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ABSTRACT
Deep learning-based quality assessments have signifi-

cantly enhanced perceptual multimedia quality assessment,
however it is still in the early stages for 3D visual data
such as 3D point clouds (PCs). Due to the high volume
of 3D-PCs, such quantities are frequently compressed for
transmission and viewing, which may affect perceived qual-
ity. Therefore, we propose no-reference quality metric of
a given 3D-PC. Comparing to existing methods that mostly
focus on geometry or color aspects, we propose integrating
frequency magnitudes as indicator of spatial degradation pat-
terns caused by the compression. To map the input attributes
to quality score, we use a light-weight hybrid deep model;
combined of Deformable Convolutional Network (DCN) and
Vision Transformers (ViT). Experiments are carried out on
ICIP20 [1], PointXR [2] dataset, and a new big dataset called
BASICS [3]. The results show that our approach outper-
forms state-of-the-art NR-PCQA measures and even some
FR-PCQA on PointXR. The implementation code can be
found at: https://github.com/o-messai/3D-PCQA

Index Terms— No-reference 3D point cloud quality as-
sessment, Vision Transformer (ViT), deep learning.

1. INTRODUCTION
3D Point clouds (3D-PCs) provide the shape information
of 3D objects and can be quickly captured by 3D scanners;
which are becoming accessible even in our mobile devices
(e.g., tablets, smartphones, etc). Recently, 3D-PC has been an
active research field, closely tied to applications such as aug-
mented reality, drones, self-driving vehicles, and 3D video
games [4, 5]. However, because of the large number of points
cloud required to describe the object, this type of 3D data re-
quires a large amount of memory storage, and demands high
computation for transmitting and display. Therefore, im-
plementing compression procedures to the 3D-PCs becomes
necessary, which can have an impact on its visual quality.
However, to ensure that the compression procedure is reli-
able, the perceptual quality rate is measured. Subjective and
objective studies could be used to get Point Cloud Quality
Assessment (PCQA). The former involves human interven-
tion, whereas the latter is based on computational algorithms
that anticipate perceptual quality. The PCQA metrics are
often used to evaluate the perceptual correctness of the coded

point cloud in relation to a certain compression rate. In order
to develop sophisticated quality measurements that forecast
the perceived impact of a given PC, it is important to validate
the metric output with a subjective evaluation, namely human
visual quality assessment. It is mostly expressed in terms
of Mean Opinion Score (MOS) or Difference Mean Opinion
Score (DMOS) [6, 7]. Objective quality measurements are
classified into three types based on the availability of the ref-
erence PC: full-reference (FR), reduced-reference (RR), and
no-reference (NR). However, subjective human ratings can be
time consuming and expensive, and a pristine reference is not
always accessible. Therefore, researchers are increasingly
relying on NR objective measurements due to the broad ben-
efits they give. As a result, most current PCQA approaches
are devoted to NR-PCQA in order to meet the criteria of most
modern applications. Furthermore, the PCQA metrics can be
divided into three categories: point-based metrics, feature-
based metrics, and projection-based metrics. In Point-based
metrics such as Point-to-Point (Po2Po) [8, 9], Point-to-Plane
(Po2Pl) [10]. These metrics work by calculating the geomet-
ric/color distance between the reference PC and its distorted
variant. In feature-based metrics, geometry and associated
properties are extracted at the point level in a global or local
way. For instance, a metric called Geotex [11], which uses
Local Binary Pattern (LBP) as descriptors, while in metric
[12], both geometry and color data have been used as fea-
tures. Finally, in projection-based measurements, the points
are projected into 2D grids at certain view points/degrees, and
2D quality measures are applied to these views. For instance,
in metric [13], the authors used point cloud rendering to gen-
erate views (2D images), which were then fed into a deep
convolutional neural network (CNN) to provide perceptual
quality scores.

In the following, we briefly address the recent suggested
NR-PCQA metrics: In metric [14], low-level details such
as geometric distance, local curvature, and brightness val-
ues were retrieved from the 3D-PC. The latter inputs were
then mapped to a quality score using a deep CNN. Moreover
in metric [15], the PCs were transformed from 3D space
into domains of quality-related geometry and color features.
Then, using 3D natural scene statistics and entropy, features
for vector regression (SVR) were extracted. Recently, a new
metric [16] based on end-to-end model inspired by Point-Net
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Fig. 1. The flowchart of the proposed metric; step 1: extract three input attributes, step 2: map the attributes into a quality score.

