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A B S T R A C T

The geometrical modeling of granular objects is a complex challenge that exists in many scientific fields, such
as the modeling of granular materials or rocks and coarse aggregates with applications in civil, mechanical,
and chemical engineering. In this paper, a model called SPHERE (Stochastic Process for Highly Effective
Radial Expansion) is proposed, which is based on the deformation of an ellipsoid mesh using multiple 3D
Gaussian random fields. The model is designed to be flexible (full control over 2D and 3D morphological
properties of granular objects), ultra-fast (over 1000 aggregates in less than 5 s), and independent of the
mesh and base shape used (as long as it is a star-shaped object). The flexibility of the model and its ability
to reflect real data is illustrated using images of latex nanoparticle aggregates. Using 2D measurements on
images from a morphogranulometer, a method based on the SPHERE model is proposed to estimate the 3D
morphological properties of aggregates. A multiscale optimization process is applied, in particular using a
partial reconstruction of 2D shapes from elliptic Fourier descriptors, in order to best reproduce the shape,
angularity and texture of the aggregates using the SPHERE model. Validation of the method on 3D printed
data shows relative errors of less than 3% for all measured 2D and 3D morphological characteristics, and
validation on a population of synthetic objects shows relative errors of less than 6%. The results are compared
and discussed with those obtained using other models based on overlapping spheres and show consistency
with previous work. Finally, suggestions for improvement are given.
1. Introduction

The morphological characterization of granular objects, aggregates
or agglomerates is a key concern in many fields, from the pharma-
ceutical [1,2] and food industries [3,4] to the chemical industry [5,6]
and civil engineering [7,8]. In fact, the morphology of these objects is
directly related to their physico-chemical or mechanical properties, and
consequently to their taste quality [4] , toxicity [9], health and environ-
mental hazards [10,11], or even to their mechanical strength [12]. For
all these reasons, the modeling of these objects, coupled with image
analysis techniques to determine their morphological characteristics,
has become a major concern. In fact, image analysis alone provides
only partial information about the analyzed objects, and in most cases
it provides two-dimensional information. Using a model and fitting
it to real data can then, under certain hypotheses, complement the
information obtained from image analysis by estimating certain 3D
morphological characteristics such as volume or surface area. This
approach has been used in previous work [13], for example, using
images from a morphogranulometer and assuming a certain cylindrical
symmetry of the observed objects.
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E-mail addresses: l.theodon@emse.fr (L. Théodon), carole.saudejaud@toulouse-inp.fr (C. Coufort-Saudejaud), debayle@emse.fr (J. Debayle).

The difficulty in implementing such methods lies not only in the
number of assumptions that must be made in order to estimate 3D
properties from 2D information, but also in choosing a model that
is flexible enough to be representative of real data, yet efficient and
easily tunable. In fact, when it comes to modeling aggregates, ag-
glomerates, or granular objects in general, there are numerous models
available. Models based on overlapping spheres are particularly popular
for modeling aerosols or soot aggregates [14–17], but more generally
for modeling any type of granular object, compact or not (Moreaud
et al. [18]). The morphological properties of objects generated in this
way can usually be easily adjusted using model parameters. The main
drawbacks, however, are their relative slowness in terms of computa-
tion time and the difficulty of accurately describing the fine surface
texture of granular objects, such as sand grains, without unreasonably
increasing the number of spheres required (Ferellec and McDowell
[19]).

Another popular technique is to generate random shapes from
Fourier descriptors. This is especially useful for 2D objects (Mollon
vailable online 5 January 2024
031-3203/© 2024 The Author(s). Published by Elsevier Ltd. This is an open access a

https://doi.org/10.1016/j.patcog.2024.110255
Received 25 October 2023; Received in revised form 11 December 2023; Accepted
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

2 January 2024

https://www.elsevier.com/locate/pr
https://www.elsevier.com/locate/pr
mailto:l.theodon@emse.fr
mailto:carole.saudejaud@toulouse-inp.fr
mailto:debayle@emse.fr
https://doi.org/10.1016/j.patcog.2024.110255
https://doi.org/10.1016/j.patcog.2024.110255
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2024.110255&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Pattern Recognition 149 (2024) 110255L. Théodon et al.

z
a
T
e
p
c
d
i
e
f

2

t
t
S
t
l

and Zhao [20] and Chen et al. [21]), but also for 3D objects (Mollon
and Zhao [22]). In the 3D case, Mollon and Zhao [23] also suggests
using a combination of periodic 2D Gaussian random fields instead of
Fourier harmonics to apply deformations of varying intensity and scale
to a sphere. Furthermore, a three-dimensional description of the surface
of a 3D object, analogous to Fourier descriptors in two-dimensional
analysis, are spherical harmonics (Baxansky and Kiryati [24]). As a
result, a large number of models for the generation of random objects
have been developed using this approach (Garboczi and Bullard [25],
Wei et al. [26] and Ueda [27]). However, while these methods are
very flexible and efficient compared to overlapping sphere models, they
have the disadvantage of requiring a very large number of parameters
(often several dozen), depending on the level of detail required to
describe an object, which is particularly problematic in the context of
an optimization process due to the curse of dimensionality [28].

Therefore, this article proposes a new model called SPHERE
(Stochastic Process for Highly Effective Radial Expansion) for granular
object generation. The idea is to deform a basic object using different
3D Gaussian random fields to influence the different morphological
properties of the object (shape, angularity, texture). In the context of
this work, two random fields are used to deform an ellipsoid, bringing
the total number of model parameters to 6 and making it much easier
to fit to real data. Furthermore, using 3D random fields to deform the
object makes the method extremely easy to implement and completely
independent of the mesh used. In particular, there are no longer any
periodicity constraints to impose on the random field, which is often
a difficulty when using such techniques, whether using Gaussian fields
(Mollon and Zhao [23]) or other spherical random noise (Spjut et al.
[29] and Hettinga et al. [30]). Finally, generating the 3D Gaussian
random fields using a Fourier transform makes the whole process
extremely efficient, with over 1000 objects generated in just 5 s using
optimized standard MATLAB® code.

