
HAL Id: emse-04323886
https://hal-emse.ccsd.cnrs.fr/emse-04323886v1

Submitted on 8 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Line balancing and task scheduling to minimise power
peak of reconfigurable manufacturing systems

Xavier Delorme, Paolo Gianessi

To cite this version:
Xavier Delorme, Paolo Gianessi. Line balancing and task scheduling to minimise power peak of
reconfigurable manufacturing systems. International Journal of Production Research, 2024, 62 (14),
pp.5061-5086. �10.1080/00207543.2023.2283568�. �emse-04323886�

https://hal-emse.ccsd.cnrs.fr/emse-04323886v1
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

Line balancing and task scheduling to minimise power peak of
reconfigurable manufacturing systems1

Xavier Delormea and Paolo Gianessia
aMines Saint-Étienne, Univ. Clermont Auvergne, INP Clermont Auvergne, CNRS, UMR 6158 LIMOS,

F-42023 Saint-Étienne France (email: delorme@emse.fr, paolo.gianessi@emse.fr)

ABSTRACT
Energy efficiency has become a major concern for manufacturing systems, due to industry being the largest
user of scarce, finite energy sources, and also to recent events which have pushed energy prices to alarming
levels. In the present Industry 4.0 context, Reconfigurable Manufacturing Systems (RMS) are therefore one of
the most promising manufacturing paradigm. In this paper, we investigate the suitability of one of the most
common types of RMS, the Parallel-Serial manufacturing line with Crossover, to help minimize the peak of
the electric power consumption. More specifically, the balancing of such a production line is studied, so as to
integrate power peak minimization from the design stage. Thus, we define the Parallel-Serial-with-Crossover
Assembly Line Balancing Problem with Power Peak Minimization, a new combinatorial NP-hard problem. We
also propose a suitable time-indexed Integer Linear Program that integrates balancing and scheduling decisions
and a matheuristic algorithm designed to tackle large-size instances. Both approaches are tested on a wide set of
instances. The computational results show that relevant power peak reductions can be achieved (33% on average),
opening up promising perspectives from both algorithmic and managerial viewpoints.

KEYWORDS
Reconfigurable Manufacturing Systems; Line Balancing; Task Scheduling; Power Peak; Integer Linear Program-
ming; Metaheuristics

1. Introduction

Most industrial sectors, from manufacturing to construction, refining and mining, make use of huge
amounts of energy for their activities. Industry is thus accountable for the largest share of global total
final energy consumption (TFEC): from 36% in 2014 (International Energy Agency 2017), the overall
energy consumption of industry has since increased regularly and is now well beyond 50%, according to
U.S. Energy Information Administration (2019). The same source indicates that this general trend is set
to continue, as energy consumption worldwide is expected to rise by 2050 to nearly 50% more than its
current level. Since most production systems mostly make use of scarce and finite energy resources and
generate greenhouse gas (GHG) emissions, these figures suggest that energy usage in industry raises
major sustainability issues (Koren et al. 2018). Among the major typologies of production and indus-
trial systems, Manufacturing Systems (MS) are certainly among the largest energy consumers (Menghi
et al. 2019; Renna and Materi 2021). Hence, the most consistent contribution to reducing GHG emis-
sions in forthcoming years is expected to come from increasingly energy-efficient MSs (Lawrence et al.
2019), making greater use of renewable energy sources (Battäıa et al. 2020). In this respect, electricity
usage is no exception. The International Energy Agency (2021) reports that industry was responsible
for 22% of total final electricity consumption in 2020. Since this figure is expected to grow to 46% in
2050 due to the electrification of several processes, the conclusions drawn above also remain valid for
electric energy.
Moreover, the recent geopolitical events have had further, profound effects on energy (United Nations
2022). On the one hand, countries are being forced to return to increased usage of fossil fuels in the short
term (International Energy Agency 2022b), while at the same time energy prices have risen to alarming
levels (European Central Bank 2022), electricity included (International Energy Agency 2022a). On the
other hand, over the longer term, the present situation could boost the transition towards renewable
energy sources (Nature 2022). These major short- and long-term factors are contributing to pushing
even more MSs towards energy efficiency.
Not surprisingly, an increased scientific effort has been devoted in recent years to the study of energy-
aware MSs and the design of decision-support methods capable of achieving optimised energy manage-
ment. The European Strategic Energy Technology (SET) Plan of the European Commission stated in

1This is an Accepted Manuscript version of the following article, accepted for publication in International Journal of
Production Research: “Xavier Delorme, Paolo Gianessi (2023) Line balancing and task scheduling to minimise power peak
of reconfigurable manufacturing systems, International Journal of Production Research, DOI:10.1080/00207543.2023.2283568”.
It is deposited under the terms of the Creative Commons Attribution-Non Commercial License ©2023 CC-BY-NC 4.0
(http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any
medium, provided the original work is properly cited.

its 2021 Implementation Plan that an enriched process understanding and evaluation of the impact of
each decision from early process/plant design phase to production management is essential (European
Commission 2021). To this end, as shown e.g. in Bänsch et al. (2021), objectives of three types are
usually aimed at in evaluating energy efficiency in MS: minimisation of the total energy consumption,
of the total energy cost w.r.t. to some pricing policy, or of the peak of the overall power consumption.
However, most of the scientific output dealing with energy-efficient production systems seems to fo-
cus on planning and scheduling problems. As far as the authors are aware, few works seem to con-
sider energy efficiency in the design phase of the system, and even fewer works aim to minimise the
production-related power peak. Among the measures mentioned, limiting the peak of electric power
used contributes to energy efficiency in two major ways. Firstly, it prevents power outages, which always
result in disruption costs for MS, not only in developing countries (Fakih, Ghazalian, and Ghazzawi
2020), but also in the West: for instance in 2021, the percentages of MSs having to cope with electrical
failures in France and Germany were 30.2% and 22.1% respectively, with average outage durations of
2.3 and 6.8 hours respectively, and resulting average losses in annual sales of 0.8% and 0.1% respectively
(World Bank 2023). Secondly, limiting the electric power peak helps smooth the consumption of energy.
This reduces the effects of power supply volatility, which is of strategic importance these days, with
greater efforts being put into diversifying the types of energy sources that are used (Carlucci, Renna,
and Materi 2021). Limiting the power peak from the design stage is of particular importance for paced
flow lines, which represent a large share of MSs, as many important branches of industry rely heavily on
them, e.g. the automotive industry, or mass production of consumer electronics, trucks, and airplanes
(Boysen, Schulze, and Scholl 2022). Since power consumption results from the overlapping processing
of tasks and therefore depend on how those tasks are assigned to workstations and scheduled, in paced
lines the power peak will be repeated at each production cycle and it is thus important to have it
minimised from the design phase.
In the past decade the industrial sector has also faced the challenge of a major transition, due to market
uncertainty, demand volatility and rapidly changing regulatory frameworks, particularly as to energy.
The advent of Industry 4.0 is a key factor in rising to the numerous resulting challenges. Among the
most interesting possibilities offered by Industry 4.0 are improved manufacturing sustainability and
energy efficiency (Ghobakhloo and Fathi 2021; Jamwal et al. 2021). One of the main levers for this
is the capacity to track or control energy consumption (Mohamed, Al-Jaroodi, and Lazarova-Molnar
2019). Moreover, Industry 4.0 is pushing the concept of smart, reconfigurable manufacturing machines
(Morgan et al. 2021), which can help achieve higher energy efficiency.
This latter aspect has led to greater maturity of Reconfigurable Manufacturing Systems (RMS). In spite
of being a relatively recent manufacturing paradigm, RMS are increasingly widely used nowadays, as
they are designed to combine the throughput performance of dedicated lines with the flexibility of
flexible manufacturing systems. First studied in Koren et al. (1999), RMS attempt to achieve this
through six main features: modularity, integrability, convertibility, diagnosability, customisation and
scalability (Koren, Wang, and Gu 2017). One of the most common type of RMS is the Parallel-Serial
manufacturing line with Crossover (see e.g. Freiheit, Shpitalni, and Hu 2004), of which Figure 1 shows
an example. In such a system, workstations are organised in a serial line and have multiple parallel
identical resources each, while conveyors and gantries allow parts to be moved from one workstation
to the next. Parallel-serial lines with crossovers are a general case of single-product paced flow lines, in
which produced items, when reaching a workstation, are dispatched by turns on its parallel resources,
which function at the same time so as to provide an increase in throughput.

Figure 1. A Parallel-Serial line with 7 workstations, each with 1 to 4 parallel resources. Crossover can occur between any two
resources of two consecutive workstations

Motivated by the potential of RMS to help achieve energy efficiency, in this work we study the problem
of balancing a paced Parallel-Serial line with Crossover (PSC), with no special equipment to be assigned
to the workstations, in order to guarantee a given production pace, with the objective of minimising
the peak of the electric power consumption related to processing the production tasks. The balancing

2

decision process occurs in the design phase of the line: since no equipment choice is considered, energy
consumption is not affected. Nor is the economic cost of energy, which will be determined during later
planning processes. However, the paced nature of PSC lines requires that if a limitation needs to be
imposed on the peak of the electric power used, then it must be sought during the design phase. Hence,
in the problem studied here, energy efficiency can be pursued by minimising the peak of the power
consumption profile.
In this work, we first provide a definition and full description of the problem of balancing a Parallel-
Serial line with Crossover to minimise the electric power peak, which has not been the subject of any
scientific effort to date, to the best of our knowledge. Then we introduce an original Integer Linear
Programming (ILP) model for the problem. In order to be able to deal with instances of industrial
interest, we further develop a matheuristic algorithm. The proposed approaches are tested extensively,
and the numerical results are presented and discussed, along with some managerial insights. This work
is an extension of Delorme and Gianessi (2022) with a full description of the problem considered, the
definition of a matheuristic algorithm, extensive numerical experiments and a detailed analysis of the
results and their managerial implications.
In the following, after a short review of the related literature in Section 2, Section 3 describes the prob-
lem and presents an Integer Linear Programming model for it, while Section 4 proposes a matheuristic
algorithm. Section 5 covers the computational experiments conducted to assess the performance of the
two methods, along with the results analysis. Finally, Section 6 gives some conclusions and perspectives.

2. Literature Review

In this section, we present a brief literature review of the scientific works that deal with similar topics
to the one presented here. We will focus on papers dealing with RMS and sustainability as a more
general context, first; then, we will have a look at articles concerning balancing of RMS, and works
that address energy-efficient line balancing problems; finally, we will review works that consider power
peak in manufacturing systems.

2.1. Reconfigurable Manufacturing Systems and Sustainability
In addition to their initial purpose, RMS have also attracted attention in the research community due
to their great potential to help develop new paradigms for sustainability (Putnik et al. 2013), as well
as to improve energy efficiency in production systems (Battäıa et al. 2020). The two reviews Bortolini,
Galizia, and Mora (2018) and Haapala et al. (2013) agree in asserting that higher reconfigurability of
manufacturing systems leads to better environmental and economic performance, notably by reducing
energy consumption. Koren et al. (2018) state that RMS can help achieve sustainable production by
allowing improved efficiency in usage of resources, particularly in energy consumption, among others
by means of its modularity. Dubey et al. (2017) argue that RMS is one of the manufacturing paradigms
that help gain in manufacturing agility while minimising costs and waste, and state that RMS should
be designed for sustainability and for energy consumption and environmental impact minimisation.
Huang, Badurdeen, and Jawahir (2018) observe that RMS sustainable performance can be improved
by suitable tuning of its convertibility level, i.e. the ability to change the functionality or move from
one product to another.
We cite some recent works dealing with optimisation problems in RMS that focus on sustainability and
energy. In Khezri, Benderbal, and Benyoucef (2021) a multi-objective problem to generate a sustainable
process plan in an RMS is addressed: the three criteria to be minimised are a sustainability measure and
total production time and cost. A multi-objective Integer Linear Program (ILP) is proposed, as well
as two evolutionary approaches, which are tested on a numerical example. Dahmani, Benyoucef, and
Mercantini (2022) review recent works concerning sustainability in manufacturing, and particularly
in RMS, and discuss the main research challenges to be taken up to achieve energy-efficient RMS,
and some open questions to be addressed. Massimi et al. (2020) propose a Mixed-Integer Nonlinear
Program (MINLP) to minimise the energy consumption of a RMS based on modularity and integrability.
Ghanei and AlGeddawy (2020) propose a Mixed-Integer Linear Program (MILP) to minimise the total
cost of energy consumption, system reconfiguration and part transportation between machines facing
fluctuating demand and energy prices, along with a genetic algorithm to tackle large- size instances.
Finally, the Bilevel Optimization problem of designing the configuration set of RMS and planning the
configuration usage is studied in Delorme et al. (2023). The objective is to minimise energy-related
costs w.r.t. a given Time-Of-Use pricing scheme while meeting a given demand over a known time
horizon.

3

2.2. Line Balancing and Reconfigurable Manufacturing Systems
Among the various optimisation problems associated with RMS, line balancing problems have been
among the most studied.
The term Line Balancing (LB) is used by the research community studying optimisation in production
systems to refer to a wide class of design optimisation problems. The name comes from the first
such problem to have been studied, the Simple Assembly Line Balancing Problem (SALBP), but
ALB problems can also describe other types of industrial environments, e.g. machining or disassembly
systems (Battäıa and Dolgui 2013).
In ALBPs, the optimal assignment of the tasks of an assembly process to a set of workstations is
sought w.r.t. some criteria in such a way as to comply with the precedence constraints among the
tasks. These problems occur during the design of a production system and determine some of its main
features, e.g. cycle time and number of workstations. The simplest and best known of these problems,
the aforementioned SALBP, focuses on a paced, synchronous, mono-product line, with deterministic,
workstation-independent task execution times. In the SALBP-1, the minimum number of workstation
m must be determined, given the line cycle time or takt time, c, while it is the inverse in the SALBP-2.
Other basic versions are SALBP-E, which aims at minimising the line efficiency c ·m, and SALBP-F,
which assesses the feasibility of a given pair (c, m). SALBP is NP-hard (see e.g. Scholl 1999) and is
still a relevant problem, with best known solutions having been yielded in the last decade (Cerqueus
and Delorme 2019; Pape 2015; Sewell and Jacobson 2012).
Many ALB problems exist incorporating more generalised settings, industrial constraints of different
natures, or more complex line patterns (Boysen, Schulze, and Scholl 2022). To mention some other
variants which are closer to the problem studied here, the balancing of assembly lines with parallel
resources has been studied e.g. by Buxey (1974) or Pinto, Dannenbring, and Khumawala (1981), while
Borisovsky, Delorme, and Dolgui (2014) and Essafi et al. (2010) studied the problem of balancing an
RMS with sequence-dependent task setup times – a feature that requires task sequencing decisions
to be taken into account. Lahrichi et al. (2021) tackle the Reconfigurable Transfer Line Balancing
Problem. Here, tasks must be assigned to the workstations of a Parallel-Serial machining line so as
to take sequence-dependent setup times into account, as well as constraints among tasks of various
natures, and to minimise the total number of resources used by all the workstations. Finally, in a very
recent work, Cerqueus and Delorme (2023) study the problem of balancing a mono-product RMS so as
to optimise an original scalability measure; the reliability of this latter is tested by solving the problem
by complete enumeration on a set of benchmark instances.