[17]. The model relies on the local inherent properties of sub-
sets of points as inputs without requiring a prior processing
steps that could be computationally expensive. The Graph
Convolutional Network (GCN) is increasingly being utilized
for processing 3D-PC. For example, in metric [18], the au-
thors suggested a multi-task GCN model that takes PC inputs
and predicts distortion type/degree as well as quality score.
Another NR measure proposed [19], based on deep model
that takes both the PC and the related 2D projection as inputs,
extracts and aggregates features, and maps them to a quality
score.

Vision Transformer (ViT) [20] and its derivatives have
recently made a significant breakthrough in the field of com-
puter vision problems, showing a greater ability to model
global and long-range relationships than CNNs. Since then,
transformers have been used for image classification, seg-
mentation, restoration, and so forth. Therefore, in this work,
we review the use of ViT for 3D-PC quality assessment, pre-
senting new NR-PCQA. This work makes three contributions,
which are stated below:

• We present a light-weight metric that ranked 1st in term
of run-time and 4th in term of accuracy at ICIP 2023 -
PCVQA grand challenge (Track 2 & 4 for no-reference
metrics) [3].

• We extend the use of ViT for 3D-PC quality assessment
using hybrid model; Convolution and self-Attention.
We also incorporate deformable convolution since
point clouds have non-uniform distributions.

• We investigate the use of frequency domain as source
of information for assessing the quality of 3D-PC.

The remainder of this paper is organized as follows. In
Section 2, we describe the proposed method. Then, we
present the experimental results in the Section 3. Finally, we
give some concluding remarks in Section 4.

2. PROPOSED METHOD
Fig. 1 presents the flowchart of the proposed system which
combines two steps: The first step is to extract effective at-
tributes from the 3D-PC. In the second step, fed the attributes

into a deep DCN-ViT model to process and forecast quality.
Further details are described in the following subsections.
2.1. Model input pre-processing
Deep Learning (DL) in particular enabled the automatic ex-
traction of the best high-level features, which outperformed
handwritten characteristics. However, learning strategies for
Feature-based metrics may change from one measure to the
next, but success is strongly dependant on input attributes.
Therefore, we create three inputs to be fed into the deep
learning model, integrating frequency magnitude, which is
new compared to previous measures that rely just on PC
color/coordinate data.

For a given 3D-PC, we select P patches with N points as
follows: we initially normalize the PC to a unit sphere and
use the furthest point sampling approach to select M number
of centroids (i.e., C = M1,M2,M3, ...,Mp). Then, we use
the K-nearest neighbors clustering algorithm to build a patch
around each centroid. In our experiments, P was set to 100,
where K = N was set to 1024. Afterwards, as shown in Fig.
1, RGB color information, point coordinates (i.e., x, y, z) and
its frequency magnitude are provided for each patch. Result-
ing tensor of size [P ×N × 3] for each input attribute.

2.2. Frequency Magnitude of 3D point Clouds
Obtaining the frequency magnitude of the 3D-PC could be
relevant in some applications. The frequency magnitude is a
measure of the spatial frequency content of the point cloud
data, and it can provide information about the overall shape
and structure of the object represented by the point cloud,
as well as an indicator of spatial patterns caused by degra-
dation/compression. In this work, the magnitude is computed
using the Fast Fourier Transform (FFT) on the extracted patch
of point coordinates (e.i., [P ×N×3] ), the magnitude is then
calculated by taking the absolute value of the Fourier coef-
ficients. Finally, we simplify the interpretation for the deep
learning model by relocating the zero frequency component
to the center of the spectrum and also the RGB data is stan-
dardized to a [0 − 1] scale. The Fourier transform is applied
to each spatial dimension of the 3D point cloud coordinates,
producing an output tensor of the same shape as the input.



Fig. 2. Examples of frequency magnitudes of different quality
PC, (values have been normalized to [0 − 1] scale for better
visualization). Three input tensors of size [3× 32× 32]

Fig. 2. shows an examples of different quality of the same PC
patch reshaped to size of [3 × N

32 × N
32 ]. As can be seen, the

frequency magnitudes differ at different MOS quality scores,
with lower quality scores (e.i., MOS : 2.5345) correspond-
ing to low-frequency in the 3D-PC data and high-density re-
gions corresponding to high-frequency. This investigation in-
spired us to include frequency as an indicator characteristic in
our system.