In summary, the original contributions are as follows

1. A model for generating granular objects based on multiple 3D
random fields to take into account the multi-scale aspect of the
morphological descriptors.

2. The independence of the model from the choice of mesh (see Ap-
pendix), the speed of object generation and the flexibility of the
model with a limited number of parameters.

3. The validation of the method on real objects and on a popula-
tion of synthetic objects using a multiscale optimization process
based on partial reconstructions of 2D projections using elliptic
Fourier descriptors (Kuhl and Giardina [31] and Crampton [32]).
The application of the method to latex nanoparticle aggregates.

In the following section, the aim of this work, i.e. the characteri-
ation of latex nanoparticle aggregates from 2D images, is described
nd the main morphological characteristics measured are presented.
he SPHERE model is then described and examples of randomly gen-
rated objects are shown. The optimization process for fitting model
arameters to real data is then described, and the model is validated on
alibrated real objects, namely 3D printed aggregates, and on numerical
ata (see Section 4.2). Finally, the method is applied to real data,
.e. aggregates obtained from agglomeration experiments of Hamieh
t al. [33] (see Section 5). The results are discussed and prospects for
uture work are provided.

. The proposed method

From an experimental point of view, the real materials studied in
his article are 3D printed aggregates and aggregates obtained from
he agglomeration of latex nanoparticles by Hamieh et al. [33] (see
ection 5.1). For both types of real aggregates, several images were
aken at the end of the aggregation process using a morphogranu-
2

ometer (Morphologi G3 - Malvern Panalytical). However, only 2D
Table 1
List of morphological characteristics used in this paper.

Parameter Symbol Definition and equation

Feret diameter max. 𝐹max Longest caliper (Feret) length
Feret diameter min. 𝐹min Smallest caliper (Feret) length
2D parameters
Projected area 𝐴 Area of the object
Convex area 𝐴𝑐 Area of the convex hull
Perimeter 𝑃 length of the object outline
Equivalent Circle Diameter ECD 2 ×

√

𝐴∕𝜋
Projected major axis 𝑎𝑝 Major axis of the equivalent ellipse
Projected minor axis 𝑏𝑝 Minor axis of the equivalent ellipse
Projected elongation 𝑒𝑝 𝑏𝑝∕𝑎𝑝
Aspect ratio AR 𝐹min∕𝐹max
Convexity Co 𝐴∕𝐴𝑐
Circularity 𝐶 4𝜋 × 𝐴∕𝑃 2

3D parameters
Volume 𝑉 Volume of the object
Convex volume 𝑉𝑐 Volume of the convex hull
Surface area 𝑆 Area of the object surface
Equivalent Sphere Diameter ESD 2 × 3

√

3 × 𝑉 ∕(4𝜋)
Major axis 𝑎 Major axis of the basic shape
Minor axis 𝑏 Minor axis of the basic shape
Elongation 𝑒 𝑏∕𝑎
Solidity SLD 𝑉 ∕𝑉𝑐

Sphericity 𝛷𝑆 6𝜋2 × 𝑉 ∕(
√

𝜋𝑆)3

characteristics were measured by image analysis, so the current work
aims to go a step further by also covering 3D characteristics.

The characterization of aggregates or agglomerates using image
analysis is a rapidly growing topic, especially as new deep learning
techniques have emerged in recent years (Frei and Kruis [34], Monchot
et al. [35], Rühle et al. [36] and Lins et al. [37]). However, one of
the most important issues is the choice of the characteristics to be
measured. In fact, several dozen morphological characteristics can be
defined to characterize 2D or 3D shapes, and their relevance can vary
greatly depending on the context, the type of object considered, the
imaging device, or the scale considered (Théodon et al. [38]).

When it comes to latex nanoparticle aggregates, in addition to
projected area, perimeter and Equivalent Circle Diameter (ECD), which
are size characteristics, convexity and circularity are appropriate de-
scriptors. In fact, these are shape and angularity features that not
only help to describe the geometry of the aggregates, but can also be
related to their physicochemical properties, as well as to parameters
of the aggregation process itself, as Guérin et al. [39,40] has shown in
previous work. The convexity is the ratio of the projected area to the
convex area, and the circularity is a measure of how close a geometric
shape is to a circle. Since these are 2D morphological properties,
their 3D equivalents - solidity and sphericity, respectively — are also
measured on 3D objects derived from the SPHERE model. Similarly,
the 3D equivalent of EDC, the Equivalent Sphere Diameter (ESD), will
be the main size criterion. Table 1 provides an exhaustive list of all the
morphological characteristics used in the remainder of this article.

Thus, the proposed method aims at estimating the 3D character-
istics of latex nanoparticle aggregates using a stochastic geometric
model, where the model parameters are adjusted by matching the 2D
characteristics of the synthetic objects generated by the model with
those measured on images from the morphogranulometer. Once an
optimal parameterization of the model is found, the 3D properties of
the synthetic aggregates are measured and used as an estimate of the
3D properties of the real aggregates. This model-based approach is
proposed because each of the aggregates is only visible in a single
image, and methods based on multiple images (Grum and Bors [41],
Kang et al. [42] and Yan et al. [43]), for example, are not applicable.

3. The sphere model

Mesh deformation can be efficiently performed using pseudo-
random noise such as Perlin (Hettinga et al. [30]), Simplex (Spjut et al.
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Fig. 1. Example of 3D Gaussian random fields generated on a 503 px3 grid with different chord lengths 𝓁 and with the correlation function given by Eq. (1). Colors represent
field intensity (dark blue = 0 and dark red = 1). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 2. Example of deformation of the mesh of a sphere by 3D Gaussian random fields generated on a 503 px3 grids with different chord lengths 𝓁 and with the correlation
function given by Eq. (1).
[29]), or Open-Simplex. However, these methods can be complex to
implement and generally lead to an inflation in the number of parame-
ters. In addition, pseudo-randomness is not necessarily desirable when
generating a random object. Therefore, using random fields (Mollon
and Zhao [23]) such as Markovian random fields or Gaussian random
fields to deform a mesh is a good alternative. These random fields are
generally assumed to be isotropic, homogeneous, and stationary. In this
case, the generation of Gaussian random fields is particularly efficient
thanks to methods based on the Fast Fourier Transform (FFT).