2.3. Line Balancing and Energy
Robotic ALB problems (RALBP) (Borba, Ritt, and Miralles 2018) are of particular interest here as
they represent, to the best of our knowledge, one of the rare production system design problems to
consider energy efficiency. This is mostly due to robotic assembly lines requiring special equipment to
be assigned to workstations to perform tasks: since energy consumption is equipment-dependent, it is
often relevant to take it into account and minimise it. An example is Janardhanan, Huang, and Pon-
nambalam (2015), who seek to minimise the line cycle time and total energy consumption of a robotic
assembly line, and propose a Particle Swarm Optimization algorithm. The setting of Li, Tang, and
Zhang (2016) is a two-sided robotic assembly line: the authors seek the optimal balancing w.r.t. both
energy consumption and takt time. A MILP is presented, then a simulated annealing-based metaheuris-
tic is proposed to seek Pareto-optimal sets. More recently, Zhang et al. (2019) consider the problem of
balancing an energy-efficient U-shaped robotic assembly line. A multi-objective MINLP is developed
and linearised, its objective functions are suitably aggregated to get a good approximation of the Pareto
front, and a multi-objective evolutionary algorithm is proposed.
There are some LB problems other than RALBPs that integrate energy-related criteria exist, however.
In Kovalev et al. (2017), the assignment of the tasks to the stations of a paced straight machining
line that can produce a set of part types is dealt with. The minimum number of stations is the pri-
mary objective, and the overall activation cost of the stations is the second, with the latter considering
energy consumption, maintenance, setup and manpower. Fang et al. (2019) focus on the balancing
of a mixed-model disassembly line with multi-robotic workstations, with the goal of simultaneously
minimising the number of robots used, takt time, overall energy consumption and peak workstation
energy consumption. Both Wang et al. (2020) and Liang et al. (2021) aim at minimising energy con-
sumption in the balancing of a disassembly line; in the latter case, the line serves for waste electrical
and electronic equipment disposal, and the authors show that energy consumption can be reduced

4

while pursuing disassembly profit. A bi-objective balancing problem is studied in Liu et al. (2021) in
which both workers and tasks must be assigned to workstations, and tasks must be scheduled, under a
takt time constraint. Both an overall production cost, taking into account processing and manpower,
and energy consumption must be minimised. Zhang, Xu, and Zhang (2020) study the multi-objective
problem of balancing a semi-automated assembly line: the additional decision of whether a station
must be automated, semi-automated or human-operated must be taken, based on energy consumption,
smoothness index and total cost.
As far as the authors are aware, the only problem that attempts to minimise the peak of power con-
sumption in the balancing of an MS is the Simple Assembly Line Balancing Problem with Power Peak
Minimization (SALB3PM). In this, tasks must be assigned to workstations and scheduled, so that the
power peak due to the overlapping processing of tasks is minimised. First studied in Gianessi, Delorme,
and Masmoudi (2019), the SALBP3PM is harder than the SALBP, since intermediate idle time between
tasks can be considered, hence adding scheduling decisions to the assignment decisions. A special case
of SALB3PM that provides a better fit with manual or semi-automated systems is studied in Lamy,
Delorme, and Gianessi (2020), in which scheduling decisions become sequencing decisions since tasks
must be triggered at the earliest available starting time. However, the problem studied here differs sig-
nificantly from the SALB3PM in two major aspects, and actually generalises it. First, in the problem
studied here, the power consumption profile is given not only by the overlapping of tasks processed
on different workstations, but also on different resources of the same workstation. Second, in a PSC
line, the number of resources assigned to each workstation may be subject to decision, e.g. because a
set of resources already exist and the purchase of new resources is not under consideration. For these
reasons, the model of Gianessi, Delorme, and Masmoudi (2019) does not suit the problem presented in
this work.

2.4. Power Peak in Manufacturing Systems
The scarcity of works concerning the peak of the electric power consumption is not restricted to LB
problems. According to Bänsch et al. (2021), the scientific works concerning the optimisation of the
power peak or its cost amount to no more than 2% of the literature, and in most cases they deal with
problems arising at a more tactical or operational stage, especially in scheduling problems. Similar con-
clusions are drawn by Fernandes, Homayouni, and Fontes (2022), who review the scientific production
of the last decade on energy-efficient job-shop and flexible job-shop problems.
In Bruzzone et al. (2012), a flexible flow-shop scheduling problem is tackled and a weighted sum of total
tardiness and makespan must be minimised, and a limitation on power peak is enforced. The authors
propose an exact approach based on a time-indexed MILP and a local search-based matheuristic. Fang
et al. (2013) study a flow-shop scheduling problem in which energy consumption, makespan and carbon
footprint are minimised, with an additional constraint on the power peak. Artigues, Lopez, and Häıt
(2013) introduce a parallel machines scheduling problem where a limitation is imposed on the use of
electric power.
Kawaguchi and Fukuyama (2016) study a job-shop scheduling problem seeking a solution that minimises
a weighted sum of the makespan and the electric energy consumption. Since energy consumption is
considered per time intervals of 10 minutes, minimising the energy consumption of the most consuming
time interval can be assimilated with minimising the peak in the power consumption. Kemmoe, Lamy,
and Tchernev (2017) address a job-shop problem in which the power profile of a task is considered as
having a peak value at the beginning, followed by a lower consumption value for the remainder of its
processing. The minimum makespan is sought, subject to a limitation on the overall power peak over
the whole planning horizon. Gondran et al. (2020) takes the work of Kemmoe, Lamy, and Tchernev
(2017) one step further and, based on the same model of task power consumption profile, tackles a
bi-objective job-shop problem to seek Pareto-optimal solutions w.r.t. the makespan and the negotiable
threshold on the overall power peak. Masmoudi et al. (2017) proposes a single-item, lot-sizing problem
in a flow-shop system with energy consideration. The objective is to minimise the sum of overall setup,
storage and energy-related costs. This latter term accounts for both the price of consumed energy w.r.t.
a TOU pricing scheme, and the cost of the allocated peak power, on which a limitation is imposed in
addition. Similarly, Masmoudi, Delorme, and Gianessi (2019) study a job-shop problem with energy
cost minimisation w.r.t. known TOU tariffs and a limit on both the overall power peak consumption
and the makespan. A MILP and a time-indexed ILP are proposed, along with a matheuristic based on
the latter and used to provide warmstart solutions for harder instances. Carlucci, Renna, and Materi
(2021) consider a job-shop scheduling problem in which makespan is minimised and variable machine

5

speed are taken into account, along with a variable power limit. Finally, Módos, Šucha, and Hanzálek
(2021) study a scheduling problem in a system with parallel dedicated machines, in which a limit is
imposed on the energy that can be consumed in fixed metering intervals. A study of the computational
complexity of some variants of the problem is presented.

3. Problem Description

This section provides a formal definition of the studied problem, which we refer to as the Parallel-Serial-
with-Crossover Assembly Line Balancing Problem with Power Peak Minimization (PSCALB3PM), as
well as a time-indexed Integer Linear Program (ILP) inspired from that of Gianessi, Delorme, and
Masmoudi (2019) for the SALB3PM. As will be discussed, the PSCALB3PM generalises the SALB3PM.
A Parallel-Serial manufacturing line with Crossover has to be designed to implement a production
process. Let m andM = {0...m−1} denote, respectively, the maximum allowed number of workstations
and the workstation set. Each workstation k ∈ M can be assigned a number rk of identical resources,
rk being bounded by a maximum number rmax. The maximum total number of resources of the line,∑

k∈M rk ≤ Rmax, is also subject to a bound Rmax, with m ≤ Rmax ≤ m · rmax. A targeted minimum
line throughput is imposed, in the form of a given takt time value, which we denote by c. Given a
workstation k′ s.t. rk′ > 1, its resources function at the same time (and not, e.g., by turns) and process
the same tasks according to the same schedule, but shifted by multiples of the line takt time. Therefore,
the processing times of the assigned tasks can sum up to rk′ · c, without preventing k′ producing an
item each c time units, i.e. without compromising the target throughput.
It is of particular importance to point out that this latter aspect is a major difference w.r.t. the
SALB3PM. Indeed, the SALB3PM is the particular case of the PSCALB3PM with rmax = 1, i.e. that
forbids nonserial configurations. On the one hand, tasks repeat with period c, and so does the power
consumption profile, as in the SALB3PM for a simple assembly line; on the other hand, however,
for each workstation k′ s.t. rk′ > 1, the timespan virtually expands to rmax · c: therefore the power
consumption sums up not only for tasks processed at the same time on different workstations, but also
for tasks assigned to the same workstation with multiple resources and whose processings are shifted
in such a way as to occur at the same time on different resources.
Let us also denote by O = {0...n − 1} the set of the n production tasks of the same process. A task
j ∈ O is characterised by a processing time tj and a power consumption value wj , with both being
integer, deterministic and workstation-independent. Precedence constraints exist among the tasks such
that given i, j ∈ O, if i precedes j (which we denote by i ≺ j), the processing of i must be over before
j can begin.
The objective is to decide:
• the number of resources of each workstation k ∈M,
• the assignment of tasks to workstations,
• the starting time of tasks,

so that the target takt time is complied with by the workload of all workstations, precedence constraints
are met, and the overall power consumption profile, determined by the overlapping execution of tasks
on different resources (of one or different workstations), has its peak minimised. The core assignment
and scheduling decision of the SALB3PM are found in the PSCALB3PM, which in addition must in-
corporate structure decisions to shape the parallel-serial line.
In order to represent the scheduling decisions in the PSCALB3PM, we follow the choice of the ILP
model of Gianessi, Delorme, and Masmoudi (2019) and make use of time-indexed variables, a very com-
mon choice in the literature of scheduling problems (Bowman 1959). We denote by T = {0...rmax ·c−1}
the set of the time slots of the augmented timespan rmax · c: T acts as the index set of time-indexed
variables, since it allows the time horizon of workstation k to be expressed even in the case in which
it virtually expands to rk · c. Moreover, let T j = {0...rmax · c− tj} denote the set of candidate starting
times of task j, and T j

r = {0...r · c − tj} denote the set of possible starting times for any task on a
workstation with r resources, 1 ≤ r ≤ rmax, and T j

rmax = T j .
The following binary decision variables allow the abovementioned decisions of the problem to be rep-
resented:
• assign variables Xj,k, with j ∈ O and k ∈M, and Xj,k = 1⇔ task j is assigned to workstation k,
• trigger variables Sj,t, where j ∈ O and t ∈ T j , and Sj,t = 1⇔ task j is triggered at time slot t,
• resource variables Rk,r, with k ∈M and r ∈ {1...rmax}, and Rk,r = 1⇔ workstation k uses its r-th

6

resource,
to which we add a non-negative decision variable:
• power-peak variable W

M
, an upper bound on the power consumption peak all along the time horizon

{0...c− 1}.
We further introduce for each j ∈ O and t ∈ T j the binary decision expression (1):

F (j, t) =
t∑

τ=t−tj+1
Sj,τ , F (j, t) = 1⇔ task j is running at time slot t (1)

The correctness of this expression is based on the fact that only one Sj,t variable, corresponding to
the starting time of j, can take value 1. F (j, t) then takes value 1 if j has been triggered at a time
τ ∈ {t− tj + 1...t}.
The proposed model MPSC for PSCALB3PM is then as follows:

min W
M

(2)
s.t.

∑
k∈M

Xj,k = 1 ∀j ∈ O (3)
∑
j∈O

tj ·Xj,k ≤ c ·
∑

r∈{1...rmax}
Rk,r ∀k ∈M (4)

Xj,k ≤
∑

h∈M:h≤k

Xi,h ∀i, j ∈ O : i ≺ j, k ∈M (5)

∑
t∈T j

Sj,t = 1 ∀j ∈ O (6)

Xj,k −Rk,r ≤
∑

t∈T j
r−1

Sj,t ∀j ∈ O, k ∈M, r ∈ {1...rmax} (7)

Sj,t ≤
t−ti∑
τ=0

Si,τ + 2−Xi,k −Xj,k ∀i, j ∈ O : i ≺ j, k ∈M, t ∈ T j (8)

Xi,k + Xj,k + F (i, t) + F (j, t) ≤ 3 ∀i, j ∈ O : i < j, k ∈M, t ∈ T (9)∑
j∈O, r∈{1...rmax}

wj · F (j, (r − 1)c + t) ≤ W
M
∀t ∈ {0...c− 1} (10)

Rk,r+1 ≤ Rk,r ∀k ∈M, r ∈ {1...rmax − 1} (11)∑
k∈M, r∈{1...rmax}

Rk,r ≤ Rmax (12)

Xj,k, Sj,t, Rk,r ∈ {0, 1}, W
M
∈ Z+

Constraints (3) state that each task must be assigned to exactly one workstation. Relations (4) bound
the workload of each workstation k, i.e. the sum of the processing times of the tasks assigned to it, to
the number of resources assigned to it, i.e.

∑
r∈{1...rmax} Rk,r, times the takt time c. Constraints (5) are

precedence relations: if task i is a predecessor of task j, then the assignment of j to a workstation, say
k, forces i to be assigned either to k or to another, upstream of k. Inequalities (8) enforce that in case
they are assigned to the same workstation, then i must be triggered at least ti slots before j; they are
redundant otherwise.
Relations (6) impose the trigger of task j at exactly one of its candidate time slots T j . Moreover,
let k be the station, with rk resources, to which j is assigned, i.e. Xj,k = 1: (11) then ensure that
Rk,1 = ... = Rk,rk

= 1, and consequently (7) forbids starting j at a time t ≥ rk · c− tj + 1. Along with
(6), this enforces that the processing of j must start at one of the time slots {0...rk · c− tj}. Constraints
(9) prevent two tasks i and j from being processed at the same time on the same workstation: either
they are assigned to the same workstation, i.e. (∃k ∈ M) Xi,k = Xj,k = 1, but then at most one
among them can be running at time t, i.e. F (i, t) + F (j, t) ≤ 1; or their processings overlap at least
in part, i.e. (∃t ∈ T) F (i, t) = F (j, t) = 1 but then they must assigned to different workstations, i.e.
(∄k ∈M) Xi,k = Xj,k = 1.

7

Each constraint (10) refers to a time slot t of the actual timespan {0...c − 1} of the line; it considers
the sum of the power consumption of all the tasks running at t concurrently on some resource of the
(k, r) of the line, i.e. which are running at some time slot (r − 1)c + t of the virtual schedule of the
workstation they are assigned to. In this way, (10) bounds the overall power consumption at time t to
W

M
, which we minimise in (2). Finally, inequality (12) bounds the overall number of resources at Rmax.