2.3. Spatial Transformation
Depending on the task and model architecture, reshaping the
input data into an image-like shape might provide numerous
benefits to the deep learning model. By reshaping features
into an image-like shape, we take advantage of the convolu-
tional layers of CNNs to perform local feature extraction and
capture spatial relationships between features. Therefore, we
concatenate and reshape the three input attributes into one ten-
sor of size [P × 9× N

32 × N
32 ]. However, converting the point

cloud to an image-like format may result in the loss of certain
information about the point cloud, such as the point ordering
and local neighborhood connections. This may prevent the
model’s ability to learn correctly from point cloud data. As a
result, we use a deformable convolutional block as first layer
in our model to help it learn to account for the non-uniform
distribution of 3D-PCs.

2.4. Deep CNN-ViT model
We present a hybrid model architecture based on deformable
convolution, depth-wise convolution, and ViT, inspired by the
work of [21]. The benefits of the stated techniques addressed
in the following: The deformable convolution makes the re-
ceptive field flexible and can be adjusted to the distribution
of point cloud data. This means that the convolutional filter
may learn a more accurate representation of the underlying
features, resulting in higher accuracy in the quality prediction
task. Depth-wise convolution applies a distinct filter to each
channel of a given input. Unlike classical convolution, which
uses a single filter across all channels, depth-wise convolution
uses a distinct filter for each channel, thereby learning inde-
pendent feature maps and thus requiring fewer parameters to
learn. While the convolution extracts local feature maps. The
self-attention mechanism in ViT extracts global feature maps.

As illustrated in Fig.1, our model is build up of the follow-
ing blocks in the correct order, with skip connections and con-
catenations between them: 1 DeformConv block, followed
by 2 DepthConv blocks and 2 Transformer blocks. The
extracted feature maps from the previous blocks are then input
into the Regression block, involving global average pooling
followed by a Fully Connected (FC) layer of output [1 × 1]
for quality score. As suggested in model [21], we always
use the kernel size 3 for DeformConv and DepthConv
blocks. While for the Transformer block, we set the size
of each attention head to 32. For the repeat block parame-
ters, were set as: R1 = 3, R2 = 3, R3 = 6, R4 = 14, and
R5 = 2. The corresponding size of hidden channels respec-
tively are: D1 = 64, D2 = 96, D3 = 128, D4 = 128, and
D5 = 512. However, more implementation details, can be
found in the source code. The model processes P patches
from each 3D-PC, and the anticipated quality score Qf of the
entire PC is presented by computing the mean of patch scores:
Qf = 1

P

∑
Qp.

2.5. Model training
In order to minimize the error during training of the designed
model, we use the SmoothL1Loss function which is a vari-
ant of the L1 loss functions as described in the following:

SmoothL1Loss(MOS,Q) =

1

p

p∑
i=1

{
0.5(MOS −Q)2, if |MOS −Q| < 1

|MOS −Q| − 0.5, otherwise
(1)

where Q are the predicted quality. The MOS, refers to
the human rating of the 3D-PC, and n is the number of
patches. SmoothL1Loss reduces the sensitivity to outliers
by smoothing the loss function near zero. It accomplishes
this by employing a piecewise function that for large errors
behaves like L1loss but is quadratic (e.i., L2loss) for small
errors. This makes it more appropriate for our MOS regres-
sion task, where the data may contain outliers where a more
robust loss function is required. To update the weights of the
model (8 million parameters), we used the Stochastic Gradi-
ent Descent (SGD) with a momentum factor equals to 0.9,
a weight decay factor sets to 10−4, a mini batch size equals
to 128 and a learning rate initialized to 10−5. The Pytorch
framework was used to implement our approach.