However, the deformation of spherical objects using random fields
requires the generation of periodic fields or the imposition of edge
conditions, which can be complex to implement (Mollon and Zhao
[23]). To overcome these limitations, a model called SPHERE (Stochas-
tic Process for Highly Effective Radial Expansion) is proposed. This
model is based on the use of 3D random fields to deform a spherical or
ellipsoidal mesh, making this deformation particularly efficient in terms
of computational time, completely independent of the mesh (see Ap-
pendix), and completely free of object periodicity constraints. This
section explains the algorithm for efficiently generating 3D random
Gaussian fields and introduces the SPHERE model.

The use of a Gaussian random field offers several major advantages,
such as ultra-fast generation compared to that of a Markovian random
field, for example, due to the use of an FFT-based algorithm, and
complete determination of the field from a covariance function that, in
the context of this article, depends on only one parameter, the chord
length. Limiting the number of parameters is critical when applying
the optimization process to the model. These points will be discussed
in detail in the following sections.

3.1. Generation of a 3D Gaussian random field

An efficient method for generating a 3D Gaussian field is based on
the work of Adler et al. [44] and Liang et al. [45], who express the
random field as the convolution of an uncorrelated Gaussian random
noise with a symmetric and normalized weight function. Lang and
Potthoff [46] then shows that avoiding the computation of the convo-
lution product by going into the Fourier space not only speeds up the
computation considerably, but also results in extremely low error.

The process of generating a 3D Gaussian random field using an FFT
3

can be described as follows:
1. A covariance function 𝐶(𝑟), such as an exponential quadratic
kernel (also known as a Radial Basis Function or RBF kernel),
must be defined.

𝐶(𝑟) = exp
(

‖𝑟2‖
2𝓁2

)

(1)

with 𝑟 = (𝑥, 𝑦, 𝑧) ∈ R3 and 𝓁 a scale length called chord length.
2. The spectral power function 𝐶(𝑘⃗) is defined as the Fourier trans-

form of the covariance.

𝐶(𝑘⃗) = 𝐹𝐹𝑇
(

𝐶(𝑟)
)

(2)

3. The Gaussian random field 𝐺(𝑟) is obtained by applying the
inverse Fourier transform to the product of the square root of
𝐶(𝑘⃗) and the Fourier transform ̂ (𝑘⃗) of an uncorrelated Gaussian
random noise  (𝑟).

𝐺(𝑟) = 𝐹𝐹𝑇 −1
[

̂ (𝑘⃗) ×
√

𝐶(𝑘⃗)
]

(3)

This method is particularly effective for fast 3D random field gener-
ation. For example, on a machine equipped with an Intel(R) Core(TM)
i9-12900KF processor at 3.19 GHz and 64 GB of RAM using MATLAB®
(2023b), it takes about 10−2 s to generate a 3D Gaussian random field
on a 503 px3 grid, which is the size that will be used to deform the mesh
of spheres or ellipsoids in the remainder of this paper. In particular,
Fig. 3 shows the evolution of the computational time required to
generate a 3D Gaussian random field on grids of different sizes.

Finally, a Gaussian random field is completely determined by its
covariance function, and in particular by the chord length 𝓁. Fig. 1
illustrates the influence of this parameter on the structure of the
random field.

3.2. Mesh deformation using a 3D Gaussian random field

The proposed method for generating random 3D objects is based on
the deformation of a 3D mesh using a 3D Gaussian random field. The
method can be described as follows:

1. A mesh 𝑀 corresponding to a set of points in R3 is generated;
for example, a sphere, an ellipsoid, or any convex object.
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Fig. 3. Time required to generate a 3D Gaussian random field on grids of different sizes
using the previous algorithm. The simulated data are averaged over 20 simulations.

2. A 3D Gaussian random field 𝐺(𝑟) with normalized values in
[−1; 1] is generated.

3. Each point 𝑟 = (𝑥, 𝑦, 𝑧) ∈ 𝑀 of the mesh is affected by the
displacement 𝑐 × 𝐺(𝑟) × 𝑛, where 𝑛 is the mesh normal and
𝑐 ∈ [0; 1] is an intensity coefficient.

Since the Gaussian field 𝐺(𝑟) is discretized, its value at any point
n space is calculated by cubic spline interpolation. Fig. 2 shows the
esults of deforming a sphere mesh with Gaussian fields of different
hord lengths 𝓁 and for different intensity coefficients 𝑐.

Unlike most conventional methods that use 2D random fields as
isplacement maps to deform 3D objects or surfaces [29,30,47], the
roposed method uses 3D Gaussian random fields, which means that
o periodicity problems arise and it is independent of the meshing
f the shape under consideration (see Appendix), i.e. in this case a
phere or an ellipsoid. Although the computation time of a 3D random
ield is much higher than that of a 2D random field, in the context of
he application proposed in this paper, this is negligible compared to
he time required to compute the morphological characteristics of the
enerated 3D objects, which can take several tenths of a second.

.3. The proposed model

.3.1. Model description
The proposed model generates granular objects resembling compact

ggregates from a combination of Gaussian random fields applied to the
esh of an ellipsoid. The idea is to rely on a classification hierarchy of

ommon morphological characteristics. The basic object, the ellipsoid,
s used to give it a basic shape. A first Gaussian random field 𝐺𝐴
odifies the overall shape and acts on what is called angularity. Finally,
second Gaussian random field 𝐺𝑇 is used to add small details to

he surface, commonly referred to as the texture of the object. The
eneration process can be summarized as follows:

1. The mesh 𝑀 of an ellipsoid with major axis 𝑎 and equal minor
axes 𝑏 is generated.

2. Two 3D Gaussian random fields 𝐺𝐴 and 𝐺𝑇 are generated with
chord lengths 𝓁𝐴 and 𝓁𝑇 , respectively, where 𝓁𝐴 > 𝓁𝑇 .

3. The mesh 𝑀 is deformed by a combination 𝐺𝐶 of the two
random fields 𝐺𝐴 and 𝐺𝑇 , defined as follows:

𝐺𝐶 = 𝑐𝐴 × 𝐺𝐴 + 𝑐𝑇 × 𝐺𝑇 (4)

where the coefficients 𝑐𝐴 and 𝑐𝑇 control the intensity of the
deformation.

