper-
parameters. Specifically, in the implementation we leveraged,
the number of estimators is set to 100 for both models, while
the maximum depth is set to 6 for XGBoost and without
limit for RF. On the other side, the following hyper-parameters
were adopted to tune the three deep-learning models. For the
LSTM model, we used a Bidirectional LSTM with 10 units
in each direction and an enabled return-sequences option. The
recurrent layer was then enhanced using an additive attention
mechanism [17] and followed by a dense layer with 12 units
which is twice the number of output classes. For the CNN
model, we utilized a one-dimensional CNN layer with 40
filters, and a kernel size and stride that were set to 1. This
architecture was adopted based on a comparison that we con-
ducted between a model with one CNN layer and a model with
two CNN layers where the former showed better results on the
validation set. Similarly to the recurrent DL model, the CNN
layer was enhanced using an additive attention mechanism [17]
and followed by a dense layer with 8 units. Finally, for the
Transformer model, we harnessed one block of a transformer’s
encoder [18] where we kept the default architecture (e.g., layer
normalization, residual connections) while we set the multi-
head attention hyper-parameter number of heads (to 4) and
the key dimension (to 10). To determine the number of blocks
in the transformer’s encoder, we varied this hyper-parameter
within an interval that ranges from 1 to 6. The models with
1 and 5 blocks achieved similar results while outperforming
the rest of the models. Hence, we selected the model with the
lowest number of parameters. The transformer’s encoder was
then followed by a layer of one-dimensional global average
pooling, a dropout layer with a rate that was set to 0.1, and a
dense layer with 8 units. The hyper-parameters’ values of the
three DL models were tuned by testing various combinations
of values for the different hyper-parameters and then selecting
the ones that optimized the results on the validation set. It is
worth noting that for the three DL architectures, we leveraged
ReLU as an activation function for all dense layers except
for the last layer which consisted of 6 units with SOFTMAX
as an activation function. Moreover, each dense layer except
the last layer was followed by a dropout layer with a rate
that was set to 0.1. In order to prepare the data for the
DL models, we used normalization to scale the features to
the range [—1,1]. In addition, we leveraged the up-sampling
technique to mitigate the impact of the imbalanced multi-
activity dataset by preventing the model from inclining towards
majority classes. Finally, to train the DL models, we leveraged
the Adam optimization algorithm as an optimizer and used
a batch size of 64. Moreover, we used the early stopping
technique to avoid overfitting.

V. EVALUATION AND COMPARISON

The performance of our proposed framework is measured
using the following standard ML metrics: accuracy, precision,

recall, macro average F1 score, and weighted average F1I
score. The ML and DL models are implemented using Scikit-
learn, TensorFlow 2, and Keras, and the tests are run on a PC
with an Intel i7 CPU, NVIDIA Quadro RTX 3000 GPU, and
32 GB of RAM.

A. Comparison between models

The aim of this part is to compare the performance of
the set of ML and DL models that we selected to instantiate
the classifier component of the multi-activity network traces
classification process.

TABLE I
PERFORMANCE OF MULTI-ACTIVITY SITUATIONS CLASSIFICATION WITH
DIFFERENT ML ALGORITHMS

Model Accuracy | M-average F1 | W-average F1
XGBoost 0.83 0.81 0.83
Random forest 0.80 0.76 0.80
Transformer 0.80 0.78 0.80
Bi-LSTM with attention 0.72 0.69 0.73
1D-CNN with attention 0.71 0.65 0.71

Table I gives the values of accuracy, macro-average F1
score, and weighted average F1 score that are reached by the
models XGBoost, RF, Bi-LSTM with attention, 1D-CNN with
attention, and Transformer. These results show that XGBoost
outperforms the other models by reaching an accuracy of 0.83.
The XGBoost model is succeeded by the Transformer and the
RF models that attain an accuracy of 0.80. Lastly, Bi-LSTM
with attention and 1D-CNN with attention achieves the worst
results with an accuracy of less than 0.72. The M-average
and W-average F1 scores show that our up-sampling method
correctly creates a balanced dataset.