The size of the proposed model MPSC , in terms of number of variables NV and of constraints NC,
depends on the PSCALB3PM instance size as shown by (13) and (14):

NV(MPSC) = n ·m + n · c · rmax + m · rmax (13)
NC(MPSC) = 2 · n + c + m · (p + rmax) + m · rmax · (n + p · c + n·(n−1)·c

2) + 1 (14)

where p = |{(i, j) : i, j ∈ O, i ≺ j}| is the number of precedence constraints.
Although inspired by the model of Gianessi, Delorme, and Masmoudi (2019), MPSC has some major
differences, related to the possibility of assigning more than one resource per workstation, which should
be underlined. The main and most straightforward difference is the addition of resource variables to
model such assignment, as well as the need to limit the overall number of resources by means of
(12). Secondly, the total possible workload of a workstation depends on the number of its resources,
with a direct impact on balancing decisions, as represented by constraints (4). Of course, since the
timespan of a workstation k can be any of rk · c, rk ∈ {1...rmax}, not only a much larger number of
trigger variables per task is required, which in itself is an element making the solving harder and not a
modelling difference: the decision of whether a set of time slots is available to trigger a task must now be
taken, which is the role of constraints (7). Moreover, due to the nature of resource variables, symmetry-
breaking constraints (11), although not necessary to model the problem, are preferable to reduce the
computational time later. However, the subtlest difference in terms of modelling may be represented
by constraints (10) that bound the cumulative power used to W

M
, since the power consumption, as

previously explained, must sum up not only for tasks whose processings overlap as they are assigned
to different workstations, but also to the same workstation and shifted in such a way so to occur at
the same time on different resources. An example is given in Figure 3, the details of which will be
described in depth in Section 3.1. In the right subfigure, workstation k = 3 is assigned 2 resources
and the subset of tasks {5, 4, 6, 7}: the latter are scheduled in such a way that the processing of task 5
overlaps with task 4, then with task 6, for respectively 5 and 7 time units. Representing such overlaps
is a major modelling contribution. Incidentally, the fact that each constraint (10) must consider a set
of contributions whose number is not bounded by m, as it was in the SALB3PM, but by

∑
k rk, which

is under decision, can make the solving considerably harder.

3.1. Effects of allowing parallel-serial configurations with crossover
In the following, we try to take a closer look at the implications of allowing parallel-serial configurations
with crossover to afford the reader a better grasp of the problem being studied.
Let us consider two of the SALB3PM instances defined in Gianessi, Delorme, and Masmoudi (2019),
namely bowman-1 and jaeschke-2. The former has n = 8, m = 5, c = 20, the latter n = 9, m = 3,
c = 18. Figure 2 resumes their task features: for each node of the precedence graphs, the processing
time is indicated above the node, and the power consumption below.

Figure 2. SALB3PM instances bowman-1 (left) and jaeschke-2 (right)

Instance bowman-1 offers an example, depicted in Figure 3, to illustrate how beneficial the adoption
of parallel-serial configurations with crossover can be in terms of power peak reduction.

8

Figure 3. Benefits on power peak of switching to parallel-serial configurations with crossover, bowman-1 instance

This Figure shows via Gantt diagrams the optimal solutions to different PSCALB3PM problems based
on bowman-1. Each task is represented by a box whose width and height are proportional to its
processing time and power consumption, respectively, while the horizontal position denotes its starting
time in the schedule. A separate chart is shown for the schedule of each resource, with thick dotted
lines separating the resources of different workstations, and thin ones the resources of one workstation.
The overall power consumption profile is highlighted by a thick continuous line. The leftmost subfigure
is the optimal solution when Rmax = m = 5 and rmax = 1: in fact, it represents the SALB3PM
optimum. In the rightmost subfigure, the same maximum authorised number of 5 resources holds, but
rmax = 2, meaning that parallel-serial configurations with crossover are allowed and up to 2 resources
per workstation can be used. In the solution with rmax = 1, the peak results from the overlap of tasks
0, 1, 2, 4 and 6, and its value is W

M
= w0 +w1 +w2 +w4 +w6 = 22+35+13+36+7 = 113 power units.

When rmax = 2, four workstations are used: the first three k = 0...2 have rk = 1 and their workloads do
not exceed the takt time, thus their cycle has period c; the last workstation has two resources working
in parallel, i.e. r3 = 2, which have a period 2c and process the same tasks, but with schedules shifted
by c. This arrangement of the available resources allows the described overlap to be avoided: the peak
occurs now when tasks 0, 1, 2, 5 and 6 are running concurrently, decreasing W

M
by w4 − w5 = 7 to

106. Note that assigning two resources to workstation k = 3 in the second case allows it to have an
augmented timespan of 2c: the execution of task j = 4 can then span over the first and the second half
of it – which would obviously have been impossible with rmax = 1– and be delayed, so as to avoid the
most power-consuming overlap. From a combinatorial viewpoint, this relaxation in scheduling tasks
on a workstation with parallel resources, due to having an expanded time horizon of rk · c instead of
multiple compartmentalised timespans of width c, is among the main reasons behind the power peak
reduction in parallel-serial configurations with crossover.
Another noteworthy observation is how increasing the number of resources in an existing parallel-serial
configuration impacts the peak of the power profile. Figure 4 illustrates this on instance jaeschke-
2, showing the optimal solutions when rmax = 2 and the overall number of resources increases from
Rmax = 3 (leftmost subfigure) to Rmax = 4 (rightmost subfigure). Both the Gantt diagrams cover
a time extent of 2c, since in both cases at least one workstation (k = 0 for Rmax = 3, k = 0 and
k = 1 for Rmax = 4) uses all the rmax = 2 resources available. As seen before, the parallel resources of a
workstation k s.t. rk > 1 process the same tasks and have the same schedule shifted by c. With Rmax = 3,
the power peak occurs at the overlap of tasks 1, 4 and 8, amounting to w1 +w4 +w8 = 27+26+20 = 73
power units. Once again, adding a resource allows to avoid this overlap, thanks to a less-constrained
range of scheduling possibilities: the peak occurs now when tasks 3 and 4, or 0 and 7, overlap, with a
consumption of w3 + w4 = w7 + w0 = 44 + 26 = 70.

4. A Matheuristic Approach

As stated before, the PSCALB3PM is NP-hard, and therefore a metaheuristic (see e.g. Glover and
Kochenberger 2003; Talbi 2009) can be useful to deal with large-size instances. This is notably the case
for instances with large takt time c, which can cause the size of the time-indexed modelMPSC to grow
significantly.

9

Figure 4. Adding resources to an existing parallel-serial solution can also be beneficial for the power peak, as shown here on
jaeschke-2 instance, rmax = 2, and Rmax going from 3 to 4

In this section, we provide the definition of MS×LSPSC , a matheuristic for the PSCALB3PM, which
allows to tackle large-size instances in reasonable computational time. MS×LSPSC takes its name from
its structure, i.e. a multi-start (MS) algorithm based on local search (LS), and uses an ILP as decoder.
MS×LSPSC performs its search in the space of solution codings. A solution coding σ is defined as an
ordered set of workstations σk, each representing the ordered set of the tasks assigned to it, in which
each task is assigned to one and only one workstation. For example, the coding of the PSCALB3PM
solution of the rightmost subfigure of Figure 3 is given by (15):

σ = {σ0, σ1, σ2, σ3} = {{0}, {1}, {2, 3}, {5, 4, 6, 7}} (15)

A solution coding σ for the PSCALB3PM only incorporates the assignment decisions of the problem
(represented by variables X in model MPSC). Resource decisions (variables R in model MPSC) can be
derived for each σk as the minimum number of resources required based on the total workload of the
tasks assigned to it. A decoder is then needed to set the starting times of tasks and thus compute
the power peak. It is noteworthy to point out that the resources required by a solution coding could
violate resource bounds rmax and/or Rmax, thus leading to an infeasible PSCALB3PM solution. Such
a solution coding will also be called infeasible.
Since a solution coding implicitly defines an overall task sequence, which results from merging the
ordered sets associated with workstations in such a way as to preserve both the order among and
within the sets themselves, it is useful to define a binary operator on tasks, named σ-precedence. Task
i is said to σ-preceed task j (i≪σ j) if either it is in a lower-index workstation of σ, or it has a lower
index in the same workstation. This is shown in (16):

(∀i, j ∈ O, i ̸= j) i≪σ j ⇔(
∃k1, k2 ∈ {0...|σ|−1}, k1 <k2, i ∈ σk1 ∧ j ∈ σk2

)
∨(

∃k∈{0...|σ|−1}, λ1, λ2∈{0...|σk|−1}, λ1 <λ2, i=σk(λ1) ∧ j =σk(λ2)
)

(16)

where notation σk(λ) denotes the λ-th task of the ordered set σk ∈ σ. σ-precedence allows to define
the search space D formally, as in (17):

D =
{

σ = {σ0 ...σ|σ|−1} |
⋃

k σk = O ∧

(∀k, k′ ∈ {0...|σ|−1}, k ̸= k′) σk, σk′ ⊆ O, σk ∩ σk′ = ∅ ∧

(∀i, j ∈ O) i ≺ j ⇒ i≪σ j
}

(17)

i.e. as the set of all σ, partitions of O, for which the precedence constraints are respected.
From now on, solution codings of PSCALB3PM solutions will be referred to by using the term coding
alone, whereas the term solution will be used exclusively to refer to PSCALB3PM solutions, i.e. in
which starting times of tasks have been decided, and the power peak can be (or has been) evaluated.

10

While a solution has only one possible coding, a coding can lead to different solutions, depending on
the decoder behaviour.
During this section, the solution of the mentioned subfigure in Figure 3 (related to instance bowman-1,
on the left of Figure 2), will be used as the reference example, along with the associated coding of (15).

4.1. Notations related to a Coding
Before describing algorithm MS×LSPSC in detail, it is helpful to define some additional notations
concerning a coding σ. Let us denote by:
• |σ|, the number of workstations used in σ, i.e. with at least one task;
• |σk|, the number of tasks of workstation σk ∈ σ;
• σk(λ), the λ-th task of the ordered set σk ∈ σ, as previously defined in (16);
• rk(σ), the number of resources of workstation σk ∈ σ, initially computed as rk(σ) = ⌈1

c

∑
i∈σk

ti⌉;
• R(σ), the total number of resources in σ, equal to

∑
k∈{0...|σ|−1} rk(σ);

• pen(σ), the penalty units associated with a coding, computed as max{0, R(σ) − Rmax}+∑
k max{0, rk(σ)−rmax}: pen(σ) is greater than 0 if rmax and/or Rmax (the maximum num-

ber of resources per workstation and for the whole line) are violated and the coding is
infeasible, 0 otherwise;

• ιk(σ), the idle time of workstation k in σ, equal to ιk(σ) = rk(σ) · c−
∑

i∈σk
ti;

• Iν(σ), the index of the nonempty workstation in σ which ranks (ν + 1)-th by increasing idle time,
i.e. I0(σ) = argmink ιk(σ) is the workstation with minimum idle time, and (∀ ν > 0)
ιIν−1(σ)(σ) ≤ ιIν(σ)(σ);

• Tk,λ, the set {de
k,λ(σ)...dl

k,λ(σ)} of the possible trigger times for σk(λ), de
k,λ(σ) =

∑λ−1
λ′=0 tσk(λ′)

being the earliest possible value (if all the tasks preceding σk(λ) in σk are also scheduled at
their earliest possible time) and dl

k,λ(σ) = de
k,λ(σ) + ιk(σ) the latest possible value (corre-

sponding to the whole idle time ιk(σ) occurring at the beginning of the schedule of σk).
In the coding σ of (15) associated with the reference example, the |σ| = 4 workstations feature number
of assigned tasks {|σk|} = {1, 1, 2, 4}, workload values {

∑
i∈σk

ti} = {11, 17, 14, 33} and number of
resources {rk(σ)} = {1, 1, 1, 2}; hence, R(σ) = 5. Since rmax = 2 and Rmax = 5, σ is feasible and thus
has pen(σ) = 0 penalty units. Idle times are {ιk(σ)} = {9, 3, 6, 7}, therefore {Iν(σ)} = {1, 2, 3, 0}.
Finally, earliest/latest possible trigger times of the tasks can be computed, e.g. on k = 3 we have
T3,0 = {0...7}, due to ι3(σ) = 7, and T3,2 = {20...27}, due to tσ3(0) + tσ3(1) = t5 + t4 = 20.

4.2. General structure of MS×LSPSC

Figure 5 outlines the structure of the matheuristic MS×LSPSC , and Figure 6 provides a flowchart
diagram for it.
The multi-start (MS) character of MS×LSPSC resides in the main loop (lines 2-17, Figure 5) being
executed as many times (runs) as possible within the parameter time limit.
The outline of MS×LSPSC is straightforward. Starting from a PSCALB3PM instance I, and for each
each run g, the Construction() routine provides a randomly-generated initial coding σ⋆

g in two steps:
1. generate a random topological ordering, i.e. a precedence-compliant sequence, of the tasks
2. randomly choose m− 1 split point for the generated sequence
The initial coding σ⋆

g is then decoded by means of the Decoder() routine (line 4, Figure 5), so as to
obtain a solution s⋆

g, which is the starting point of the local search (LS, lines 5-14, Figure 5).
It is straightforward to see that the random choice of the split points in Construction() can cause σ⋆

g

to be infeasible, as no guarantee is given about its compliance w.r.t. rmax and Rmax. An infeasible cod-
ing σ⋆

g generated by the Construction() routine is not discarded: instead, after computing the power
peak of the corresponding (infeasible) solution s⋆

g, Decoder() adds a penalty to it. Such penalty is
given by an upper bound UBW on the value of the power peak, multiplied by pen(σ⋆

g), the number of
penalty units associated with σ⋆

g . By doing so, infeasible solutions can be visited during the LS.
At each LS iteration, a stochastic descent is performed. Routine GetNeighbors() yields a set of neigh-
bours of the current coding: each is evaluated via Decoder(), and the best coding σ′ and associated
solution s′ are retained. If the power peak associated with s′ is less than or equal to that of s⋆

g, σ′

becomes the new current coding.
Note that if the coding initially yielded by Construction() is infeasible, the LS can possibly walk
through a sequence of infeasible codings. However, once a feasible coding is found, no more infeasible

11

MS×LSPSC()
globals I: PSCALB3PM instance; UBW : upper bound on peak power;
globals b1

LS, b2
LS: loop sizes; timeL: time limit;

returns s⋆: best solution found;
declare s⋆

g , s′: local solutions; Υ: set of codings; σ⋆
g , σ′: local codings;

declare g, f1, f2: iteration counters;
1 s⋆ ← ∅ ; g ← 1
2 while(runtime < timeL)
3 σ⋆

g ← Construction(I)
4 s⋆

g ← Decoder(σ⋆
g) ; f1 ← 0 ; f2 ← 0

5 repeat
6 f1 ← f1 + 1
7 Υ ← GetNeighbors(σ⋆

g)
8 σ′ ← argminσ∈Υ W

M
(Decoder(σ))

9 if(W
M

(s′) ≤W
M

(s⋆
g)) // s′ previously obtained when decoding σ′

10 if(W
M

(s′) < W
M

(s⋆
g)) f2 ← 0 else f2 ← f2 + 1

11 σ⋆
g ← σ′

12 else
13 f2 ← f2 + 1
14 until(f1 = b1

LS || f2 = b2
LS || runtime ≥ timeL)

15 if(W
M

(s⋆
g) < W

M
(s⋆)) s⋆ ← s⋆

g

16 g ← g + 1
17 endwhile
18 return s⋆

Figure 5. Pseudo-code of MS×LSPSC

codings will be accepted, since the power peak of the corresponding infeasible solutions is increased by
some multiple of the upper bound UBW , and hence is always strictly greater than any value attainable
by a feasible solution.
The f1 and f2 variables keep track of the total number of LS iterations and the number of those without
power peak improvement, respectively: LS ends when either f1 or f2 exceed the given limits b1

LS or b2
LS,

or the time limit timeL is reached.
The neighbourhood on which GetNeighbors() is based is described in Section 4.3, whereas Sec-
tions 4.4-4.6 delve into the details of routine Decoder().