The proposed model thus depends on 6 parameters. Two param-
ters (𝑎 and 𝑏) control the size and general shape of the object, two
arameters associated with the random field 𝐺𝐴 (𝓁𝐴 and 𝑐𝐴) control

its angularity, and two parameters associated with the random field 𝐺
4

𝑇

Table 2
List of the 6 parameters of the proposed model.

Parameter Definition

𝑎 Major axis
𝑏 Minor axis
𝓁𝐴 Chord length of the random field 𝐺𝐴
𝓁𝑇 Chord length of the random field 𝐺𝑇
𝑐𝐴 Deformation intensity factor with respect to 𝐺𝐴
𝑐𝑇 Deformation intensity factor with respect to 𝐺𝑇

(𝓁𝑇 and 𝑐𝑇 ) control the surface texture. Fig. 5 illustrates the process of
creating a 3D granular object, and Table 2 lists all 6 parameters used.

Limiting the model to two random fields and 6 parameters provides
good flexibility while avoiding the curse of dimensionality found in
models that use spherical harmonics (Garboczi and Bullard [25], Wei
et al. [26] and Ueda [27]) or combine random fields and Fourier
descriptors (Mollon and Zhao [23]), which can depend on more than 20
different parameters. Fig. 4 shows some examples of objects generated
by the proposed model with different parameters.

3.3.2. Sensitivity of the parameters
Controlling the size and morphology of the objects generated by

the model is a crucial issue when it comes to matching the measured
morphological characteristics of simulated objects with those of real
ones. In this section, the influence of model parameters on certain
characteristics of size (volume 𝑉 , projected major axis 𝑎𝑝), shape
(elongation 𝑒), and angularity or texture (circularity 𝐶, sphericity 𝛷𝑆 ,
olidity SLD) is examined.

In fact, since the objects studied here are generally based on 2D
mages captured with optical devices, half of the characteristics men-
ioned above are 2D characteristics. Indeed, while volume, the solidity
ratio of volume to convex volume), and the sphericity (a measure of
he similarity of an object to a sphere) are indeed 3D characteristics,
he projected major axis, elongation, and circularity (a measure of
he similarity of a shape to a circle) are 2D characteristics, which in
his case (e.g. for image acquisition with a morphogranulometer) are
easured on a projection of the 3D object along a direction orthogonal

o the maximum Feret diameter. In particular, the projected major axis
nd the elongation are calculated directly from the equivalent projected
llipse, as shown in Fig. 6.

The meshes of two objects are considered: one spherical (Fig. 7(a)
ith 𝑏∕𝑎 = 1) and the other ellipsoidal (Fig. 7(b) with 𝑏∕𝑎 = 0.7). The

nfluence of the deformation intensity applied to these meshes by the
wo Gaussian random fields 𝐺𝐴 (Fig. 7(c), 𝓁𝐴 = 25) and 𝐺𝑇 (Fig. 7(d),
𝑇 = 1) is then studied by varying the coefficients 𝑐𝐴 and 𝑐𝑇 from 0 to
.6.

Figs. 8 and 9 illustrate the influence of the model parameters on the
D and 3D morphological characteristics for spherical and ellipsoidal
ase objects, respectively. When analyzing the results, it may be worth
onsidering that, in the context of this work, the deformation intensity
ssociated with the random field of angularity 𝐺𝐴 generally does not
xceed 0.3 to 0.4, and that associated with the random field of texture
𝑇 is of the order of 0.05 to 0.1 at most.

∙ Volume: Regardless of the base object considered, the intensity
coefficient 𝑐𝐴 associated with the random field of angularity has
a moderate effect on the volume of the object (generally less than
20% relative deviation), and the coefficient 𝑐𝑇 associated with
the random field of texture has a negligible effect.

∙ Solidity & Sphericity : No matter which base object is considered,
the intensity coefficient 𝑐𝐴 has a relatively small effect (less than
5% relative deviation in most cases), while the coefficient 𝑐𝑇 has
a considerable influence (quasi-linear for solidity, and similarly
for sphericity up to an intensity of 0.35).
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Fig. 4. Example of objects generated by the proposed model with different shapes, angularities and textures. The ratio 𝑒 = 𝑏∕𝑎 ranges from 1 to 0.6, the deformation intensity
applied by 𝐺𝐴 is 𝑐𝐴 ∈ [0.05; 0.3] and that applied by 𝐺𝑇 is 𝑐𝑇 ∈ [0.01; 0.10].
Fig. 5. Illustration of the process of generating granular objects using the proposed
6-parameter model.

Fig. 6. Illustration of the calculation of the projected major axis 𝑎𝑝 and minor axis
𝑏𝑝 of the equivalent ellipse of the 2D projection of the 3D object along a direction
orthogonal to the maximum Feret diameter.

Fig. 7. Illustration of the parameterization used to show the influence of certain model
parameters on the morphological characteristics of the generated objects. Figs. 7(a) and
7(b) show the basic shapes used in Figs. 8 and 9, respectively. Figs. 7(c) and 7(d) show
cross-sections of the random fields 𝐺𝐴 and 𝐺𝑇 used to model angularity and texture,
respectively.
5

∙ Projected major axis: Regardless of the base object considered,
the intensity coefficients 𝑐𝐴 and 𝑐𝑇 both have a relatively small
influence on the projected major axis of the equivalent ellipse
(relative deviation of less than 10% up to a mesh deformation
of 30%).

∙ Elongation: The relative deviation is negligible, except in the case
of the intensity coefficient 𝑐𝐴 for a spherical base object, with a
relatively small overall influence (barely 10% relative deviation
for a deformation of the order of 30%).

