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Context and problem formulation

Optimization of functions defined over clouds of points
• Deal with functions assumed to be black box.
• In this presentation, we consider functions having inputs in the form of bag of vectors (or

point clouds).
• These types of functions are encountered in many domains, such as: image processing,

design of experiments and optimization, . . .

The design variable
• X = {x1, . . . , xn} where xi ∈ Rd , i = 1, . . . , n and nmin ≤ n ≤ nmax. It will be referred to

as a cloud of points.
• It is a specific type of mixed variables.
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Example of an industrial problem : optimizing the layout of a
wind-farm

A set of points model
• Each point (vector) represents the

positions of a turbine.
• The set of points corresponds to the

positions of all the turbines.
• Find an optimal layout of turbines in

a compact domain. The idea is to find
a design maximizing annual production
for instance.
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Mixed aspect: no order and varying size

Comparing two clouds of points with different sizes
The functions of interest are permutation-invariant with respect to each of their inputs.
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Optimization with Evolutionary Algorithm

Difficulties
• F is a black-box function, no information about its smoothness, a fortiori its convexity.
• The presence of a mixed variables make it difficult to define gradients.

Evolutionary algorithms
• Handle the candidate solutions using geometry and or interaction.

Related works
• We can find in [2], [5], and [4] algorithms, optimizing positions , based respectively on

simulated annealing, genetic algorithm and particle swarm optimization.
• Authors suppose predefined positions and use binary encoding.
• Our work differs by letting points vary continuously.
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The structure of the algorithm

Evolutionary algorithm structure
• λ the size of population, Niter the number of iterations, F the function to be optimized

and P the population.
• Choose λ clouds randomly to initialize Pop = {Xi , i = 1, ..., λ}.
• For k = 1, . . . ,Niter

• Compute F (Xi ) for i = 1, ..., λ.
• Create 2 ∗ λ new clouds by crossover.
• Mutate each new cloud.
• Selection: keep the λ best clouds among the parents and the children of the population.

Generation of new clouds of points (children)
• How to cross and mutate clouds of points ?
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Interpolation using Wasserstein-barycenter

With the discrete uniform measures
• To each cloud of points X = {x1, ..., xn}, we associate PX = 1

n

∑n
i=1 δxi

• We can compute a new cloud by interpolation with Wasserstein barycenter.
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Wasserstein distance to define barycenter

Wasserstein distance
• For two measures µ and ν defined over Rd , the Wasserstein distance of order p is defined

as follows : W p
p = infπ∈Π(µ,ν)

∫
Rd×Rd ρ(x , x

′)pdπ(x , x ′)
• ρ(x , x ′) correspond to the Euclidean distance between x and x ′

• Π(µ, ν) is the set of all probability measures defined over Rd × Rd with marginals µ and ν.

Wasserstein barycenter
• A barycenter (ν∗) of N measures ν1, ..., νN is defined as to minimize

f (ν) =
∑N

i=1 ϵiW
p
p (ν, νi ), with ϵi ≥ 0,

∑N
i=1 ϵi = 1 see Agueh and Carlier [1].
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Wasserstein Barycenter as a crossover

Wasserstein Barycenter
• Equal weights crossing : For two measures (PX1 and PX2) we can take
PXc = argmin

PX

(W 2
2 (PX ,PX1) +W 2

2 (PX ,PX2)), to be a new design.

• Random weights crossing : For two measures (PX1 and PX2) and a random ϵ ∈ [0, 1]
we can take PXc = argmin

PX

ϵW 2
2 (PX ,PX1) + (1 − ϵ)W 2

2 (PX ,PX2), to be a new design.

Comments on the sizes
• If PX1 and PX2 have two different supports’ sizes, k1 and k2, two crossings are done

yielding two new designs (with supports k1 and k2).
• Algorithms to compute this minimum are discussed in Cuturi and Doucet [3].
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Contracting effect

Theorem
Consider P ′ be the set of discrete measures over Rd with finite support and ϵ a positive real
number. Let PX1 , PX2 and PX∗ be defined respectively as

∑n
i=1 αiδx1

i
,
∑n

i=1 αi = 1, αi ≥ 0,∑m
j=1 βjδx2

j
,
∑m

j=1 βj = 1, βj ≥ 0,
∑k

l=1 λlδx∗l ,
∑k

l=1 λl = 1, λl ≥ 0 with

PX∗ ∈ arg
PX∈P ′

min ϵW 2
2 (PX ,PX1) + (1 − ϵ)W 2

2 (PX ,PX2)

If the above is verified we have ∀l ∈ {1, ..., k}, x∗l ∈ Conv(x1
1 , ..., x

1
n , x

2
1 , ..., x

2
m) where

Conv(x1
1 , ..., x

1
n , x

2
1 , ..., x

2
m) is the closed convex hull of the set {x1

1 , ..., x
1
n , x

2
1 , ..., x

2
m}

Escape from contraction !
One needs to define mutations helping to escape from contraction. How ?
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Crossings’ examples
The given clouds are contained in the convex hull of the union of the initial clouds.
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X1 and X2 respectively in black and red are two initial clouds and X (in blue) represents their Wasserstein
barycenter
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Mutations
We introduce the following mutations over clouds of points. Xm is a mutation of Xc .