4.3. Stochastic descent
For each start, MS×LSPSC generates a coding σ and then improves it during the LS. A straightforward
neighbourhood N is considered, which is defined in the following. Similar neighbourhoods can be widely
found in the literature, e.g. in Gourgand, Grangeon, and Norre (2007) to build metaheuristics for the
SALBP.
The neighbourhood N (σ) of a coding σ can be defined as in (18):

N (σ) =
{

σ′ ∈ D\{σ} | (∃k1, k2 ∈ {0...|σ| − 1},∃i ∈ σk1),(
∀k ̸= k1, k2, σ′

k = σk

)
∧

(
∀j ∈ σk1\{i}, j ∈ σ′

k1

)
∧

(
σ′

k2 = σk2 ∪ {i}
)
∧(

∀j1, j2 ∈ σ′
k1 ∪ σk2 , j1 ≪σ j2 ⇒ j1 ≪σ′ j2

)}
(18)

N (σ) is the set of all codings that can be obtained from σ by removing one task i ∈ O from one
of its workstations, k1, and inserting it in another, k2, of course in precedence-compliant manner. All
other tasks are left in the workstation they are assigned to and σ-precedence relations among them are
preserved. Since the case k1 = k2 is possible, σ must be explicitly removed.
Based on the definition of neighbourhood N , each call to GetNeighbors() performs the following
steps:
(1) a workstation k ∈ {0...|σ| − 1}, and a task assigned to it, j ∈ σk, are picked randomly;
(2) the boundary insertion positions for task j are determined as follows:

12

Figure 6. Flowchart diagram of MS×LSPSC

(a) obtain the ordered set σ, defined as in (19), i.e. by merging the sets σk in the order defined by σ:

σ =
{

σ0(0), σ0(1), ..., σ0(|σ0|−1)
∣∣∣∣∣∣σ1(0)...

∣∣∣∣∣∣σ|σ|−1(0), ..., σ|σ|−1(|σ|σ|−1| − 1)
}

(19)

in which, for the sake of clarity, workstation boundaries are highlighted;
(b) go backward in σ down to the first task jp which is an immediate predecessor of j, i.e. such that

jp ≺ j;
(c) go forward in σ up to the first task js which is an immediate successor of j, i.e. such that j ≺ js;
(d) find kp ≤ k and λp as the workstation and index of jp, s.t. jp = σkp(λp), and ks ≥ k and λs as

the workstation and index of js, s.t. js = σks(λs);
For instance, for the coding of the reference example (see (15)), we get σ = {0 || 1 || 2, 3 || 5, 4, 6, 7};
by picking k = 3 and task j = σ3(1) = 4, the nearest immediate predecessor and successor are
respectively tasks jp = 2 = σ2(0) on kp = 2, and js = 6 = σ3(2) on ks = 3, see (20):

{
0

∣∣∣∣∣∣ 1
∣∣∣∣∣∣ [2], 3

∣∣∣∣∣∣ 5, 4, [6], 7
}

(20)

(3) the set of possible insertion positions, given by (21), is built:

{(σkp(λp), σkp(λp + 1), kp), ...,

(σkp(|σkp | − 1), σkp+1(0), kp), (σkp(|σkp | − 1), σkp+1(0), kp + 1), ...,

(σks(λs − 1), σks(λs), ks)}. (21)

The generic element (j1, j2, k′) of this set represents the choice of inserting task j between j1 and j2
on workstation k′, where j1 and j2 are consecutive elements in the ordered set σ. In the particular
case in which j1 and j2 are on different, consecutive workstations (e.g. j1 = 3 and j2 = 5 in (20)),
there are two possibilities of inserting j between them, i.e. as the new last element of the workstation
of j1, or as the new first element of that of j2. Therefore, the set defined in (21) descends from the
fact that jp ≺ j ≺ js, and the first available position is after jp = σkp(λp) on kp, while the last is
before js = σks(λs) on ks.
In our example, after picking k = 3 and j = 4 ∈ σ3 as in (20), three possible insertion positions
exist, yielding as many neighbour codings, namely:
• (2, 3, k = 2), yielding {{0}, {1}, {[2], 4, 3}, {5, [6], 7}},

13

• (3, 5, k = 2), yielding {{0}, {1}, {[2], 3, 4}, {5, [6], 7}},
• (3, 5, k = 3), yielding {{0}, {1}, {[2], 3}, {4, 5, [6], 7}}.
Of course, when building the set of insertion positions as in (21), the option corresponding to leaving
j in its current position is disregarded, e.g. in our example, (5, 6, k = 3).

(4) for each possible insertion position (j⋆
1 , j⋆

2 , k⋆):
(a) the task j is removed from set σk (and workstation k);
(b) j is then inserted in set σk⋆ (and workstation k⋆) after task j⋆

1 and/or before task j⋆
2 ;

(c) the obtained neighbour coding is evaluated by means of Decoder();
As previously discussed (line 8 of MS×LSPSC , Figure 5), the best resulting coding is retained.

4.4. An exact decoder
The decoding of a coding σ, i.e. finding the trigger times of tasks leading to minimum power peak,
can be performed in exact fashion based on an Integer Linear Program (ILP). Such an ILP can be
derived as a simplified version of MPSC , since not only does a coding σ already integrate decisions
about assignment of tasks and resources to workstations (X and R variables of MPSC , respectively),
but it also imposes sequencing constraints on the tasks of each workstation due to σ-precedence, which
in turn implies the enforcement of precedence constraints, as by (17).
The only decision variables inherited fromMPSC are hence the power-peak variable W

M
and the trigger

variables S. For the sake of clarity, let us change the definition of the latter slightly:
• binary trigger variables Sk,λ,t, t ∈ Tk,λ, Sk,λ,t = 1⇔ task σk(λ) is triggered at t

A model tailored on σ, which we refer to as MPSC(σ), can be defined as follows:

min W
M

(22)
s.t.

∑
t∈Tk,λ

Sk,λ,t = 1 ∀ k∈{0...|σ| − 1}, (23)
∀λ∈{0...|σk| − 1}

Sk,λ+1,t ≤
∑

τ∈Tk,λ∩
{0...t−tσk(λ)}

Sk,λ,τ ∀ k∈{0...|σ| − 1}, (24)
∀λ∈{0...|σk| − 2},
∀ t∈Tk,λ+1∑

k∈{0...|σ|−1}
λ∈{0...|σk|−1}:
(∃t′:de

k,λ(σ)≤t′,

t′≤dl
k,λ(σ)+tσk(λ)−1)
t′ mod c=t

∑
τ∈Tk,λ∩

{t−tσk(λ)+1...t}

wσk(λ) ·Sk,λ,τ ≤W
M
∀t ∈ {0...c− 1} (25)

Sk,λ,t ∈ {0, 1}, W
M
∈ Z+

Constraints (23), similarly to (6), state that each task must be triggered at exactly one among the
available times. Relations (24) result from an adaptation of (8), and apply only to pairs of tasks that
are on the same workstation and consecutive in the coding σ, a relation that is stronger than precedence
constraints, which are implicit in σ.
Each constraint (25) refers to a time t of the actual timespan {0...c−1} of the line, as did the matching
constraint (10), and only considers tasks that could possibly be running at t, or t plus some multiple of
c on the virtual timespan of the workstation they are assigned to. For instance, in the reference example
(see Figure 3) and associated coding (see (15)), task σ2(0) = 2 is not considered in the constraint (25)
associated with t = 15. This is because workstation k = 2 has total workload

∑
i∈σk

ti = t2+t3 = 9+5 =
14, hence number of resources r2(σ) = 1 and total idle time ι2(σ) = r2(σ)·c−t2−t3 = 6. Task σ2(0) = 2
then has earliest and latest possible starting times de

2,0(σ) = 0 and dl
2,0(σ) = de

2,0(σ) + ι2(σ) = 6, hence
its latest possible running time slot is dl

2,0(σ) + t2 − 1 = 14.
Among all the tasks that could possibly be running at time t, only those that are actually running
at t, i.e. that have been triggered at a compatible time, are considered by (25) to be contributing to
the cumulative power consumption at t. By bounding this latter term by W

M
and ∀t ∈ {0...c − 1},

constraints (25) allow the objective function (22) to minimise the overall power peak.
ExactDecoder() can be derived as an ILP solver based on MPSC(σ).

14

4.5. A heuristic decoder
A quick, greedy construction heuristic decoder, HeurDecoder(), can be obtained as shown in Figure 7.
HeurDecoder() performs two steps:
(1) it schedules all the tasks of station I0(σ), i.e. that with minimum idle time, at the earliest possible

time (lines 1-4);
(2) it considers each other workstation σk in the sense of increasing idle time, i.e. for k = Iν(σ),

ν = 1...|σ| − 1, and triggers the tasks of σk in their order, i.e. σk(λ), λ = 0...|σk| − 1, at time t ∈ Tk,λ

s.t. the power peak increment is the minimum.

HeurDecoder(σ)
globals I: PSCALB3PM instance;
argtype σ: coding;
returns s: solution obtained by construction;
declare s: local solution; t, δmin: time; λ0, λ, j, k0, k, ν: integer;

1 k0 ← I0(σ) ; t ← 0
2 for λ0 ← 0 to |σk0 | − 1
3 j ← σk0(λ0) ; schedule task j at time t ; t ← t + tj

4 next λ0
5 for ν ← 1 to |σ| − 1
6 k ← Iν(σ) ; t ← 0
7 for λ ← 0 to |σk| − 1
8 j ← σk(λ) ; δmin ← max{t, de

k,λ(σ)}
9 t ← time slot in {δmin ...dl

k,λ(σ)} causing the min peak increment
10 schedule task j at time t ; t ← t + tj

11 next λ
12 next ν
13 s ← PSCALB3PM solution given by σ and the chosen trigger times
14 return s

Figure 7. Pseudo-code of HeurDecoder()

4.6. Iteratively improving solutions obtained from feasible codings
Based on the decoders described in Sections 4.4-4.5, routine Decoder() obtains a solution from a
coding σ as depicted in Figure 8.
First, a solution sh returned by HeurDecoder() is computed. Then, if σ is infeasible (lines 2-4), the
value of sh is subject to a penalty pen(σ)·UBW , and Decoder() can terminate.
If σ is feasible, a better decoding of σ is sought in iterative fashion by means of ExactDecoder().
In the first call to it (line 5), sh serves as warmstart, a time limit tL is set, and a new solution s′(0)
is obtained. The use of a warmstart guarantees at least one feasible solution, most of all if time limit
tL is tight w.r.t. the hardness of the PSCALB3PM instance and hence, possibly, of the solving of
MPSC(σ). Then, since σ is feasible w.r.t. both rmax and Rmax, Decoder() tries to see whether by
using more resources, a better solution than s′(0) can be achieved. To do so, each possible number
p = 1...Rmax − R(σ) of additional resources is considered iteratively, trying to add one more resource
to each workstation k ∈ K ⊆ M, i.e. that still has available resource slots (lines 7-11), and keeping
the placement of an additional resource that determines the best improvement (lines 12-13). At each
iteration, the solution of the previous iteration, s′(p−1), is used as a warmstart (line 10), and a different
time limit tL’ is used.
At most m iterations per additional resource are run: the procedure stops (line 14) when the addition
of a resource to the line does not allow improvement for any of the workstations of K.

5. Computational Experiments

In this section we describe in detail the computational experiments conducted to assess the suitability
of ILP model MPSC and the performance of the matheuristic MS×LSPSC . Since the PSCALB3PM is,
as far as the authors are aware, a novel problem studied here for the first time, no previous methods
exist for this problem to allow a comparison.
Models MPSC and MPSC(σ) were implemented and solved with CPLEX 12.7.1 solver; both the solver

15

Decoder(σ)
globals I: PSCALB3PM instance; UBW : upper bound on peak power;
globals timeL, tL, tL’: time limits;
argtype σ: coding;
returns s⋆: best solution obtained;
declare s′(), s′′(): arrays of local solutions; sh: local solution;
declare p: iteration counter; K: set of integer; R′, k: integer;

1 sh ← HeurDecoder(I, σ)
2 if(pen(σ) > 0)
3 s⋆ = sh ; W

M
(s⋆) = W

M
(s⋆) + pen(σ)·UBW ; return s⋆

4 endif
5 s′(0) ← ExactDecoder(I, σ, WS=sh, tL) ; s⋆ ← s′(0) ; R′ ← R(σ) ; p ← 1
6 while(p ≤ Rmax −R′ && runtime < timeL)
7 K ← {k ∈ {0...|σ| − 1} | rk(σ) < rmax}
8 foreach(k ∈ K) if(runtime < timeL)
9 rk(σ) ← rk(σ) + 1 // allow one more resource in workstation σk

10 s′′(k) ← ExactDecoder(I, σ, WS=s′(p− 1), tL’) ; rk(σ) ← rk(σ)− 1
11 next k

12 k ← argmink∈K W
M

(s′′(k)) ; s′(p) ← s′′(k)
13 rk(σ) ← rk(σ) + 1 ; ιk(σ) ← ιk(σ) + c(I) ; update ranking I(σ)
14 if(W

M
(s′(p)) < W

M
(s′(p− 1))) s⋆ ← s′(p) else break

15 p ← p + 1
16 endwhile
17 return s⋆

Figure 8. Pseudo-code of Decoder()

and MS×LSPSC were run on a Intel Xeon E5-2660 v3 2.6 Ghz machine with 62.65Gb RAM.
A set of 17 SALB3PM instances from Gianessi, Delorme, and Masmoudi (2019) were considered with
up to n = 30 tasks with power consumption values between 5 and 50, m = 14 workstations and target
takt time values of up to c = 94. The aforementioned SALB3PM instances were associated with values
of rmax ranging from 1 to 3, and of Rmax from m to rmax ·m. For each SALB3PM benchmark instance,
3m + 3 PSCALB3PM cases can thus be obtained: one with rmax = 1, m + 1 with rmax = 2, and 2m + 1
with rmax = 3, giving rise to 375 PSCALB3PM cases in total.
For each such PSCALB3PM instance, the MPSC-based ILP solver was given a 3600s time limit, in
order to evaluate its limits w.r.t. the hardness of instances.
MS×LSPSC is given a time limit of 600s (line 2, Figure 5), which seems a reasonable value for a
practitioner as to the purposes mentioned at the beginning of Section 4.

5.1. Comparing MS×LSPSC with some variants and reference algorithms
In order to assess the effectiveness of the proposed multi-start matheuristic MS×LSPSC(Figure 5), a
set of variants were implemented and tested that differ with respect to three main features:

• the behaviour of Decoder() routine (lines 4, 8 of MS×LSPSC , Figure 5);
• the behaviour of GetNeighbors() routine (line 7, Figure 5);
• the terminating condition (line 14, Figure 5) for the LS loop.

For the decoding of the current coding σ, three strategies are considered, all based on Decoder()
routine (Figure 8). In all of them, infeasible codings are decoded by means of HeurDecoder(); the
upper bound UBW equals the sum of the min{n, Rmax} biggest task power values, plus 1, and hence is
by definition unattainable by any feasible solution; the values of the time limits tL and tL’ (lines 5, 10
of Decoder(), Figure 8) are set to 60s and 10s, respectively.

(D1) the strategy described in Section 4.6;
(D2) unlike D1, the first exact decoding (line 5, Figure 8) is sought without any warmstart: when no

solution is found within the imposed time limit tL, σ is considered nondecoded and its evaluation
is UBW , i.e. a value which is better than those of any infeasible coding but worse than any feasible,
successfully decoded coding;

(D3) unlike D1, Decoder() uses HeurDecoder() only, both in the first decoding and in the iterative
improvement strategy (Figure 8).