∙ Circularity : As with 3D sphericity, and whatever the base object
considered, the influence of 𝑐𝐴 is very weak (relative deviation
of barely 10% for a deformation intensity of 0.6) and quite
insignificant for 𝑐𝑇 (relative deviation of practically 20% for a
deformation intensity of 0.3).

In general, the results are in line with what might be expected,
i.e. that the deformation intensity coefficient 𝑐𝐴 associated with an-
gularity acts mainly on the size of the object, through the volume
and the projected major axis, as shown by the evolution of the means
and the standard deviations, has a moderate effect on the elongation
(cf. the standard deviations), and a rather small effect on the three
other characteristics. Conversely, the deformation intensity coefficient
associated with the texture 𝑐𝑇 has a relatively small effect on the size
and elongation characteristics, but a significant effect on the shape
characteristics such as circularity, sphericity, and solidity, especially
given its obvious effect on the surface of the object. Finally, it should
not be forgotten that the parameters 𝑎 and 𝑏, i.e. the major axis and the
two minor axes of the base ellipsoid, have the greatest influence on the
size and overall shape of the object (and especially on its elongation).

Finally, the fact that the projected major axis 𝑎𝑝 and the elongation
𝑒, both calculated from the equivalent ellipse of the shape projected
along an axis orthogonal to the maximum Feret diameter, make it
relatively easy to estimate the mean values of the parameters 𝑎 and
𝑏, assuming 𝑎 = 𝑎𝑝 and 𝑏 = 𝑎𝑝 × 𝑒, will prove particularly useful in the
remainder of this paper when it comes to fitting the model parameters
to real data.

3.3.3. Estimates and predictions
Figs. 8 and 9 show that the variance in solidity and sphericity as a

function of the intensity coefficients 𝑐𝐴 and 𝑐𝑇 and the size parameters
𝑎 and 𝑏 (and thus the elongation ratio 𝑏∕𝑎 of the basic shape) is ex-
tremely small. For this reason, these morphological characteristics can
be predicted with relatively good accuracy from the model parameters
using linear regression, as shown in Figs. 10(c) and 10(d).

The following empirical linear regression models are used for the
solidity and sphericity:

ŜLD = 𝛼0 + 𝛼1 × 𝑐𝑇 + 𝛼2 × 𝑐𝑇 𝓁𝑇 + 𝜀 (5)

𝛷̂𝑆 = 𝛽0 + 𝛽1 ×
𝑏
𝑎
+ 𝛽2 × 𝑐𝑇 + 𝛽3 × 𝑐𝑇 𝓁𝑇 + 𝜀 (6)

where 𝛼0 and 𝛽0 are the intercept terms and 𝜀 is the residual error.
Similarly, two other linear regression models are suggested to estimate
the normalized volume and surface area:

𝑉𝑁 = 𝛾0 + 𝛾1 ×
𝑏
𝑎
+ 𝛾2 × 𝑐𝐴𝓁𝐴 + 𝛾3 × 𝑐𝑇 𝓁𝑇 + 𝜀 (7)

𝑆 = 𝜂 + 𝜂 × 𝑏 + 𝜂 × 𝑐 + 𝜂 × 𝑐 𝓁 + 𝜀 (8)
𝑁 0 1 𝑎 2 𝑇 3 𝑇 𝑇
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Fig. 8. Influence of intensity coefficients applied to the 3D Gaussian random fields 𝐺𝐴 and 𝐺𝑇 , which were generated with chord lengths of 𝓁𝐴 = 25 and 𝓁𝑇 = 1, respectively, and
a ratio 𝑏∕𝑎 = 1 (see Fig. 7(a)). The points represent the mean values calculated over 500 generated objects, and the bars represent ± one standard deviation.

Fig. 9. Influence of intensity coefficients applied to the 3D Gaussian random fields 𝐺𝐴 and 𝐺𝑇 , which were generated with chord lengths of 𝓁𝐴 = 25 and 𝓁𝑇 = 1, respectively, and
a ratio 𝑏∕𝑎 = 0.7 (see Fig. 7(b)). The points represent the mean values calculated over 500 generated objects, and the bars represent ± one standard deviation.

Fig. 10. Simulated observed versus predicted data for the normalized volume, normalized surface area, solidity, and sphericity with linear regression models based on the proposed
model parameters. Data are normalized. Darker dots indicate lower intensity coefficients 𝑐𝐴 (Fig. 10(a)) and 𝑐𝑇 (Figs. 10(b), 10(c) and 10(d)) and lighter dots indicate higher
intensity coefficients. The simulated data set consists of 5000 observations.
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Fig. 11. Example of objects generated by extending the proposed model by using four Gaussian random fields instead of two.
Table 3
Intervals over which parameters are randomly and uniformly drawn to form linear
regression training and testing datasets.

Parameter 𝑎 𝑏∕𝑎 𝓁𝐴 𝑐𝐴 𝓁𝑇 𝑐𝑇
Interval [1; 10] [0.1; 1] [10; 25] [0; 0.6] [1; 10[ [0; 0.6]

Table 4
Adjusted 𝑅̄2 for the different linear regression models.