These results may be explained on one hand by the nature of
the input data that are tabular and that resulted from a feature
engineering process. This type of data is more suited for
classical ML models than DL models [19]. Hence, tree-based
ensemble models (XGBoost, RF) performed better than the
rest of the models. On the other hand, these results are consis-
tent with the recent studies [18] that showed the supremacy of
Transformer models over attention-aided recurrent networks.

B. Detailed analysis of the XGBoost model performance

In order to investigate the performance of the best-
performing model from section V-A, we summarize in Table II
the results that are achieved by the XGBoost model for each of
the possible classes when tested on the test set. These results

TABLE I
DETAILED PERFORMANCE RESULTS OF XGBOOST CLASSIFIER FOR
MULTI-ACTIVITY SITUATIONS

Class Precision | Recall | F1 score | Support
CI - Chat & Mailing 0.72 0.86 0.78 539
C2 - Chat & Streaming 0.96 0.87 0.91 1780
C3 - Chat & VoIP 0.89 0.75 0.81 6398
C4 - Mailing & Streaming 0.83 0.70 0.76 682
C5 - Mailing & VoIP 0.63 0.93 0.76 2023
C6 - Streaming & VoIP 0.85 0.87 0.86 9955

are presented using the metrics Precision, Recall, and F1 score
along with the Support that indicates the number of instances
of each class in the test set. The reported results highlight
that the XGBoost model is able to differentiate between the
different classes with a satisfactory level of robustness. Indeed,
the value of the F1 score is above 0.75 for all the classes. It
surpasses the threshold of 0.80 for three classes (i.e., Chat
& Streaming (C2), Chat & VoIP (C3), Streaming & VoIP
(C6)), and exceeds the value of 0.90 for one class (i.e., Chat
& Streaming (C2)).

o 005 000 009 001 000
-0.8
O - 0.02 001 002 000 008
-0.6
[n N
£ p-o000 o000 NUEER 000 005 020
=
3
§ ®-021 002 000 -04
<
v - 000 000 001
~ -0.2
19 - 000 000 006
. | . -0.0

Predicted Values

Fig. 3. Confusion matrix of XGBoost model classification on 6 classes of
multi-activity situations.

To deepen our knowledge of the performance of the XG-
Boost model and gain a detailed and accurate understanding
of its classification process, we provide in Figure 3 the
confusion matrix related to the XGBoost model. The rows
of the confusion matrix correspond to the actual class of
the instances, while the columns correspond to the predicted
class of the instances. This figure reveals the absence of
misclassification patterns in our model for all the classes
except for two classes (i.e., Chat & VoIP (C3) and Mailing &
Streaming (C4)) as the misclassified samples are distributed
over all the non-actual classes. For the classes Chat & VoIP
(C3) and Mailing & Streaming (C4), we can observe that
around 20% of the misclassified instances are attributed to
the classes Streaming & VoIP (C6) and Chat & Mailing (C1),
respectively. It is important to notice that in both cases at least
one of the activities that compose the multi-activity situation
was predicted correctly (i.e., VoIP in Chat & VoIP (C3), and
Mailing in Mailing & Streaming (C4)).

C. Comparison with related works

In order to compare the performance of our model against
the state-of-the-art, we selected a set of baselines from the
network traffic classification field that harnessed the IS-
CXVPN2016 dataset [5] to classify network traffic into ac-
tivities. This set of baselines are described in Table III that

summarizes for each work the way with which it segments a
network trace to prepare the input for the classification model
(i.e., classification unit in the 2nd column), the ML model it
uses to perform the classification (3rd column), along with the
output classes and the results it achieves.

As it can be seen in the last column of Table III, the existing
related works consider only single-activity classes (e.g., Chat,
VoIP). To the best of our knowledge, our work is the only
work that targets the case of multi-activity classes (e.g., Chat
& VoIP, Chat & Streaming).

The column Results from Table III shows that even though
our framework targets a more complex and harder task (i.e.,
multi-activity situations classification), it is able to achieve
comparable results to those related to only single-activity
reported in [20] and [16]. Lastly, the work in [8] exhibits
better performances. However, some necessary information
that allow us to compute the weighted F1 score are lacking
and it targets only four single activity classes.

VI. DISCUSSION

In this section, we discuss some of the technical choices
that we adopted in our methodology in order to expose their
alternatives that we can explore in future works.