Definitions
• ϵ ∼ U [0, 1]
• Boundary-Mutation (BM) : PXm = argmin

PX

ϵW 2
2 (PX ,PXc ) + (1− ϵ)W 2

2 (PX ,PXc∪Dom)).

Dom is a cloud of points at the domain boundary, it can be randomly sampled. To fix
ideas, for a polygon, Dom is be the union of points randomly sampled on the sides On
each side, one samples a point.

• Weighted-Sample-Wasserstein (WSM) :
PXm = argmin

PX

ϵW 2
2 (PX ,PXc ) + (1 − ϵ)W 2

2 (PX ,PXrand
) with the following :

• Xrand is a randomly sampled.

• What mutation do we adopt ?
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One (of the two) mutation with a random weight (ϵ)
We adopt the following mutation after experimental results.

A one mutation
• r ∼ U [0, 1]
• If r ≥ 0.5:

• Do BM
• Else :

• Do WSW
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X and Xm (respectively in red and blue) are initial cloud and the mutated one with Wasserstein barycenter. BM
on left and WSW on right. 14 / 30



Default crossovers and mutations : comparison algorithm
denoted Cg

Crossing by random choice of points among parents
• Let X 1 = {x1

1, ...x
1
n1
, ∅n1+1, ..., ∅nmax} and X 2 = {x2

1, ...x
2
n2
, ∅n2+1, ..., ∅nmax}

• X c = {x1, ...xn, ∅n+1, ..., ∅nmax} is their crossover. And ∀i ∈ {1, ..., nmax}, xi is randomly
sampled in {x1

i , x
2
i} with a Bernoulli law (1/2). Rearrange to have full points on left.

Gaussian Mutation
• Let X c = {x1, ...xn, ∅n+1, ..., ∅nmax}
• Sample m randomly in {n − 1, n, n + 1}
• Add or remove points according to m
• Perturb each point with a truncated Gaussian with a diagonal covariance matrix where the

variance is given by the following :
• proportional to σ2 = E [∥X − X ′∥2].
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Crossings’ examples
The new clouds contain points sampled randomly from the two initial clouds : points don’t
move.
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X1 and X2 respectively in black and red are two initial clouds and X (in blue) is an example of their classical
crossover
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Gaussian mutation
Each point of the cloud is mutated with a truncated Gaussian.
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Numerical experiments

Experiment set-up
• In the following we fix λ = 300, Niter = 500.
• WBGEA (Wasserstein-Barycenter Evolutionary Algorithm with equal weights in crossing),
• (WBGEA_rc) (random weights in crossing)
• (WBGEA_nc (without crossing)
• Cg : the comparison algorithm algorithm
• Cg_nc (the comparison algorithm without crossing)
• For each algorithm, we compute the diversity of the population during the iteration with

the followoing :
• Consider Pop = {Xi , i = 1, ..., λ}
• PX∗ being the Wasserstein barycenter of the population and its size defined as the mode of

all sizes in Pop.
• Diversity of Pop is (1/λ)

∑λ
i=1 W

p
p (PX∗ ,PXi )

• We compare all the algorithms on the following test functions.
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Test functions

Inspired from wind-farms

• We consider the following family of test functions mimicking wind-farms productions

Fθ({x1, ..., xn}) =
n∑

i=1

( ∏
j , j ̸= i

fxj ,θ(xi)

)
f0(xi) (1)

Mindist and Inertia
• FminDist({x1, ..., xn}) = mini ̸=j ||xi − xj ||.
• Finert({x1, ..., xn}) =

∑n
i=1 ||xi − X̄ ||2 with X̄ = 1

n

∑n
i=1 xi

The input of the functions
• The number of points of the inputs vary between 10 and 20. We maximize the functions.

19 / 30



Wind farm test functions
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Presentation of results

• We apply 5 algorithms on each test function.
• The results are presented respectively in the following order F0, F90, F45, F4d , Finert ,
FminDist

• The x-axis correspond to the number of iterations.
• Concerning the algorithm’s performances, the y-axis correspond to the mean over 20 of

the maximum of each population.
• We do the same for the diversity (y-axis correspond to the mean over 20 of the diversity of

the population).
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Progress of the maximum of each population during iterations
The absence of crossing improves all the algorithms. Random weights in crossing works better
than equal ones in WBGEA. WBGEA_nc outperforms all the algorithms except on FminDist .
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Diversity of the algorithms
When crossing with equal weights in WBGEA, one observes a quite similar diversity of
population than with random ones for long term. The absence of crossing helps to keep more
the diversity of population in WBGEA. We observe a higher diversity with Cg.
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Best designs of WBGEA_nc
We observe an adaptation of the returned designs to the optimized functions. The points are
placed optimally according to the wind’s direction for wind-farms analytical functions.
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Population’s view of WBGEA on F0

We can visualize the similarity of the clouds of points in the population progressing during the
iterations.
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Population’s view of WBGEA_nc on F0

Without crossing, the progression of the similarity is accelerated during the first iterations and
slightly reduced at the end.
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Population’s view of Cg_nc the FminDist

We can observe the great diversity due to the Gaussian mutation !
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Perspectives

Evolutionary algorithms over clouds of points
• Optimizing over non convex domains.
• Optimize with colored clouds of points.
• Extend to clouds with points of dimension d > 2.
• Combining with Gaussian process : Bayesian Optimization.
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