16

It is noteworthy to observe that in case of a feasible coding σ, decoding strategy D1 always succeeds
in finding a solution for it, which in the worst case is that returned by HeurDecoder(), and similar
considerations apply for D3. Also note that D3 is the quickest strategy, but no guarantee is given
concerning the quality of the decoding.
As regards the behaviour of GetNeighbors() w.r.t. the current coding σ, three options are also
considered, listed in order of growing complexity:

(N1) contrary to what is described in Section 4.3, after randomly picking a workstation k and one of its
tasks, j ∈ σk, the insertion position is chosen randomly among those available for it;

(N2) the strategy described in Section 4.3, i.e. random choice of the task j to move, enumeration of all
the related insertion options, evaluated by means of Decoder(), and choice of the most improving
one;

(N3) a complete enumeration of the neighbours of σ is performed: all tasks are taken into consideration
for the movement, along with all the corresponding insertion options; every such option is evaluated
by Decoder(), and the overall most improving is retained.

In all three cases, a neighbour of σ is accepted as the new current coding (lines 9-11 of MS×LSPSC ,
Figure 5) if its decoding provides a better value, but also the same value, to promote diversification.
Among the three options, only N3 leads to a deterministic descent, while N1 and N2 give rise to a
stochastic descent.
Finally, three possible stopping criteria are tested for the local search of MS×LSPSC (line 14, Figure 5):
all are based on the description of Section 4.2 and differ by the values of b1

LS and b2
LS:

(S1) b1
LS = 50, b2

LS = 50, i.e. a total number of b1
LS = 50 LS iterations are run;

(S2) b1
LS = +∞, b2

LS = 50, i.e. a total number of b2
LS = 50 LS iterations without improvement are run;

(S3) b1
LS = +∞, b2

LS = 1, i.e. LS stops at the first iteration without improvement.

Criteria S1 and S2 are designed to stop the stochastic descent induced by options N1 and N2 for the
behaviour of GetNeighbors(), while criterion S3 only fits option N3, making each run of MS×LSPSC

a deterministic descent to a local optimum. Other combinations would be possible but either make no
sense (N3 combined with S2) or seem uninteresting (S3 combined with N1 or N2, i.e. a stochastic descent
stopping at the first nonimproving step; S1 combined with N3, i.e. a deterministic descent stopping
after a fixed number of steps). Therefore, the total range of combinations of possible GetNeighbors()
behaviours and stopping criteria give rise to 5 options:

• 4 obtained by combining one of options N1 and N2, and one of criteria S1 and S2;
• 1 obtained by combining N3 and S3.

This gives rise to 15 variants of MS×LSPSC , including the one presented in Section 4.
In order to enlarge the range of comparison terms, we also designed, implemented and tested an Iterated
Local Search (ILS). ILS (see e.g. Lourenço, Martin, and Stützle 2003) is a LS-based metaheuristic
which escapes a local optimum by randomly perturbating it to launch a new descent. In our case,
the perturbation consists in applying 3 random neighbourhood movements, ensuring that each visited
coding is different from the previous ones. Since ILS seeks local optima, we only used N3 and S3;
however, the three decoding strategies can be used, leading to three ILS algorithms.
Table 1 allows a comparison among the 18 tested methods, labelled MS01 to MS15 and ILS1 to ILS3,
respectively. The method proposed in this article (Section 4) is MS04. All methods are run 20 times
for each instance to take their randomness into account. The same aforementioned time limit of 600s
is imposed on each replication. For each PSCALB3PM instance, up to 361 results exist, namely the
20 replications from each method, plus the best solution possibly found by the ILP solver, as well as
a lower bound, determined by solving MPSC . Hence, for each such instance, a best known lower (LB)
and upper bound (UB) can be determined:
• the best known UB could come from one of the 18 methods, or the solving of MPSC , or from an

instance with lower Rmax or rmax values, whose solutions are also feasible for cases associated with
larger values;
• the best known LB could come from an instance with larger Rmax or rmax values, whose best known

lower bounds are also valid for cases associated with lower values.
Therefore, for each solution S, gaps %LB and %BK w.r.t. the associated LB and UB can be computed

17

as follows:

%LB = W
M

(S)− LB

LB
%BK = W

M
(S)− UB

UB
(26)

Such gaps can then be averaged, for each instance, over all the replications, then over each group
of instances derived from the same SALB3PM instance, that differ for their rmax and Rmax values.
Replications of some instances having yielded infeasible solutions or no solution are obviously not
taken into account. The obtained average gaps are denoted in the following as %BK and %LB. Table 1
shows, for each method and family of instances, the value obtained for %BK. The last three rows report,
for each version, the weighted average of %BK, as well as the worst recorded value for %BK, and the
percentage of found feasible solutions.
By looking at both the weighted average gap and maximum gap, the results of Table 1 suggest some
considerations as to the decoding strategies. If we compare methods that only differ in the decoding,
e.g. MS01 vs MS06 vs MS11, or MS04 vs MS09 vs MS14, or ILS1 vs ILS2 vs ILS3, we see that those
based on strategy D3 perform significantly worse than those using D1 and D2, which shows the interest
of the ILP decoder. As regards the comparison of D1 and D2, the impact of using a heuristic decoder
before the exact decoder to provide it with a warmstart solution, which is what distinguishes them, is
not negligible although sometimes weak, i.e. methods MS01 to MS05 seem to perform slightly better
than MS06 to MS10, whereas the performance difference between ILS1 and ILS2 appears to be more
significant.
By looking at the average percentage of feasible solutions, and again taking methods that only differ
in the decoding, results are very similar, which is not very surprising if we consider that all decoders
have the same behaviour until the algorithm finds a feasible solution. More remarkable differences occur
among methods based on N3, e.g. MS05 vs MS10 but also ILS1 vs ILS2, as the neighbourhood complete
enumeration is time-consuming and algorithms may not have converged at the end of a replications,
inducing a stronger variability.
For all decoding strategies, the methods making use of a complete enumeration of the neighbourhood of
a coding, i.e. the neighbourhood option N3, seemingly also have worse results, and among them, those
making use of multi-start seem to behave better than those based on ILS: e.g. for strategy D1, MS05
has worse results than MS01 to MS04, but better than ILS1, and the same seems to hold for methods
MS06 to MS10 and ILS2, and MS11 to MS15 and ILS3. This can probably be explained by the fact
that option N3 is too time consuming w.r.t. the ratio between the time limit of a replication and those
imposed to the calls of ExactDecoder() during a run of Decoder(). The same considerations apply
to the comparison of the average number of feasible solutions.
If we now focus on the first four methods per decoding strategy, i.e. those using neighbourhood options
N1 or N2, and consequently, stopping criteria S1 or S2, it seems that the combination of S2 and
N2 yields the best results: this is true, in terms of average gap values, for MS04 w.r.t. MS01-MS03,
for MS09 w.r.t. MS06-MS08, and for MS14 w.r.t. MS11-MS13, whereas this is not always the case
for maximum gap values. These results are not completely surprising: neighbourhood option N2 is
neither completely random as N1, nor time-consuming as N3, and option S2 certainly allows for a more
effective exploration of the coding space. These considerations seem to hold also for the average number
of feasible solutions.
The results of Table 1 seem then to suggest that the MS×LSPSC version proposed in this article,
identified here as MS04, is the most effective. Therefore, in the following the symbol MS×LSPSC will
refer to MS04.

5.2. Results Analysis for MPSC and MS×LSPSC

The two solving methods (solver, MS×LSPSC) allowed the best known lower and upper bound (LB,
UB) to be collected for the 375 instances. The two bounds obviously coincide for instances solved to
optimality.
Table 2 shows the results of solving the ILP model MPSC on the PSCALB3PM instances. Results are
aggregated per original SALB3PM instance, all Rmax value considered, and separated according to the
value of rmax. The reported figures are the average values of the optimality gap, %LB, the computation
time, cpu, the percentage of instances for which a feasible solution has been found, feas(%), and those
which have been solved to optimality, opt(%). The four rightmost columns show aggregate figures, all
rmax value considered.
An overall average gap of 2.61% is obtained by solving the ILP model; the overall average running time

18

T
ab

le
1.

R
es

ul
ts

of
th

e
15

M
S×

LS
P

S
C

va
ri

an
ts

an
d

3
IL

S
m

et
ho

ds
as

to
av

er
ag

e/
m

ax
im

um
ga

ps
w

.r
.t.

be
st

kn
ow

n
so

lu
tio

ns
(%

B
K

)
an

d
av

er
ag

e
pe

rc
en

ta
ge

of
fe

as
ib

le
so

lu
tio

ns
fo

un
d.

m
et

ho
d

M
S0

1
M

S0
2

M
S0

3
M

S0
4

M
S0

5
IL

S1
M

S0
6

M
S0

7
M

S0
8

M
S0

9
M

S1
0

IL
S2

M
S1

1
M

S1
2

M
S1

3
M

S1
4

M
S1

5
IL

S3
de

co
di

ng
st

ra
te

gy
D

1
D

2
D

3
ne

ig
hb

or
ho

od
vi

si
tin

g
st

ra
te

gy
N

1
N

2
N

3
(N

3)
N

1
N

2
N

3
(N

3)
N

1
N

2
N

3
(N

3)
h

h
h
h

h
h
h

h
h

h
h
h

h h
in

st
an

ce
(n

,m
,c

)
LS

st
op

S1
S2

S1
S2

S3
(S

3)
S1

S2
S1

S2
S3

(S
3)

S1
S2

S1
S2

S3
(S

3)

bo
w

m
an

-1
8

5
20

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
12

%
0.

10
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
12

%
0.

11
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

1.
45

%
1.

51
%

bu
xe

y-
1

29
14

25
0.

82
%

0.
68

%
0.

71
%

0.
57

%
0.

67
%

0.
64

%
0.

82
%

0.
65

%
0.

73
%

0.
60

%
0.

71
%

0.
67

%
0.

91
%

0.
72

%
0.

62
%

0.
36

%
2.

48
%

2.
55

%
bu

xe
y-

2
29

7
47

2.
28

%
2.

13
%

2.
18

%
1.

93
%

2.
44

%
2.

84
%

2.
34

%
2.

10
%

2.
26

%
1.

99
%

2.
49

%
6.

94
%

1.
56

%
1.

28
%

1.
15

%
0.

70
%

5.
01

%
4.

87
%

ja
ck

so
n-

1
11

8
7

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
23

%
0.

23
%

0.
00

%
0.

00
%

0.
01

%
0.

00
%

0.
23

%
0.

21
%

0.
09

%
0.

09
%

0.
09

%
0.

09
%

1.
78

%
1.

84
%

ja
ck

so
n-

2
11

3
21

0.
00

%
0.

00
%

0.
00

%
0.

00
%

1.
54

%
2.

05
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

1.
54

%
1.

98
%

2.
16

%
2.

16
%

2.
16

%
2.

16
%

11
.3

2%
12

.4
6%

ja
es

ch
ke

-1
9

8
6

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
19

%
0.

16
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
19

%
0.

18
%

0.
37

%
0.

37
%

0.
37

%
0.

37
%

2.
92

%
2.

74
%

ja
es

ch
ke

-2
9

3
18

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
14

%
0.

03
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
14

%
0.

00
%

0.
71

%
0.

71
%

0.
71

%
0.

71
%

7.
53

%
6.

93
%

m
an

so
or

-1
11

4
48

0.
02

%
0.

02
%

0.
01

%
0.

02
%

0.
14

%
0.

20
%

0.
03

%
0.

03
%

0.
03

%
0.

03
%

0.
14

%
0.

45
%

0.
10

%
0.

10
%

0.
10

%
0.

10
%

0.
63

%
0.

47
%

m
an

so
or

-2
11

2
94

0.
00

%
0.

01
%

0.
01

%
0.

00
%

0.
58

%
0.

37
%

0.
00

%
0.

00
%

0.
00

%
0.

01
%

0.
58

%
1.

04
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

1.
33

%
1.

23
%

m
er

te
ns

-1
7

6
6

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
18

%
0.

17
%

m
er

te
ns

-2
7

2
18

0.
00

%
0.

00
%

0.
00

%
0.

00
%

2.
93

%
2.

49
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

2.
93

%
2.

40
%

14
.0

4%
14

.0
4%

14
.0

4%
14

.0
4%

15
.0

2%
14

.9
3%

m
itc

he
ll-

1
21

8
14

0.
63

%
0.

55
%

0.
54

%
0.

51
%

0.
87

%
0.

95
%

0.
62

%
0.

55
%

0.
52

%
0.

49
%

0.
89

%
0.

96
%

0.
53

%
0.

45
%

0.
31

%
0.

22
%

3.
11

%
3.

24
%

m
itc

he
ll-

2
21

3
39

3.
39

%
3.

15
%

3.
39

%
2.

79
%

5.
18

%
5.

42
%

3.
29

%
3.

11
%

3.
53

%
3.

28
%

5.
34

%
5.

40
%

1.
46

%
1.

43
%

1.
18

%
1.

12
%

11
.0

5%
10

.9
3%

ro
sz

ie
g-

1
25

10
14

0.
50

%
0.

48
%

0.
49

%
0.

45
%

0.
49

%
0.

54
%

0.
49

%
0.

47
%

0.
49

%
0.

48
%

0.
53

%
0.

54
%

0.
41

%
0.

37
%

0.
29

%
0.

23
%

2.
25

%
2.

22
%

ro
sz

ie
g-

2
25

4
32

2.
29

%
2.

23
%

2.
22

%
1.

97
%

3.
16

%
5.

43
%

2.
32

%
2.

25
%

2.
29

%
2.

05
%

3.
25

%
5.

51
%

1.
32

%
1.

22
%

1.
05

%
0.

71
%

7.
52

%
9.

21
%

sa
w

ye
r-

1
30

14
25

0.
84

%
0.

82
%

0.
75

%
0.

66
%

0.
76

%
0.

73
%

0.
82

%
0.

83
%

0.
72

%
0.

66
%

0.
76

%
0.

71
%

0.
99

%
0.

78
%

0.
65

%
0.

41
%

2.
38

%
2.

40
%

sa
w

ye
r-

2
30

7
47

2.
88

%
2.

64
%

2.
74

%
2.

42
%

2.
47

%
2.

50
%

2.
95

%
2.

69
%

2.
74

%
2.

49
%

2.
66

%
2.

68
%

1.
87

%
1.

54
%

1.
49

%
1.

02
%

4.
74

%
4.

61
%

Av
er

ag
e

(%
B

K
)

0.
82

%
0.

76
%

0.
77

%
0.

66
%

1.
06

%
1.

19
%

0.
82

%
0.

76
%

0.
78

%
0.

70
%

1.
10

%
1.

49
%

1.
09

%
0.

99
%

0.
91

%
0.

77
%

3.
72

%
3.

79
%

M
ax

im
um

(%
B

K
)

10
.3

8%
7.

09
%

5.
32

%
4.

32
%

12
.7

2%
22

.2
2%

10
.3

8%
7.

09
%

5.
28

%
4.