In our experimental setup, we opted for a value of 10
seconds as a time window size when we fragment the multi-
activity network traces to prepare the input for the classifier.
This value was chosen heuristically to allow the classifier to
perform its inferences accurately while allowing the system to
react promptly upon users’ actions. Nevertheless, this param-
eter could have been selected in a more elaborate manner by
varying the window size within a predefined range and then
selecting the value that allows the classifier to attain the best
results.

In the fragmentation and labeling process, we labeled a
fragment of a network trace as a multi-activity fragment if it
contained at least two packets, one belonging to each activity.
This adopted labeling technique may produce multi-activity
instances that are the hardest to classify (i.e., instances with
only one packet for one or both activities). This constraint
could have been softened by considering only fragments that
contain more than a certain predefined number of packets
belonging to each activity as a multi-activity instance.

To create the training dataset, we applied our proposed
multi-activity traces generation process (see section III-A2)
based on the single-activity network traces that are provided
in the ISCXVPN2016 dataset [5]. Hence, the resulting multi-
activity network traces can be described as synthetic or arti-
ficial. However, in order to evaluate the performance of our
framework when tested in a real environment, real network
traces of multi-activity situations must be collected. This can
be the purpose of our future studies.

VII. CONCLUSION

In this paper, we presented a framework that is able to
recognize multi-activity situations based on network traces. We
believe that such a solution may endow operators and service

TABLE III
COMPARISON WITH SOME RELATED WORKS THAT ARE DEDICATED TO ACTIVITY DETECTION ON ISCXVPN2016 DATASET [5]

Reference | Classification unit Classification model Output classes Results Multi-activity detection
. 6 classes: VoIP, File Transfer, Accuracy: 0.81
(20] Bidirectional flow | GRU, 1D CNN, MTL P2P, Streaming, Chat, Email F1 score: 0.79 x
. . 5 classes: Chat, Email, Accuracy: 0.81
(16] Bidirectional flow 1D CNN, MTL File transfer, Streaming, VoIP F1 score: non available X
[8] Time window K means, RF 4 classes: Video, Chat, Bulk, VoIP Accuracy: n01'1 available X
F1 score: 0.90
6 classes: Chat & Mailing,
. . Chat & Streaming, Chat & VoIP, Accuracy: 0.83
Our work Time window XGBoost Mailing & Streaming, F1 score: 0.83 v
Mailing & VoIP, Streaming & VoIP

providers with new insights about analysing users’ modern
consumption patterns and requirements, and hence, enables the
operators to better adapt their network management solutions.
Our framework is constituted of a process that generates
synthetic multi-activity network traces from single-activity
network traces. A classifier then assigns the input multi-
activity network traces to the corresponding multi-activity
class. We provided an instance of our proposed methodology
leveraging the publicly available dataset ISCXVPN2016 [5]
and a set of ML and DL models.

To evaluate the performance of our solution, we conducted a
set of experiments on the test set that showed that the XGBoost
model outperformed the rest of the implemented ML and DL
models. The obtained results showed also that our solution is
able to achieve good results even if our framework targets a
more complex and harder task (i.e., multi-activity situations
classification) as compared to existing related work that only
consider single-activity.

As future research directions, we intend to test our method-
ology on other datasets to validate its consistency and per-
formance. Moreover, it may be of great interest to refine the
output labels in order to provide not only the simultaneously
performed activities (e.g., Chatting & Streaming) but also the
applications on which the multi-activities are performed (e.g.,
Chatting on Skype & Streaming on YouTube). Finally, to
harness the full potential of DL models, it can be relevant
to test other types of features that favor the usage of end-to-
end DL.

REFERENCES

[1] O. Salman, I. H. Elhajj, A. Kayssi, and A. Chehab, “A review on
machine learning—based approaches for internet traffic classification,”
Annals of Telecommunications, vol. 75, pp. 673-710, 2020.

[2] E. Beuckels, G. Ye, L. Hudders, and V. Cauberghe, “Media multitasking:
A bibliometric approach and literature review,” Frontiers in psychology,
vol. 12, 2021.

[3] E. Ophir, C. Nass, and A. D. Wagner, “Cognitive control in media mul-

titaskers,” Proceedings of the National Academy of Sciences, vol. 106,

no. 37, pp. 15583-15587, 2009.