3. EXPERIMENTAL RESULTS
3.1. Dataset and training protocol
A database of 3D-PCs with quality scores for PC is re-
quired for training and evaluating. The quality score is often
obtained by MOS subjective scoring. For the PCQA do-
main, a variety of databases are publicly available. Three
datasets were used for performance evaluation: two well-
known (PointXR [2] and ICIP [1]) and a third new dataset
named BASICS [3], which was part of the ICIP 2023 Grand
Challenge on Point Cloud Quality Assessment (PCVQA).
The datasets are briefly described as follows: PointXR con-
tains 5 PCs, from which 45 degraded versions were created



using G-PCC with octree coding for geometry compres-
sion and Lifting and RAHT for color compression. ICIP20
contains 6 reference PCs from which 90 degraded copies
were created using 3 different compression methods: V-PCC,
G-PCC with triangle soup coding, and G-PCC with octree
coding. Each reference PC was compressed at 5 distinct lev-
els. BASICS, the largest dataset currently available, contains
75 references. Each point cloud was compressed using four
distinct compression methods with distinct compression lev-
els (VPCC, GPCC-RAHT, GPCC-Predlift, and GEOCNN),
yielding 1494 processed PC. The performance of our method
was quantified using the three databases. To guarantee that
our model evaluates the PC quality rather than focusing on
the content, we divide each database into 80% for training
and rest 20% for test based on PC references. So the train-
ing PCs data are independent from those used in test phase.
We repeat the same process 5 times and report the average
performance. During the training, we do not consider data
augmentation since at each training epoch, a random patches
were cropped. Over 500 training epochs, the best model was
chosen for test.
3.2. Comparison with the State-of-the-Art
The performance has been measured across three metrics:
The RMSE, Pearson linear correlation coefficient (PLCC),
Spearman’s rank order correlation coefficient (SROCC) be-
tween the machine quality judgments (objective scores) and
the human ratings (subjective scores). High values for PLCC
and SROCC (close to 1) and low values for RMSE (close
to 0) indicate a better prediction performance. Overall, the
statistical association between human quality scores and our
method ratings exhibited good performance and consistency.
The obtained results were compared to many FR and NR-
PCQA. Among them, two are recent reference-free metrics
based on the use of CNN models, namely Tliba [16] and
GQI-VGG19 [14]. Table 1 shows the results of these meth-
ods on both ICIP20 and PointXR datasets. Best metric is
represented on bold. As can be seen, our metric outperforms
all the state-of-the-art NR and FR metrics on PointXR, but
on ICIP20 and BASICS the performance falls short. These
findings are supported by the fact that the two datasets are
built of a more diverse collection of compression techniques,
whereas PointXR comprises only G-PCC method with octree
coding for geometry compression and Lifting and RAHT for
color compression. Furthermore, we report the performance
of our method according to the size of the training set. Table
2 shows the correlations achieved for a training set of size
50%, 70% and 80%. The partition ratio has a slight impact on
the performance. And it does not suffer from an over-fitting
problem.
3.3. Ablation study and run-time
We simply delete one of the extracted attributes from the in-
put data in the ablation test scenario. As a result, following the
same experiment protocol, the model is completely retrained
and tested. Table 3 compares performance without and with
frequency magnitude information. In addition, we studied the

Table 1. Overall performance comparison on ICIP20,
PointXR and BASICS datasets.

ICIP20 PointXR BASICS
Type Metrics SROCC PLCC SROCC PLCC SROCC PLCC

Po2pointMSE 0.950 0.945 0.978 0.887 - -
FR Po2planeMSE 0.959 0.945 0.942 0.855 - -

PSNRpo2pointMSE 0.934 0.880 0.978 0.983 - -
PSNRpo2planeMSE 0.953 0.916 0.950 0.972 - -

Tliba [16] 0.955 0.908 0.970 0.964 - -
NR GQI-VGG19 [14] 0.966 0.952 - - - -

Proposed 0.893 0.849 0.988 0.981 0.710 0.764

Table 2. Performance of the proposed metric under different
train-test partitions on PointXR.

Partition SROCC PLCC RMSE
80%-20% 0.988 0.981 1.327
70%-30% 0.915 0.942 1.378
50%-50% 0.884 0.921 1.449

use of RGB information data. The results indicate that our
approach improves performance and supports the idea of us-
ing frequency of PC data as a visual quality attribute. As ex-
pected, involving the RGB color information of the PC im-
proves the performance since it is necessary to describe the
3D object. We measured less than 2 seconds of run-time

Table 3. Performance obtained of ablation tests on PointXR.
Model SROCC PLCC RMSE

Without RGB data 0.962 0.952 1.642
Without Frequency 0.976 0.962 1.403

Proposed 0.988 0.981 1.327

(1.129 s) using a single 3D-PC, including patches extraction,
processing and loading using a Dell Precision 5570 laptop
equipped with an Intel i7-12800H CPU @ 4.80GHz proces-
sor and an NVIDIA Quadro RTX A 2000 GPU. In terms of
run-time speed, the proposed metric has the potential to be
used for real-time applications.