Characteristic 𝑉𝑁 𝑆𝑁 SLD 𝛷𝑆

𝑅̄2 0.740 0.861 0.919 0.915

where 𝑉𝑁 and 𝑆𝑁 are defined as follows:

𝑉𝑁 = 𝑉 ×
( 4
3
𝜋𝑎𝑏2

)−1
and 𝑆𝑁 = 𝑆

𝑆ref
(9)

and where 𝑆ref is evaluated using Ramanujan’s formula for calculating
the surface area of an ellipsoid:

𝑆ref ≈ 4𝜋
(

2𝑎𝑞𝑏𝑞 + 𝑏2𝑞

3

)1∕𝑞
, where 𝑞 = 1.6075. (10)

Fig. 10 shows the results obtained by these models on a data
set consisting of 5000 observations. The data are generated by the
proposed model from uniform distributions over the intervals listed in
Table 3. Table 4 shows the adjusted coefficients of determination 𝑅̄2

given by the exact Olkin-Pratt estimator (Karch [48]).
In fact, Fig. 10 and Table 4 clearly show that both solidity and

sphericity can be predicted relatively reliably from the model parame-
ters, with a coefficient of determination 𝑅̄2 greater than 0.9 in both
cases. It should also be noted that in both cases the texture-related
parameters (𝓁𝑇 and 𝑐𝑇 ) are the most influential. In contrast, the results
for normalized volume and surface area are more mixed, with lower 𝑅̄2

coefficients of determination of 0.74 and 0.86, respectively.
In general, the shape and angularity characteristics, which are

otherwise dimensionless, are easier to predict. This is partly due to
their low variance as a function of the model parameters, as shown in
Figs. 8 and 9. Size characteristics, on the other hand, are more difficult
to predict accurately, not only because of their higher variance, but also
because they depend more on the 𝓁𝐴 and 𝑐𝐴 parameters. For example,
in the case of the volume, while it is true that perturbations due to a
zero-mean Gaussian random field are partially compensated when the
chord length is small, as is the case for 𝐺𝑇 , which depends on 𝑐𝑇 , this
is no longer true when the chord length is of the order of the mesh, as
is the case for the 𝐺𝐴 field, which depends on 𝓁𝐴.

3.3.4. Discussion
The proposed model aims to generate granular objects that can

resemble compact aggregates of latex nanoparticles and offers a good
compromise between flexibility and performance. Indeed, the use of
a reduced number of parameters could lead one to believe that the
model is not flexible enough. However, the results developed in the
previous sections show strong correlations between the model param-
eters and the morphological characteristics of the generated objects,
demonstrating a high degree of flexibility, as shown in Fig. 4.
7

In terms of performance, the generation of 1000 objects from two
3D random fields discretized on a 503 px grid and the mesh of a sphere
composed of 104 faces takes about 20 s on a machine equipped with
an Intel(R) Core(TM) i9-12900KF processor at 3.19 GHz and 64 GB
of RAM; this time decreases to 4.5 s when the object generation is
parallelized.

Furthermore, the SPHERE model allows the generation of compact
random objects with controlled geometry using a limited number of
parameters, thus avoiding classical problems such as the simplification
of the shapes used to represent the objects (Han et al. [49]) or the
inflation of the number of parameters, which leads to the curse of di-
mensionality, especially during optimization processes, as with models
based on spherical harmonics (Garboczi and Bullard [25], Wei et al.
[26] and Ueda [27]).

However, the proposed model is not limited to modeling compact
nanoparticle aggregates and can be used to model larger granular
objects such as rocks or coarse aggregates, as shown in the next section,
and it is also possible to increase the level of detail by adding one or
more Gaussian random fields, each of which adds two parameters to
the model. On the other hand, the proposed model is not suitable for
modeling non-compact objects such as soot or aerosol particle aggre-
gates (Patiño et al. [11] and Kelesidis and Pratsinis [50]), sometimes
referred to as fractal aggregates (Yazicioglu et al. [51]).

Finally, although the model itself depends on only 6 parameters,
choices have to be made regarding the 3 meta-parameters, namely the
number of vertices in the mesh (set to 10 200) and the grid sizes 𝑛𝐴 and
𝑛𝑇 used to generate the Gaussian fields 𝐺𝐴 and 𝐺𝑇 , both set to 503 px3.
The number of vertices allows the mesh to be fine enough to ensure
that the difference between the volume of a sphere modeled in this way
and the theoretical value is less than 0.1%, which is negligible for this
particular application. See the Appendix for more information on the
influence of mesh type vs. vertex count. The grid sizes 𝑛𝐴 and 𝑛𝑇 were
chosen empirically to keep the model fast, while allowing the chord
lengths 𝓁𝐴 and 𝓁𝑇 to be chosen over sufficiently large intervals for the
application considered. To model finer details and thus smaller chord
lengths, e.g. for 𝐺𝑇 , it would be necessary to increase the corresponding
grid sizes accordingly.

3.3.5. Generalization of model
As mentioned in the previous section, the model can be extended to

make it even more flexible and realistic, even if this means increasing
the number of parameters. This can be done in particular by adding
Gaussian random fields of different chord lengths and intensities, each
of these additions de facto adding two parameters to the model.

This extension of the model may prove useful in contexts other than
this one, such as modeling granular objects more finely, or building a
database of realistic granular 3D objects that can be compared to real
data (Zhao et al. [52]) or used as a training set for machine learning
applications. Fig. 11 shows some examples of objects generated by an
extension of the model with 4 Gaussian random fields for a total of 10
parameters.
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Fig. 12. Evolution of the cumulative Fourier power as a function of the number of harmonics 12(a) and contour reconstruction as the number of harmonics increases.
Fig. 13. Illustration of the correlation between the elongation 𝑏∕𝑎 and the projected elongation 𝑏𝑝∕𝑎𝑝 on the one hand, and between the major axis 𝑎 and the projected major
axis 𝑎𝑝 on the other hand. The data set consists of 5000 objects generated from the parameters of the Table 3 with 𝑐𝐴 < 0.3.
4. Optimization and validation

The objective of this work is to model a population of latex nanopar-
ticle aggregates using the proposed model. Real data are collected on
2D images from a morphogranulometer, and the idea is to optimize
the model parameters by minimizing a cost function constructed from
relative errors made on 2D characteristics.

The following sections aim to detail this method, starting with the
optimization process, which is then validated on real data, namely 3D
printed aggregates, and on a population of synthetic objects generated
by the proposed model. Finally, the method is applied to images of latex
nanoparticle aggregates and the results are presented and discussed.

4.1. Optimization process

4.1.1. Estimation based on direct measurements
The optimization process consists in defining a cost function to be

minimized in order to find the optimal set of parameters for matching
the morphological characteristics of the objects generated by the model
with the observed data. However, some model parameters can be
estimated directly from morphological properties measured directly
on projected images of real objects, assuming that the objects are
observed in an arbitrary direction orthogonal to that of the maximum
Feret diameter, which is the case in the context of this article. This is
particularly true for the major axis 𝑎 and the elongation 𝑒, which can
be used to estimate the minor axis 𝑏.