53
%

12
.7

2%
22

.3
6%

14
.0

4%
14

.0
4%

14
.0

4%
14

.0
4%

18
.8

6%
22

.2
2%

Av
er

ag
e

(%
fe

as
.s

ol
ut

io
ns

fo
un

d)
98

.9
6%

99
.1

5%
99

.1
5%

99
.4

7%
81

.7
6%

80
.7

9%
98

.9
6%

99
.1

5%
99

.1
5%

99
.4

7%
80

.9
7%

80
.8

0%
98

.9
6%

99
.1

5%
99

.1
9%

99
.4

7%
83

.9
9%

83
.6

8%

19

is less than 2600s, although this figure can vary significantly according to the instance. Since feasible
solutions are found for 65% of the instances, of which about 50% lead to solutions of proven optimality
(32% of the total), we can reasonably infer that instances not solved to optimality have an average
gap still to close at the time limit of around 5%. Performances can be in some cases very good, with
feasible solutions regularly found with c up to around 20, and in some cases even more if m is within
2 and 4, although a general overview reveals that model MPSC can struggle in finding solutions for
instances of medium to large size, as e.g. for buxey-1, buxey-2, sawyer-1 and sawyer-2 instances. This
trend strengthens as rmax grows, which is normal as the time horizon, hence the size of the time-indexed
model, grows significantly with the number of resource options for the workstations. Running times
also suggest this trend. It can be shown that the best case is represented by Rmax = m, as the average
results, all instances and rmax values considered, are all better than the average general values: 1.82%
for %LB, 1910.7 for cpu, 78.43% for feas(%) and 54.90% for opt(%). All these consideration lead us to
conclude that an heuristic approach is indeed advisable.
Table 3 allows an overview of the performances of MS×LSPSC as regards the power peak. The Table
reports the average gaps %LB and %BK obtained by MS×LSPSC , computed as explained previously; for
the second, the average standard deviation σ(%BK) is also reported. Moreover, a comparison between
the results of the matheuristic and a set of simpler decoders is provided: terms %ESD

BK , %HD
BK and %ILPD

BK
concern the average gap achieved for a randomly generated feasible coding by, respectively:
• a naive decoder, consisting in assigning the production tasks to the workstations and scheduling

them at the earliest possible starting date;
• a greedy heuristic decoder, i.e. the routine HeurDecoder() alone;
• an ILP-based decoder, i.e. the routine ExactDecoder() alone, with a warmstart solution obtained

by means of HeurDecoder().
The three figures represent average gaps w.r.t. the best known solution, computed similarly to %BK.
MS×LSPSC has an average gap of 1.52% w.r.t. the best known LB, and of 0.66% w.r.t.the best known
solution, which seems to suggest that the proposed heuristic has very good performances. Indeed,
%LB represents an upper bound on the average gap between the solution yielded by MS×LSPSCw.r.t.
the optimal solution; %BK is a lower bound on the percentage distance w.r.t. the optimum (which by
definition has a value less than or equal to the known solutions). Moreover, a 0.66% gap w.r.t. the best
known solution could suggest that the behaviour of MS×LSPSC is very stable, as the quality of the
solution does not change significantly among the replications. In more detail, the higher gaps are found
for instances with more than 30 tasks (with the exception of mansoor-2): the solution quality offered
by MS×LSPSC seems to worsen with the increasing instance size, which is to be expected since many
performance aspects of MS×LSPSC depend on the instance size, e.g. the size of the reduced ILP model,
whereas the stopping criterion is a fixed time, and the same for all instances. Lastly, on Table 3, the
fact that both %LB and %BK are most often either both 0 or both greater than 0 could mean that when
the algorithm performance decreases, it is at least partially due to the worsening ILP lower bound.
The rightmost part of Table 3 shows the advantage of using MS×LSPSC to achieve a power peak
reduction. The value of 49.89% for gap %ESD

BK means that the naive solution, which could be adopted by
a practitioner not supported by any optimisation algorithm, represents the average percentage power
peak augmentation w.r.t. the best solution, meaning that by adopting MS×LSPSC , the peak of the
power consumption can by reduced by 33%. About 65% of this reduction can be obtained by using
the heuristic decoder HeurDecoder(), and almost 90% can be achieved by using the heuristic and
ILP-based decoders combined. It is noteworthy to point out that such reductions can be obtained all
other production criteria being equal, namely the takt time and the number of workstations, which
seems to suggest that using the proposed methods, and particularly the MS×LSPSC matheuristic, can
be very advantageous in an MS.
Table 4 shows the relation between the term Rmax = Rmax−m, i.e. the difference between the maximum
authorised number of resources for the line and the number of workstations, and the average number
of starts of a replication of MS×LSPSC , denoted as #st. Rmax essentially represents how far we can get
w.r.t. the minimum required number of resources for the line. The term #repl represents the number of
replications of PSCALB3PM instances characterised by a given value of Rmax.
The Table shows that #st, the average number of solutions yielded by MS×LSPSC during a replication,
drops dramatically as soon as Rmax increases over m. When this happens, even for more constrained
instances, the heuristic is more likely to find feasible solutions and invoke the ILP solving, but is
also more likely to execute the part (lines 6-16, Figure 8) in which remaining available resources are

20

T
ab

le
2.

R
es

ul
ts

of
IL

P
m

od
el

M
P

S
C

.

in
st

an
ce

n
m

c

r m
ax

=
1

r m
ax

=
2

r m
ax

=
3

To
ta

l

%
L

B
cp

u
fe

as
(%

)
op

t(
%

)
%

L
B

cp
u

fe
as

(%
)

op
t(

%
)

%
L

B
cp

u
fe

as
(%

)
op

t(
%

)
%

L
B

cp
u

fe
as

(%
)

op
t(

%
)

bo
w

m
an

-1
8

5
20

0.
00

%
0.

1
10

0.
00

%
10

0.
00

%
0.

00
%

30
3.

0
10

0.
00

%
10

0.
00

%
6.

06
%

35
20

.1
10

0.
00

%
9.

09
%

3.
71

%
22

52
.1

10
0.

00
%

44
.4

4%
bu

xe
y-

1
29

14
25

0.
00

%
26

63
.6

10
0.

00
%

10
0.

00
%

15
.4

5%
36

00
.0

6.
67

%
0.

00
%

na
36

01
.2

0.
00

%
0.

00
%

7.
73

%
35

80
.0

4.
44

%
2.

22
%

bu
xe

y-
2

29
7

47
na

36
00

.0
0.

00
%

0.
00

%
na

36
00

.0
0.

00
%

0.
00

%
11

.3
9%

36
00

.6
13

.3
3%

0.
00

%
11

.3
9%

36
00

.4
8.

33
%

0.
00

%
ja

ck
so

n-
1

11
8

7
0.

00
%

0.
0

10
0.

00
%

10
0.

00
%

0.
00

%
18

6.
0

10
0.

00
%

10
0.

00
%

0.
04

%
24

6.
2

10
0.

00
%

94
.1

2%
0.

02
%

21
7.

0
10

0.
00

%
96

.3
0%

ja
ck

so
n-

2
11

3
21

0.
00

%
4.

1
10

0.
00

%
10

0.
00

%
0.

00
%

17
37

.1
10

0.
00

%
10

0.
00

%
3.

83
%

35
67

.7
10

0.
00

%
14

.2
9%

2.
24

%
26

60
.5

10
0.

00
%

50
.0

0%
ja

es
ch

ke
-1

9
8

6
0.

00
%

0.
0

10
0.

00
%

10
0.

00
%

0.
00

%
7.

0
10

0.
00

%
10

0.
00

%
0.

00
%

47
.2

10
0.

00
%

10
0.

00
%

0.
00

%
32

.0
10

0.
00

%
10

0.
00

%
ja

es
ch

ke
-2

9
3

18
0.

00
%

0.
9

10
0.

00
%

10
0.

00
%

0.
00

%
16

8.
3

10
0.

00
%

10
0.

00
%

0.
00

%
15

95
.0

10
0.

00
%

10
0.

00
%

0.
00

%
98

6.
6

10
0.

00
%

10
0.

00
%

m
an

so
or

-1
11

4
48

0.
00

%
0.

6
10

0.
00

%
10

0.
00

%
8.

00
%

35
98

.8
10

0.
00

%
0.

00
%

7.
80

%
36

00
.2

10
0.

00
%

0.
00

%
7.

35
%

33
59

.7
10

0.
00

%
6.

67
%

m
an

so
or

-2
11

2
94

0.
00

%
3.

1
10

0.
00

%
10

0.
00

%
4.

76
%

15
11

.8
10

0.
00

%
66

.6
7%

8.
57

%
31

22
.6

10
0.

00
%

40
.0

0%
6.

35
%

22
39

.1
10

0.
00

%
55

.5
6%

m
er

te
ns

-1
7

6
6

0.
00

%
0.

0
10

0.
00

%
10

0.
00

%
0.

00
%

1.
1

10
0.

00
%

10
0.

00
%

0.
00

%
1.

4
10

0.
00

%
10

0.
00

%
0.

00
%

1.
3

10
0.

00
%

10
0.

00
%

m
er

te
ns

-2
7

2
18

0.
00

%
0.

2
10

0.
00

%
10

0.
00

%
0.

00
%

1.
4

10
0.

00
%

10
0.

00
%

0.
00

%
2.

7
10

0.
00

%
10

0.
00

%
0.

00
%

2.
0

10
0.

00
%

10
0.

00
%

m
itc

he
ll-

1
21

8
14

0.
00

%
12

.7
10

0.
00

%
10

0.
00

%
1.

48
%

36
00

.1
10

0.
00

%
0.

00
%

1.
34

%
36

00
.4

10
0.

00
%

0.
00

%
1.

34
%

34
67

.4
10

0.
00

%
3.

70
%

m
itc

he
ll-

2
21

3
39

0.
00

%
18

67
.3

10
0.

00
%

10
0.

00
%

5.
24

%
36

00
.0

10
0.

00
%

0.
00

%
8.

03
%

36
00

.7
10

0.
00

%
0.

00
%

6.
43

%
34

56
.0

10
0.

00
%

8.
33

%
ro

sz
ie

g-
1

25
10

14
0.

00
%

22
1.

1
10

0.
00

%
10

0.
00

%
1.

38
%

35
99

.4
10

0.
00

%
0.

00
%

1.
24

%
36

00
.1

10
0.

00
%

0.
00

%
1.

25
%

34
97

.5
10

0.
00

%
3.

03
%

ro
sz

ie
g-

2
25

4
32

0.
00

%
17

19
.3

10
0.

00
%

10
0.

00
%

5.
42

%
36

00
.0

10
0.

00
%

0.
00

%
5.

71
%

35
99

.0
88

.8
9%

0.
00

%
5.

20
%

34
74

.1
93

.3
3%

6.
67

%
sa

w
ye

r-
1

30
14

25
1.

53
%

35
91

.6
10

0.
00

%
0.

00
%

na
36

00
.0

0.
00

%
0.

00
%

4.
49

%
36

00
.8

3.
45

%
0.

00
%

3.
01

%
36

00
.3

4.
44

%
0.

00
%

sa
w

ye
r-

2
30

7
47

na
36

00
.0

0.
00

%
0.

00
%

na
36

00
.0

0.
00

%
0.

00
%

51
.9

6%
36

01
.1

13
.3

3%
0.

00
%

51
.9

6%
36

00
.7

8.
33

%
0.

00
%

Av
er

ag
e

0.
10

%
10

16
.8

88
.2

4%
82

.3
5%

1.
83

%
24

29
.7

64
.0

0%
35

.2
0%

3.
28

%
27

43
.3

63
.9

5%
26

.6
1%

2.
61

%
25

60
.5

65
.0

7%
32

.0
0%

21

Table 3. Average performances of MS×LSPSCw.r.t. the best known lower and upper bound, and
comparison as to power peak with alternative decoders.

instance n m c %LB %BK σ(%BK) %
ESD
BK %

HD
BK %

ILPD
BK

bowman-1 8 5 20 0.00% 0.00% 0.00% 50.82% 18.33% 3.73%
buxey-1 29 14 25 0.85% 0.57% 0.28% 49.54% 13.61% 2.45%
buxey-2 29 7 47 3.49% 1.93% 0.65% 59.38% 19.75% 6.47%
jackson-1 11 8 7 0.03% 0.00% 0.07% 50.50% 19.11% 8.24%
jackson-2 11 3 21 1.72% 0.00% 0.00% 69.13% 37.46% 17.32%
jaeschke-1 9 8 6 0.00% 0.00% 0.00% 37.30% 23.68% 16.97%
jaeschke-2 9 3 18 0.00% 0.00% 0.00% 61.33% 29.84% 9.91%
mansoor-1 11 4 48 6.41% 0.02% 0.13% 34.72% 9.10% 1.97%
mansoor-2 11 2 94 0.00% 0.00% 0.00% 30.06% 11.92% 5.34%
mertens-1 7 6 6 0.00% 0.00% 0.00% 28.34% 5.94% 3.05%
mertens-2 7 2 18 0.00% 0.00% 0.00% 60.84% 34.63% 18.94%
mitchell-1 21 8 14 1.02% 0.51% 0.28% 47.92% 13.79% 3.17%
mitchell-2 21 3 39 5.72% 2.79% 1.70% 66.69% 33.62% 12.80%
roszieg-1 25 10 14 0.86% 0.45% 0.32% 49.04% 11.44% 1.82%
roszieg-2 25 4 32 4.32% 1.97% 1.11% 54.41% 23.44% 8.24%
sawyer-1 30 14 25 1.19% 0.66% 0.29% 52.88% 12.26% 1.95%
sawyer-2 30 7 47 3.82% 2.42% 0.75% 58.06% 19.68% 6.33%
Average 1.52% 0.66% 0.96% 49.89% 17.51% 6.12%

added iteratively, giving rise to further ILP calls. Hence, for Rmax > 0, the time spent in ILP solving
presumably represents the largest portion of the running time, which mechanically pushes MS×LSPSCto
explore a far lower number of solutions. However, this also means that MS×LSPSChas an inherently
adaptive behaviour: when the instance and/or the reduced margin in terms of overall number of available
resources induce a higher likelihood of infeasible solutions, a higher number of solutions is generated
and explored, which is a form of diversification strategy, while when feasible solutions are found, the
algorithm switches to an intensification behaviour.
Table 4 also reports how the average gaps %BK and %LB (here averaged w.r.t. Rmax) between MS×LSPSC

solutions and the best known solution and lower bounds, but also the average percentage of used
resources and workstations, respectively res%u and wst%u, evolve as the relative number of available
resources increases. res%u and wst%u descend from the two terms expressed in (27), of which they
represent the average over all the replications associated with a given value of Rmax, all families of
instances considered:

res%u =
∑

k rk

Rmax
wst%u = |{k : rk > 0}|

m
(27)

The quality of the solutions offered by the heuristic improves as Rmax grows: in particular for Rmax ≥
m+1, and following the same reasoning as Table 3, the gap w.r.t. the optimum is always in the interval
[0.75%, 2.00%], which progressively narrows with Rmax. Since Table 4 has shown that, when Rmax
increases, a growing amount of time is allocated to solving the ILP model iteratively, we could possibly
infer that the ILP-based solution refinement of routine Decoder() is effective. We also notice that when
Rmax increases, the average proportion of resources actually used by MS×LSPSC , res%u, progressively
decreases; this could lead to conclude that adding resources is in general not a convenient choice, except
for increasing a few units. However, the overall average value of wst%u is 86.51%, remaining in general
around 90% for Rmax from 4 to 16, and approaching 100% only when the number of available resources
grow very strongly. This seems to suggest that the heuristic exploits the possibility of adding parallel
resources. Incidentally, Rmax = 0 is the only case for which the best solution found by the heuristic
can be infeasible, which happens in 3.92% of the cases, all for rmax = 1. This seems to indicate that
MS×LSPSC is not well suited for PSCALB3PM instances where the number of available resources equals
m and rmax = 1 (i.e. the SALB3PM), and that tailored heuristic algorithms for the SALB3PM could
be preferable.
Finally, Table 5 allows us to make some considerations more related to the problem than to the perfor-
mances of the proposed algorithms. The Table reports, averaged for each group of PSCALB3PM
instances derived from the same SALB3PM benchmark and having Rmax = 0: the best optimality
gap achieved for rmax = 1, 2 and 3, %(rmax); the gap improvements %BK(rmax) and %LB(rmax) of,
respectively, the best known upper and lower bounds when increasing rmax from 1 to 2 and from 2 to

22

Table 4. Behavior, performance and solution analysis of MS×LSPSC depending on the relative
number Rmax of available resources.