S. Sengupta, N. Ganguly, P. De, and S. Chakraborty, “Exploiting diver-

sity in android tls implementations for mobile app traffic classification,”

in The World Wide Web Conference, pp. 1657-1668, 2019.

[51 G. Draper-Gil, A. H. Lashkari, M. S. I. Mamun, and A. A. Ghorbani,
“Characterization of encrypted and vpn traffic using time-related,” in
Proceedings of the 2nd international conference on information systems
security and privacy (ICISSP), pp. 407-414, 2016.

[4

=

[6] M. Lotfollahi, M. Jafari Siavoshani, R. Shirali Hossein Zade, and
M. Saberian, “Deep packet: A novel approach for encrypted traffic
classification using deep learning,” Soft Computing, vol. 24, no. 3,
pp- 1999-2012, 2020.

G. Aceto, D. Ciuonzo, A. Montieri, and A. Pescape, “Mimetic: Mobile

encrypted traffic classification using multimodal deep learning,” Com-

puter networks, vol. 165, 2019.

V. Labayen, E. Magaiia, D. Moratd, and M. Izal, “Online classification

of user activities using machine learning on network traffic,” Computer

Networks, vol. 181, 2020.

[9]1 H. Yao, C. Liu, P. Zhang, S. Wu, C. Jiang, and S. Yu, “Identification
of encrypted traffic through attention mechanism based long short term
memory,” IEEE Transactions on Big Data, vol. 8, no. 1, pp. 241-252,
2019.

[10] Z. Zou, J. Ge, H. Zheng, Y. Wu, C. Han, and Z. Yao, “Encrypted
traffic classification with a convolutional long short-term memory neu-
ral network,” in 2018 IEEE 20th International Conference on High
Performance Computing and Communications; IEEE 16th International
Conference on Smart City; IEEE 4th International Conference on Data
Science and Systems (HPCC/SmartCity/DSS), pp. 329-334, IEEE, 2018.

[11] C. Xiang, Q. Chen, M. Xue, and H. Zhu, “Appclassifier: automated app
inference on encrypted traffic via meta data analysis,” in 2018 IEEE
Global Communications Conference (GLOBECOM), pp. 1-7, 1EEE,
2018.

[12] J. Cheng, R. He, E. Yuepeng, Y. Wu, J. You, and T. Li, “Real-
time encrypted traffic classification via lightweight neural networks,”
in GLOBECOM 2020-2020 IEEE Global Communications Conference,
pp. 1-6, IEEE, 2020.

[13] H. Wu, Q. Wu, G. Cheng, S. Guo, X. Hu, and S. Yan, “Sfim: Identify
user behavior based on stable features,” Peer-to-Peer Networking and
Applications, vol. 14, no. 6, pp. 3674-3687, 2021.

[14] B. Saltaformaggio, H. Choi, K. Johnson, Y. Kwon, Q. Zhang, X. Zhang,
D. Xu, and J. Qian, “Eavesdropping on fine-grained user activities
within smartphone apps over encrypted network traffic,” in 10th USENIX
Workshop on Olffensive Technologies (WOOT 16), vol. 16, pp. 69-78,
2016.

[15] M. Conti, L. V. Mancini, R. Spolaor, and N. V. Verde, “Analyzing
android encrypted network traffic to identify user actions,” IEEE Trans-
actions on Information Forensics and Security, vol. 11, no. 1, pp. 114—
125, 2015.

[16] S. Rezaei and X. Liu, “Multitask learning for network traffic classifica-
tion,” in 2020 29th International Conference on Computer Communica-
tions and Networks (ICCCN), pp. 1-9, IEEE, 2020.

[17] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” arXiv preprint arXiv:1409.0473,
2014.

[18] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, vol. 30, 2017.

[19] V. Borisov, T. Leemann, K. SeBler, J. Haug, M. Pawelczyk, and
G. Kasneci, “Deep neural networks and tabular data: A survey,” IEEE
Transactions on Neural Networks and Learning Systems, pp. 1-21, 2022.

[20] G. Aceto, D. Ciuonzo, A. Montieri, and A. Pescapé, ‘Distiller: En-
crypted traffic classification via multimodal multitask deep learning,”
Journal of Network and Computer Applications, vol. 183, 2021.

[7

—

[8

=