As mentioned in previous sections, the projected major axis, the
projected minor axis, and the projected elongation are measured on the
equivalent ellipse of the 2D projection of a 3D object along an arbitrary
direction orthogonal to the maximum Feret diameter (see Fig. 6). These
projected characteristics can be measured on 2D images of real objects
and used to estimate the model parameters 𝑎 and 𝑏. Indeed, there is a
strong correlation between the projected major axis 𝑎𝑝 and the major
axis 𝑎, with an adjusted coefficient of determination 𝑅̄2 = 0.988, on
the one hand (Fig. 13(a)), and between the projected elongation 𝑒𝑝 and
the elongation 𝑒 = 𝑏∕𝑎, with an adjusted coefficient of determination
𝑅̄2 = 0.977, on the other hand (Fig. 13(b)), and the product of 𝑎𝑝 × 𝑒𝑝
can be used to estimate the minor axis 𝑏.
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4.1.2. Definition of the cost function
The cost function must find an optimal set of parameters for the

proposed model in order to best match the properties of the objects
generated by the model with those measured on real data. Since the real
data that are the object of study in this paper are 2D images of latex
nanoparticle aggregates from a morphogranulometer, the assumption
that the objects are projected along a direction orthogonal to the
maximum Feret diameter is reasonable, and the measured properties
are 2D morphological characteristics. Furthermore, two of the 6 model
parameters, the major axis 𝑎 and the minor axis 𝑏 of the basic shape,
can be estimated as explained in the previous section. The cost function
𝐹cost(𝜔) is then defined as follows:

𝐹cost(𝜔) = 𝛥(𝐴) + 𝛥(𝐴𝑘) + 𝛥(𝑃 ) + 2𝛥(AR) (11)
+ 𝛥(𝐴𝑐 ) + 𝛥(𝐴𝑐,𝑘) + 𝛥(𝑃𝑘) + 𝛥(𝑎𝑝)

where 𝛥 is the relative error, 𝐴 is the projected area, 𝐴𝑐 is the convex
area, 𝑃 is the perimeter, 𝑎𝑝 is the projected major axis, AR is the
aspect ratio, 𝑋𝑘 is the morphological characteristic 𝑋 measured on the
projected shape reconstructed from 𝑘 elliptic Fourier descriptors (Kuhl
and Giardina [31] and Crampton [32]), and 𝜔 = {𝓁𝐴,𝓁𝑇 , 𝑐𝐴, 𝑐𝑇 } is a
subset of 4 parameters of the proposed model.

In fact, to take into account both the influence of the random field
of angularity 𝐺𝐴 and the random field of texture 𝐺𝑇 on the projected
measurements of area and perimeter, a simplified form of the 2D
projection is used, reconstructed from a limited number 𝑘 of harmonics
of elliptic Fourier descriptors. The comparison of these two simplified
contours should thus escape the influence of the parameters 𝓁𝑇 and 𝑐𝑇 .
The choice of the number 𝑘 of harmonics used is therefore crucial and
is decided on the basis of the concept of the Fourier power (Costa et al.
[53]), which allows to quantify the deviation of the reconstruction of
a contour from the original as a function of the number of harmonics
used.

In practice, the Fourier power of the 𝑘th harmonic is defined as
follows

Fourier power =
𝑎2𝑘 + 𝑏2𝑘 + 𝑐2𝑘 + 𝑑2𝑘

2
(12)

where 𝑎𝑘, 𝑏𝑘, 𝑐𝑘, and 𝑑𝑘 are the Fourier coefficients associated with
the projections of the contour along the 𝑥 and 𝑦 axes, respectively.
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Fig. 14. Illustration of the process of generating real data from calibrated 3D printed aggregates by generating images using a morphogranulometer, and comparison with a
synthetic aggregate generated by the proposed model.
Table 5
Comparison between 2D and 3D characteristics of 3D printed aggregates (ground truth) and synthetic aggregates generated by the proposed model with the optimal set of
parameters. The values shown for synthetic aggregates are averages calculated from a set of 2048 aggregates. Values are rounded to the nearest two decimal places.

Characteristics 2D 3D

𝐴 (mm2) 𝐴𝑐 (mm2) 𝑃 (mm) AR Co 𝐶 𝑉 (mm3) 𝑉𝑐 (mm3) 𝑆 (mm2) ESD (mm) SLD 𝛷𝑆

Ground truth 2.73 2.86 6.75 0.71 0.95 0.75 2.34 2.76 11.25 1.65 0.84 0.66
SPHERE model 2.72 2.81 6.80 0.71 0.96 0.74 2.34 2.83 11.25 1.65 0.83 0.66
Relative error (%) 0.24% 1.74% 0.76% 0.66% 1.40% 1.82% 0.19% 2.80% 0.06% 0.05% 2.47% 0.19%
By calculating the cumulative Fourier power for all harmonics up to
a rank 𝑛 corresponding to the Nyquist frequency (Crampton [32]), it
is possible to set a threshold to determine the rank of the harmonic
𝑘 to be used to reconstruct the simplified form. In practice, in the
context of this work, the threshold is set to 99.9%. Fig. 12 illustrates the
process of reconstructing a closed contour from an increasing number of
harmonics, and Fig. 12(a) shows that the contour can be reconstructed
with a cumulative Fourier power at the threshold of 99.9% from a
number of harmonics 𝑘 = 10.

The cost function 𝐹cost thus defined by Eq. (11) can be optimized
using a Particle Swarm Optimization (PSO) algorithm (Kennedy and
Eberhart [54]) to fit the model parameters to the real data. Therefore,
for each subset of parameters 𝜔, a set of 1024 synthetic aggregates is
generated using the proposed model. Their 2D projected morphological
characteristics are measured and the mean values are used to calcu-
late the relative errors with the real characteristics used by the cost
function.