Rmax #repl #st %LB %BK #infinst(%) res%u wst%u

0 1020 28701.82 1.36% 0.35% 3.92% 99.83% 76.53%
1 680 276.42 2.00% 0.75% 0.00% 98.66% 74.96%
2 680 61.90 1.89% 0.76% 0.00% 95.60% 80.76%
3 640 49.24 1.95% 0.84% 0.00% 91.18% 85.10%
4 580 50.69 1.86% 0.75% 0.00% 88.36% 88.20%
5 500 56.46 1.68% 0.74% 0.00% 86.09% 89.27%
6 480 57.49 1.76% 0.75% 0.00% 82.01% 90.18%
7 400 21.30 1.66% 0.75% 0.00% 83.00% 92.41%
8 360 23.53 1.43% 0.58% 0.00% 78.14% 91.62%
9 260 17.67 0.99% 0.62% 0.00% 76.31% 90.11%
10 260 17.79 1.01% 0.63% 0.00% 72.66% 90.39%
11 220 20.84 1.13% 0.72% 0.00% 70.69% 90.71%
12 220 20.76 1.13% 0.72% 0.00% 67.99% 91.05%
13 200 3.84 1.22% 0.77% 0.00% 67.88% 94.65%
14 200 3.89 1.23% 0.79% 0.00% 65.46% 94.67%
15 120 5.38 0.61% 0.36% 0.00% 61.61% 92.24%
16 120 5.26 0.60% 0.35% 0.00% 59.85% 92.99%
17 60 1.07 0.86% 0.54% 0.00% 64.21% 97.19%
18 60 1.07 0.87% 0.55% 0.00% 61.77% 97.31%
19 60 1.07 0.90% 0.58% 0.00% 60.22% 97.19%
20 60 1.07 0.87% 0.55% 0.00% 58.10% 97.31%
21 40 1.10 0.93% 0.64% 0.00% 59.50% 96.96%
22 40 1.10 0.93% 0.64% 0.00% 58.68% 97.50%
23 40 1.10 0.94% 0.65% 0.00% 56.69% 96.79%
24 40 1.10 0.93% 0.64% 0.00% 55.39% 96.96%
25 40 1.10 0.94% 0.66% 0.00% 53.59% 96.79%
26 40 1.10 0.91% 0.62% 0.00% 52.00% 96.96%
27 40 1.10 0.94% 0.65% 0.00% 50.98% 96.79%
28 40 1.10 0.90% 0.61% 0.00% 50.06% 96.96%

Average 1.52% 0.66% 0.53% 83.98% 86.51%

3; the same gap %BK(rmax) when the solution improved by increasing rmax was proven optimal. This
means that here we do not consider the possibility of augmenting the number of resources, but instead
of switching from a serial setting to a parallel-serial configuration.

Table 5. Solution improvements when augmenting the number of possible parallel resources, without changing
their overall number.

instance
%(rmax) %BK(rmax) %LB(rmax) %BK(rmax)

(opt.only)
1 2 3 1⇒ 2 2⇒ 3 1⇒ 2 2⇒ 3 1⇒ 2 2⇒ 3

bowman-1 0.00% 0.00% 0.00% 6.19% 0.00% 6.19% 0.00% 6.19% 0.00%
buxey-1 0.00% 0.80% 0.53% 5.06% 0.27% 5.82% 0.00% 5.06%
buxey-2 +∞ 2.94% 2.46% 99.80% 0.49% 0.00% 0.00%
jackson-1 0.00% 0.00% 0.61% 12.23% 1.21% 12.23% 1.82% 12.23% 1.21%
jackson-2 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
jaeschke-1 0.00% 0.00% 0.00% 20.48% 0.00% 20.48% 0.00% 20.48% 0.00%
jaeschke-2 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
mansoor-1 0.00% 0.00% 9.77% 0.00% 0.00% 0.00% 9.77% 0.00% 0.00%
mansoor-2 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
mertens-1 0.00% 0.00% 0.00% 5.85% 0.00% 5.85% 0.00% 5.85% 0.00%
mertens-2 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
mitchell-1 0.00% 1.00% 1.00% 4.74% 0.00% 5.69% 0.00% 4.74%
mitchell-2 0.00% 5.26% 4.00% 0.00% 1.32% 5.26% 0.00% 0.00%
roszieg-1 0.00% 0.78% 0.78% 0.39% 0.00% 1.17% 0.00% 0.39%
roszieg-2 0.00% 5.13% 5.13% 1.68% 0.00% 6.72% 0.00% 1.68%
sawyer-1 1.53% 0.93% 0.93% 1.23% 0.00% 0.62% 0.00%
sawyer-2 +∞ 3.41% 2.86% 99.82% 0.57% 0.00% 0.00%
Average 0.10% 1.19% 1.65% 3.86% 0.23% 4.12% 0.68% 4.05% 0.13%

As it was expected, the average optimality gap %(rmax) increases with rmax, due to the increased size of
the search space and of the modelMPSC , although the average value 1.65% achieved for rmax = 3 shows

23

that a good approximation of the optimal solution can be achieved in most cases. Equally expected is
the fact that peak improvements are more consistent when going from rmax = 1 to rmax = 2, whereas it
seems that only very poor further improvements can be achieved with rmax = 3: if we can consider only
the cases for which the peak being improved corresponds to an optimal solution, the average values are,
respectively, 4.05% and 0.13%. Therefore, it seems that from a managerial viewpoint it is considerably
more interesting, in order to reduce the power peak, to rearrange the existing resources to increase
the number of workstations with parallel resources, rather than the overall number of resources. This
seems to suggest, also from an algorithmic point of view, that the search for solutions with a higher
number of resources could be stopped at earlier stages, in order to make a more efficient use of the
computational time.

6. Conclusions and Perspectives

Motivated by the growing interest in Reconfigurable Manufacturing Systems as a lever to pursue energy
efficiency, in this work we have studied the problem of balancing a particular type of single-product
RMS, a paced Parallel-Serial line with Crossover, in order to minimise the electric power peak related
to processing the production tasks, while complying with a target takt time. The Parallel-Serial-with-
Crossover Assembly Line Balancing Problem with Power Peak Minimization (PSCALB3PM) is a new
problem as far as we are aware, and therefore as a first contribution we defined it thoroughly. Since it
generalises another recent problem, the SALB3PM, which is NP-hard, the PSCALB3PM is NP-hard,
too. The second and most important contribution is the definition of a time-indexed Integer Linear
Program,MPSC , for the PSCALB3PM. We then defined a matheuristic, MS×LSPSC , in order to allow
practitioners to deal with large instances.
Both the ILP model and the matheuristic have been tested on an extended set of instances, generated
from benchmark SALB3PM instances. The results forMPSC with a 3600s time limit show that optimal
solution are regularly found for small instances and, more generally, an average optimality gap of less
than 2.7% can be achieved, even though for larger instances optimal, and even feasible, solutions seem
much harder to find. For MS×LSPSC the results are very interesting, with very stable behaviour and a
gap w.r.t. the optimal solution on average under 1.6%, a good usage of additional resources, but also an
inherently adaptive capability, with a higher number of generated solutions (diversification) for harder
instances, and an intensification strategy when feasible solutions are found.
As to some managerial insights, three levers were considered to reduce power peak reduction in a Man-
ufacturing System.
Resorting to optimisation tools is clearly the most important one, as both the exact, and most of all
the matheuristic approach, seem promising. In particular, it has been shown that the power peak can
be reduced by around 33% by adopting the proposed matheuristic MS×LSPSC , all other production
costs being constant – namely, production pace and number of workstations, although this reduction
could require to have intermediate idle times between tasks, hence to trigger the processing of tasks
with greater precision. It is also interesting to note that about 66% of the aforementioned power peak
reduction could be achieved by the greedy heuristic decoder used by MS×LSPSC , and around 90% by
the other, ILP-based, decoder of MS×LSPSC , ultimately confirming the convenience of adopting opti-
misation tools. The second lever is the adoption of parallel-serial configurations with crossover, which
allows significant power peak reductions to be achieved in an existing MSs without requiring additional
resources. The last lever is to actually invest in additional resources, even though the achieved power
peak reduction could not be worth the associated extra-cost.
This work opens up some very interesting and promising research paths. Testing alternative ILP for-
mulations, e.g. inspired by disjunctive formulations for production scheduling problems, and comparing
the results obtained to those presented here is certainly of interest, in order to assess the more suitable
modelling technique. From an algorithmic perspective, it would certainly be interesting to develop more
advanced exact approaches, based on the study of problem-tailored data preprocessing routines, valid
inequalities or branching rules, to be able to solve larger-sized instances exactly. Moreover, to conduct a
deeper analysis of the behaviour of the proposed matheuristic, it would be interesting to test a version
in which the stopping criterion is not a fixed number of iteration but instead an adaptive one, i.e.
depending on the status of the search and the size of the instance.
The matheuristic can certainly also benefit from various improvements, from the reduction of the time
spent in adding resources – the option that seems less viable from an economic viewpoint, to the re-
finement consisting in repairing, instead of penalising, infeasible solutions.
Finally, the study of the PSCALB3PM also seems to suggest some possible generalisations, i.e. the

24

consideration of variable task power consumption profiles; a more general setting, e.g. a line in which
tasks on parallel resources can be scheduled differently, or a mixed/multi-model MS; a multi-objective
extension of the problem, in order to find trade-offs between power peak and some production-related
objective, for instance the takt time.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This work is supported by the project ANR-21-CE10-0019 “RECONFIDURABLE”.

Data Availability statement

The datasets that support the findings of this study are available from the corresponding author, [PG],
upon reasonable request.

References

Artigues, Christian, Pierre Lopez, and Alain Häıt. 2013. “The energy scheduling problem: Industrial case-
study and constraint propagation techniques.” International Journal of Production Economics 143 (1): 13–23.
https://doi.org/10.1016/j.ijpe.2010.09.030.

Bänsch, Kristian, Jan Busse, Frank Meisel, Julia Rieck, Sebastian Scholz, Thomas Volling, and Matthias G.
Wichmann. 2021. “Energy-aware decision support models in production environments: A systematic litera-
ture review.” Computers & Industrial Engineering 159: 107456. https://doi.org/10.1016/j.cie.2021.107456.

Battäıa, Olga, Lyes Benyoucef, Xavier Delorme, Alexandre Dolgui, and Simon Thevenin. 2020. “Sustainable
and Energy Efficient Reconfigurable Manufacturing Systems.” In Reconfigurable Manufacturing Systems:
From Design to Implementation, 179–191. Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-030-
28782-5 9.

Battäıa, Olga, and Alexandre Dolgui. 2013. “A taxonomy of line balancing problems and
their solution approaches.” International Journal of Production Economics 142: 259–277.
https://doi.org/10.1016/j.ijpe.2012.10.020.

Borba, Leonardo, Marcus Ritt, and Cristóbal Miralles. 2018. “Exact and heuristic methods for solving the
Robotic Assembly Line Balancing Problem.” European Journal of Operational Research 270: 146–156.
https://doi.org/10.1016/j.ejor.2018.03.011.

Borisovsky, Pavel A., Xavier Delorme, and Alexandre Dolgui. 2014. “Balancing reconfigurable machining
lines via a set partitioning model.” International Journal of Production Research 52 (13): 4026–4036.
https://doi.org/10.1080/00207543.2013.849857.

Bortolini, Marco, Francesco Gabriele Galizia, and Cristina Mora. 2018. “Reconfigurable manufactur-
ing systems: Literature review and research trend.” Journal of manufacturing systems 49: 93–106.
https://doi.org/10.1016/j.jmsy.2018.09.005.

Bowman, Edward H. 1959. “The schedule-sequencing problem.” Operations Research 7 (5): 621–624.
https://doi.org/10.1287/opre.7.5.621.

Boysen, Nils, Philipp Schulze, and Armin Scholl. 2022. “Assembly line balancing: What hap-
pened in the last fifteen years?” European Journal of Operational Research 301 (3): 797–814.
https://doi.org/10.1016/j.ejor.2021.11.043.

Bruzzone, Alessandro A.G., Davide Anghinolfi, Massimo Paolucci, and Flavio Tonelli. 2012. “Energy-aware
scheduling for improving manufacturing process sustainability: A mathematical model for flexible flow shops.”
CIRP Annals - Manufacturing Technology 61 (1): 459–462. https://doi.org/10.1016/j.cirp.2012.03.084.

Buxey, G.M. 1974. “Assembly line balancing with multiple stations.” Management science 20 (6): 1010–1021.
https://doi.org/10.1287/mnsc.20.6.1010.

Carlucci, Daniela, Paolo Renna, and Sergio Materi. 2021. “A Job-Shop Scheduling Decision-Making Model for
Sustainable Production Planning With Power Constraint.” IEEE Transactions on Engineering Management
https://doi.org/10.1109/TEM.2021.3103108.

Cerqueus, Audrey, and Xavier Delorme. 2019. “A branch-and-bound method for the bi-objective simple
line assembly balancing problem.” International Journal of Production Research 57 (18): 5640–5659.
https://doi.org/10.1080/00207543.2018.1539266.

Cerqueus, Audrey, and Xavier Delorme. 2023. “Evaluating the scalability of reconfigurable
manufacturing systems at the design phase.” International Journal of Production Research
https://doi.org/10.1080/00207543.2022.2164374.

25

Dahmani, Abdelhak, Lyes Benyoucef, and Jean-Marc Mercantini. 2022. “Toward Sustainable Reconfigurable
Manufacturing Systems (SRMS): Past, Present, and Future.” Procedia Computer Science 200: 1605–1614.
https://doi.org/10.1016/j.procs.2022.01.361.

Delorme, Xavier, Audrey Cerqueus, Paolo Gianessi, and Damien Lamy. 2023. “RMS balancing and planning
under uncertain demand and energy cost considerations.” International Journal of Production Economics
261: 108873. https://doi.org/10.1016/j.ijpe.2023.108873.

Delorme, Xavier, and Paolo Gianessi. 2022. “Designing Reconfigurable Manufacturing Systems to Minimize
Power Peak.” IFAC-PapersOnLine 55 (10): 1296–1301. https://doi.org/10.1016/j.ifacol.2022.09.569.

Dubey, Rameshwar, Angappa Gunasekaran, Petri Helo, Thanos Papadopoulos, Stephen J. Childe, and B.S.
Sahay. 2017. “Explaining the impact of reconfigurable manufacturing systems on environmental perfor-
mance: The role of top management and organizational culture.” Journal of cleaner production 141: 56–66.
https://doi.org/10.1016/j.jclepro.2016.09.035.