4. CONCLUSION
In this paper, we introduced a new NR-PCQA approach based
on a hybrid model (DCN-ViT) combining deformable convo-
lution and self-attention for evaluating the quality of given
3D-PC. The suggested light-weight model takes RGB color
information, point coordinates, and frequency magnitude of
the PC as inputs to determine the visual quality. The ablation
study demonstrates that frequency analysis is beneficial and
has potential for further work. Based on a comparative ex-
amination using three datasets, our model outperforms state-
of-the-art approaches on PointXR and competitive results on
ICIP20 and BASICS dataset. As future work, we will under-
take in-depth examination and consider extending the model
to handle auxiliary tasks such as: distortion type recognition
and degree of deformations.

5. REFERENCES

[1] Stuart Perry, Huy Phi Cong, Luı́s A da Silva Cruz, João
Prazeres, Manuela Pereira, Antonio Pinheiro, Emil Du-



mic, Evangelos Alexiou, and Touradj Ebrahimi, “Qual-
ity evaluation of static point clouds encoded using mpeg
codecs,” in 2020 IEEE International Conference on Im-
age Processing (ICIP). IEEE, 2020, pp. 3428–3432.

[2] Evangelos Alexiou, Nanyang Yang, and Touradj
Ebrahimi, “Pointxr: A toolbox for visualization and
subjective evaluation of point clouds in virtual reality,”
in 2020 Twelfth International Conference on Quality of
Multimedia Experience (QoMEX). IEEE, 2020, pp. 1–6.

[3] Ali Ak, Emin Zerman, Maurice Quach, Aladine
Chetouani, Aljosa Smolic, Giuseppe Valenzise, and
Patrick Le Callet, “Basics: Broad quality assessment
of static point clouds in compression scenarios,” arXiv
preprint arXiv:2302.04796, 2023.

[4] Charles R Qi, Wei Liu, Chenxia Wu, Hao Su, and
Leonidas J Guibas, “Frustum pointnets for 3d object
detection from rgb-d data,” in Proceedings of the IEEE
conference on computer vision and pattern recognition,
2018, pp. 918–927.

[5] Oussama Messai, Fella Hachouf, and Zianou Ahmed
Seghir, “Adaboost neural network and cyclopean
view for no-reference stereoscopic image quality assess-
ment,” Signal Processing: Image Communication, vol.
82, pp. 115772, 2020.

[6] Oussama Messai, Aladine Chetouani, Fella Hachouf,
and Zianou Ahmed Seghir, “3d saliency guided deep
quality predictor for no-reference stereoscopic images,”
Neurocomputing, 2022.

[7] Oussama Messai and Chetouani, “End-to-end deep
multi-score model for no-reference stereoscopic image
quality assessment,” in 2022 IEEE International Con-
ference on Image Processing (ICIP). IEEE, 2022, pp.
2721–2725.

[8] RN Mekuria, Zhu Li, C Tulvan, and P Chou, “Evalua-
tion criteria for pcc (point cloud compression),” 2016.

[9] Dong Tian, Hideaki Ochimizu, Chen Feng, Robert Co-
hen, and Anthony Vetro, “Geometric distortion metrics
for point cloud compression,” in 2017 IEEE Interna-
tional Conference on Image Processing (ICIP). IEEE,
2017, pp. 3460–3464.

[10] Evangelos Alexiou and Touradj Ebrahimi, “Point cloud
quality assessment metric based on angular similarity,”
in 2018 IEEE International Conference on Multimedia
and Expo (ICME). IEEE, 2018, pp. 1–6.

[11] Rafael Diniz, Pedro Garcia Freitas, and Mylène CQ
Farias, “Towards a point cloud quality assessment
model using local binary patterns,” in 2020 Twelfth In-
ternational Conference on Quality of Multimedia Expe-
rience (QoMEX). IEEE, 2020, pp. 1–6.

[12] Gabriel Meynet, Yana Nehmé, Julie Digne, and Guil-
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