Essafi, Mohamed, Xavier Delorme, Alexandre Dolgui, and Olga Guschinskaya. 2010. “A MIP approach for
balancing transfer line with complex industrial constraints.” Computers & Industrial Engineering 58 (3):
393–400. https://doi.org/10.1016/j.cie.2009.04.009.

European Central Bank. 2022. “The impact of the war in Ukraine on euro area energy markets.”
https://www.ecb.europa.eu/pub/economic-bulletin/focus/html/index.en.html.

European Commission. 2021. SET Plan Action 6 on Energy Efficiency in Industry. Technical Report.
https://setis.ec.europa.eu/publications en.

Fakih, Ali, Pascal Ghazalian, and Nancy Ghazzawi. 2020. “The effects of power outages on the performance
of manufacturing firms in the MENA region.” Review of Middle East Economics and Finance 16 (3).
https://doi.org/10.1515/rmeef-2020-0011.

Fang, Kan, Nelson A. Uhan, Fu Zhao, and John W. Sutherland. 2013. “Flow shop scheduling with peak power
consumption constraints.” Annals of Operations Research 206 (1): 115–145. https://doi.org/10.1007/s10479-
012-1294-z.

Fang, Yilin, Quan Liu, Miqing Li, Yuanjun Laili, and Duc Truong Pham. 2019. “Evolutionary many-objective
optimization for mixed-model disassembly line balancing with multi-robotic workstations.” European Journal
of Operational Research 276 (1): 160–174. https://doi.org/10.1016/j.ejor.2018.12.035.

Fernandes, João M.R.C., Seyed Mahdi Homayouni, and Dalila Benedita M. Martins Fontes. 2022. “Energy-
Efficient Scheduling in Job Shop Manufacturing Systems: A Literature Review.” Sustainability 14 (10): 6264.
https://doi.org/10.3390/su14106264.

Freiheit, Theodor, Moshe Shpitalni, and S. Jack Hu. 2004. “Productivity of paced parallel-serial manufacturing
lines with and without crossover.” Journal of Manufacturing Science and Engineering 126 (2): 361–367.
https://doi.org/10.1115/1.1688372.

Ghanei, Shima, and Tarek AlGeddawy. 2020. “An integrated multi-period layout planning and scheduling
model for sustainable reconfigurable manufacturing systems.” Journal of Advanced Manufacturing Systems
19 (01): 31–64. https://doi.org/10.1142/S0219686720500031.

Ghobakhloo, Morteza, and Masood Fathi. 2021. “Industry 4.0 and opportunities for energy sustainability.”
Journal of Cleaner Production 295: 126427. https://doi.org/10.1016/j.jclepro.2021.126427.

Gianessi, Paolo, Xavier Delorme, and Oussama Masmoudi. 2019. “Simple Assembly Line Balancing Problem
with Power Peak Minimization.” In Advances in Production Management Systems, edited by Farhad Ameri,
Kathryn E. Stecke, Gregor von Cieminski, and Dimitris Kiritsis, Vol. 566, 239–247. Cham: Springer Int.
Publishing. https://doi.org/10.1007/978-3-030-30000-5 31.

Glover, Fred, and Gary A. Kochenberger. 2003. Handbook of Metaheuristics. New York, NY: Springer US.
https://doi.org/10.1007/b101874.

Gondran, Matthieu, Sylverin Kemmoe, Damien Lamy, and Nikolay Tchernev. 2020. “Bi-objective optimisation
approaches to Job-shop problem with power requirements.” Expert Systems with Applications 162: 113753.
https://doi.org/10.1016/j.eswa.2020.113753.

Gourgand, Michel, Nathalie Grangeon, and Sylvie Norre. 2007. “Metaheuristics based on bin packing for the
line balancing problem.” RAIRO-Operations Research 41 (2): 193–211. https://doi.org/10.1051/ro:2007018.

Haapala, Karl R., Fu Zhao, Jaime Camelio, John W. Sutherland, Steven J. Skerlos, David A. Dorn-
feld, Ibrahim S. Jawahir, Andres F. Clarens, and Jeremy L. Rickli. 2013. “A review of engineer-
ing research in sustainable manufacturing.” Journal of manufacturing science and engineering 135 (4).
https://doi.org/10.1115/1.4024040.

Huang, Aihua, Fazleena Badurdeen, and Ibrahim S. Jawahir. 2018. “Towards developing sus-
tainable reconfigurable manufacturing systems.” Procedia manufacturing 17: 1136–1143.
https://doi.org/10.1016/j.promfg.2018.10.024.

International Energy Agency. 2017. Tracking Clean Energy Progress 2017: Industry. Technical Report.
https://www.iea.org/reports/tracking-clean-energy-progress-2017.

International Energy Agency. 2021. World Energy Outlook 2021. Technical Report.
https://www.iea.org/reports/world-energy-outlook-2021.

International Energy Agency. 2022a. Electricity Market Report – July 2022 – Update. Technical Report.

26

https://www.iea.org/reports/electricity-market-report-july-2022.
International Energy Agency. 2022b. “The world’s coal consumption is set to reach a new high in 2022 as

the energy crisis shakes markets.” https://www.iea.org/news/the-world-s-coal-consumption-is-set-to-reach-
a-new-high-in-2022-as-the-energy-crisis-shakes-markets.

Jamwal, Anbesh, Rajeev Agrawal, Monica Sharma, and Antonio Giallanza. 2021. “Industry 4.0 Technologies
for Manufacturing Sustainability: A Systematic Review and Future Research Directions.” Applied Sciences
11 (12). https://doi.org/10.3390/app11125725.

Janardhanan, Mukund Nilakantan, George Guoquan Huang, and Sivalinga Govindarajan Ponnambalam. 2015.
“An investigation on minimizing cycle time and total energy consumption in robotic assembly line systems.”
Journal of Cleaner Production 90 (2): 311–325. https://doi.org/10.1016/j.jclepro.2014.11.041.

Kawaguchi, Shuhei, and Yoshikazu Fukuyama. 2016. “Reactive Tabu Search for Job-shop scheduling prob-
lems considering peak shift of electric power energy consumption.” In 2016 IEEE Region 10 Conference
(TENCON), Singapore, 3406–3409. IEEE. https://doi.org/10.1109/TENCON.2016.7848686.

Kemmoe, Sylverin, Damien Lamy, and Nikolay Tchernev. 2017. “Job-shop like manufacturing system with
variable power threshold and operations with power requirements.” International Journal of Production
Research 55 (20): 6011–6032. https://doi.org/10.1080/00207543.2017.1321801.

Khezri, Amirhossein, Hichem Haddou Benderbal, and Lyes Benyoucef. 2021. “Towards a sus-
tainable reconfigurable manufacturing system (SRMS): multi-objective based approaches for pro-
cess plan generation problem.” International Journal of Production Research 59 (15): 4533–4558.
https://doi.org/10.1080/00207543.2020.1766719.

Koren, Yoram, Xi Gu, Fazleena Badurdeen, and Ibrahim S. Jawahir. 2018. “Sustainable
living factories for next generation manufacturing.” Procedia Manufacturing 21: 26–36.
https://doi.org/10.1016/j.promfg.2018.02.091.

Koren, Yoram, Uwe Heisel, Francesco Jovane, Toshimichi Moriwaki, Gumter Pritschow, Galip Ul-
soy, and Hendrik Van Brussel. 1999. “Reconfigurable manufacturing systems.” CIRP Annals 48: 2.
https://doi.org/10.1016/S0007-8506(07)63232-6.

Koren, Yoram, Wencai Wang, and Xi Gu. 2017. “Value creation through design for scalability of re-
configurable manufacturing systems.” International Journal of Production Research 55 (5): 1227–1242.
https://doi.org/10.1080/00207543.2016.1145821.

Kovalev, Sergey, Xavier Delorme, Alexandre Dolgui, and Ammar Oulamara. 2017. “Minimizing the number of
stations and station activation costs for a production line.” Computers & Operations Research 79: 131–139.
https://doi.org/10.1016/j.cor.2016.10.007.

Lahrichi, Youssef, Laurent Deroussi, Nathalie Grangeon, and Sylvie Norre. 2021. “A balance-first sequence-last
algorithm to design RMS: a matheuristic with performance guaranty to balance reconfigurable manufacturing
systems.” Journal of Heuristics 27 (1): 107–132. https://doi.org/10.1007/s10732-021-09473-1.

Lamy, Damien, Xavier Delorme, and Paolo Gianessi. 2020. “Line Balancing and Sequencing for Peak Power
Minimization.” IFAC-PapersOnLine 53 (2): 10411–10416. https://doi.org/10.1016/j.ifacol.2020.12.2781.

Lawrence, Akvile, Patrik Thollander, Mariana Andrei, and Magnus Karlsson. 2019. “Specific Energy Consump-
tion/Use (SEC) in Energy Management for Improving Energy Efficiency in Industry: Meaning, Usage and
Differences.” Energies 12 (2): 247. https://doi.org/10.3390/en12020247.

Li, Zixiang, Qiuhua Tang, and LiPing Zhang. 2016. “Minimizing energy consumption and cycle time in two-sided
robotic assembly line systems using restarted simulated annealing algorithm.” Journal of Cleaner Production
135: 508–522. https://doi.org/10.1016/j.jclepro.2016.06.131.

Liang, Junyong, Shunsheng Guo, Baigang Du, Yibing Li, Jun Guo, Zhijie Yang, and Shibao Pang. 2021. “Min-
imizing energy consumption in multi-objective two-sided disassembly line balancing problem with complex
execution constraints using dual-individual simulated annealing algorithm.” Journal of Cleaner Production
284: 125418. https://doi.org/10.1016/j.jclepro.2020.125418.

Liu, Rongfan, Ming Liu, Feng Chu, Feifeng Zheng, and Chengbin Chu. 2021. “Eco-friendly multi-skilled
worker assignment and assembly line balancing problem.” Computers & Industrial Engineering 151: 106944.
https://doi.org/10.1016/j.cie.2020.106944.

Lourenço, Helena R., Olivier C. Martin, and Thomas Stützle. 2003. “Iterated Local Search.” In Handbook of
Metaheuristics, edited by Fred Glover and Gary A. Kochenberger, 320–353. New York, NY: Springer US.
https://doi.org/10.1007/0-306-48056-5 11.

Masmoudi, Oussama, Xavier Delorme, and Paolo Gianessi. 2019. “Job-shop scheduling prob-
lem with energy consideration.” International Journal of Production Economics 216: 12–22.
https://doi.org/10.1016/j.ijpe.2019.03.021.

Masmoudi, Oussama, Alice Yalaoui, Yassine Ouazene, and Hicham Chehade. 2017. “Lot-sizing in a multi-stage
flow line production system with energy consideration.” International Journal of Production Research 55 (6):
1640–1663. https://doi.org/10.1080/00207543.2016.1206670.

Massimi, Elisa, Amirhossein Khezri, Hichem Haddou Benderbal, and Lyes Benyoucef. 2020. “A heuristic-based
non-linear mixed integer approach for optimizing modularity and integrability in a sustainable reconfigurable
manufacturing environment.” The International Journal of Advanced Manufacturing Technology 108 (7):

27

1997–2020. https://doi.org/10.1007/s00170-020-05366-y.
Menghi, Roberto, Alessandra Papetti, Michele Germani, and Marco Marconi. 2019. “Energy efficiency of man-

ufacturing systems: A review of energy assessment methods and tools.” Journal of Cleaner Production 240:
118276. https://doi.org/10.1016/j.jclepro.2019.118276.

Módos, István, Přemysl Šucha, and Zdeněk Hanzálek. 2021. “On parallel dedicated machines
scheduling under energy consumption limit.” Computers & Industrial Engineering 159: 107209.
https://doi.org/10.1016/j.cie.2021.107209.

Mohamed, Nader, Jameela Al-Jaroodi, and Sanja Lazarova-Molnar. 2019. “Leveraging the Capabilities
of Industry 4.0 for Improving Energy Efficiency in Smart Factories.” IEEE Access 7: 18008–18020.
https://doi.org/10.1109/ACCESS.2019.2897045.

Morgan, Jeff, Mark Halton, Yuansong Qiao, and John G. Breslin. 2021. “Industry 4.0 smart
reconfigurable manufacturing machines.” Journal of Manufacturing Systems 59: 481–506.
https://doi.org/10.1016/j.jmsy.2021.03.001.

Nature. 2022. “What the war in Ukraine means for energy, climate and food.”
https://www.nature.com/articles/d41586-022-00969-9.pdf.

Pape, Tom. 2015. “Heuristics and lower bounds for the simple assembly line balancing problem type 1:
Overview, computational tests and improvements.” European Journal of Operational Research 240: 32–42.
https://doi.org/10.1016/j.ejor.2014.06.023.

Pinto, Peter A., David G. Dannenbring, and Basheer M. Khumawala. 1981. “Branch and bound and heuristic
procedures for assembly line balancing with paralleling of stations.” International Journal of Production
Research 19 (5): 565–576. https://doi.org/10.1080/00207548108956687.

Putnik, Goran D., Alojzij Sluga, Hoda A. ElMaraghy, Roberto Teti, Yoram Koren, Tullio A.M. Tolio, and
Bernard K.K. Hon. 2013. “Scalability in manufacturing systems design and operation: State-of-the-art and
future developments roadmap.” CIRP Annals 62 (2): 751–774. https://doi.org/10.1016/j.cirp.2013.05.002.

Renna, Paolo, and Sergio Materi. 2021. “A Literature Review of Energy Efficiency and Sustainability in Man-
ufacturing Systems.” Applied Sciences 11 (16). https://doi.org/10.3390/app11167366.

Scholl, Armin. 1999. Balancing and sequencing of assembly lines. Heidelberg, Germany: Physica-Verlag.
Sewell, Edward C., and Sheldon H. Jacobson. 2012. “A branch, bound, and remember algorithm for

the simple assembly line balancing problem.” INFORMS Journal on Computing 24 (3): 433–442.
https://doi.org/10.1287/ijoc.1110.0462.

Talbi, El-Ghazali. 2009. Metaheuristics: from design to implementation. Hoboken, NJ: John Wiley & Sons.
https://doi.org/10.1002/9780470496916.

United Nations. 2022. Global impact of war in Ukraine: Energy crisis. Technical Report.
https://unctad.org/publication/global-impact-war-ukraine-energy-crisis.

U.S. Energy Information Administration. 2019. International Energy Outlook 2019 with projections to 2050.
Technical Report. https://www.eia.gov/outlooks/ieo/pdf/ieo2019.pdf.

Wang, Kaipu, Xinyu Li, Liang Gao, and Peigen Li. 2020. “Energy consumption and profit-oriented disassembly
line balancing for waste electrical and electronic equipment.” Journal of Cleaner Production 265: 121829.
https://doi.org/10.1016/j.jclepro.2020.121829.

World Bank. 2023. “Enterprise Surveys – Infrastructure.” https://www.enterprisesurveys.org/en/data/explore
topics/infrastructure.

Zhang, Beikun, Liyun Xu, and Jian Zhang. 2020. “Developing mathematical model and optimization algo-
rithm for designing energy efficient semi-automated assembly line.” Computers & Industrial Engineering
149: 106768. https://doi.org/10.1016/j.cie.2020.106768.

Zhang, Zikai, Qiuhua Tang, Zixiang Li, and Liping Zhang. 2019. “Modelling and optimisation of energy-efficient
U-shaped robotic assembly line balancing problems.” International Journal of Production Research 57 (17):
5520–5537. https://doi.org/10.1080/00207543.2018.1530479.

28