4.2. Validation on 3D printed aggregates

This section validates the optimization process and method for
estimating the 3D characteristics of a granular object from the projected
2D characteristics. For this purpose, aggregates of about 2 millimeters
in length are produced by additive 3D printing from a reference STL
file representing a blackberry (Fig. 14(a)), whose shape is similar to the
latex nanoparticle aggregates studied in this paper. Thus, the 3D prop-
erties of these 3D-printed aggregates are fully known, except for the
approximations inherent in the printing process. Projected 2D images
of the 3D printed aggregates are then acquired using a morphogran-
ulometer (Morphologi G3 – Malvern Panalytical) (Fig. 14(b)), and
the measurements made on these images, once binarized (Fig. 14(c)),
constitute the real data set used to adjust the model parameters.

The model parameters are adjusted by performing measurements on
the binary images, in particular, the major axis 𝑎 and the minor axis 𝑏
are estimated as explained in the previous section, and the other four
parameters are estimated by PSO of the cost function 𝐹cost. An optimal
set of parameters is obtained, allowing the generation of aggregates
using the proposed model (Fig. 14(e)), whose 2D characteristics match
those of the real images (Fig. 14(d)) and whose 3D characteristics are
also known. Note that in the context of this work, it is still assumed
that the objects observed by the morphogranulometer are oriented in
a direction orthogonal to the maximum Feret diameter.

To validate the method quantitatively, a set of 2048 synthetic
aggregates is generated from the optimal set of parameters obtained
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at the end of the optimization process. The average values obtained for
2D and 3D morphological characteristics are calculated and compared
with the 2D measurements made on real images from the morphogran-
ulometer (Fig. 14(c)) and with the 3D characteristics from the reference
STL file (Fig. 14(a)). The results are shown in Table 5. Overall, in terms
of both 2D projections and 3D geometry, the properties of the objects
generated by the model are very close to those of the calibrated 3D
printed aggregates.

A comparison of the results obtained using the proposed model with
those of other models based on hard sphere packing used on the same
real dataset (Théodon et al. [13,55]), the proposed model consistently
produces overall results closer to the ground truth, and with a much
shorter computation time (a few hundredths of a second compared
with several tenths of a second to generate an object). Furthermore,
previous models not only required the same hypothesis of observing the
object in a direction orthogonal to the maximum Feret diameter, but
also imposed assumptions about the volume, convexity, and symmetry
of the object that the model proposed in this paper does not require.
As a result, the proposed method for retrieving 3D information from
2D measurements using the model and optimization process described
in the previous sections is not only validated, but also shown to be
more efficient as it is more robust and faster than previously proposed
methods based on hard sphere packing models.

4.3. Validation on a population of synthetic objects

In the previous section, the proposed method is validated on a single
real aggregate. However, the object of study in this article is a pop-
ulation of several thousand latex nanoparticle aggregates. Therefore,
it is not feasible to apply an optimization process to each individual
object, and it may be of interest to extend the method to the entire
population of aggregates. In this section, the extension of the method
to a population of granular objects is investigated.

To create a data set, the SPHERE model generates a sample of
250,000 objects from a set of parameters 𝛺𝑠 consisting of random
variables defined as follows:

𝛺𝑠 = {𝑎𝑠, 𝑏𝑠,𝓁𝐴,𝑠,𝓁𝑇 ,𝑠, 𝑐𝐴,𝑠, 𝑐𝑇 ,𝑠} (13)

where

𝑎𝑠 ∼ LogNormal(𝜇𝑠, 𝜎2𝑠 ), 𝜇𝑠 = log(0.5) and 𝜎 = 0.3 (14)

𝑏𝑠 ∼ 𝑎𝑠 × Beta(𝛼𝑠, 𝛽𝑠), 𝛼𝑠 = 10 + 0.5 × 𝑎𝑠 and 𝛽𝑠 = 1 (15)

𝑐𝑇 ,𝑠 ∼
|

|

|

 (0.1, 0.012)||
|

(16)
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Fig. 15. Example of objects generated by the SPHERE model from the set of parameters 𝛺𝑠 that make up the sample of 250,000 objects used for the numerical validation of the
optimization method.
Fig. 16. Illustration of the results obtained by numerical validation of the proposed method. The dashed red lines represent the kernel probability densities estimated on the
sample of 250,000 objects generated by the SPHERE model from the set of parameters 𝛺𝑠. The histograms represent the morphological characteristics of the population generated
by the SPHERE model from the set of parameters 𝛺𝑠 estimated by the proposed optimization method.
Table 6
Comparison between the mean values of the morphological characteristics of the sample of 250,000 objects generated by the SPHERE model using the set of parameters 𝛺𝑠 and
the mean values of the morphological characteristics of the objects generated by the SPHERE model using the optimal parameterization 𝛺𝑠 obtained by the proposed optimization
method. Values are rounded to the nearest two decimal places.

Characteristics 2D 3D

𝐴 (px2) 𝐴𝑐 (px2) 𝑃 (px) AR Co 𝐶 𝑉 (px3) 𝑉𝑐 (px3) 𝑆 (px2) ESD (px) SLD 𝛷𝑆

Original sample 95.7 96.8 34.3 0.85 0.99 0.93 680 765 449 9.93 0.88 0.66
SPHERE model 96.4 97.4 34.6 0.87 0.99 0.94 713 809 462 10.4 0.88 0.67
Relative error (%) 0.7% 0.6% 0.8% 1.9% 0.1% 0.7% 4.9% 5.8% 3.1% 4.3% 0.3% 1.1%
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Fig. 17. Left: Illustrations of 2D projections taken by the morphogranulometer. Right: Example of 3D objects generated by the SPHERE model after the optimization process with
the optimal set of parameters.
𝑐

Table 7
Parameters used to generate the population of 250,000 random objects using the
SPHERE model.

Parameter 𝓁𝐴,𝑠 𝑐𝐴,𝑠 𝓁𝑇 ,𝑠

Value 15 0.25 2

and other parameters are listed in Table 7.
The population is thus generated from two joint probability distri-

butions for the principal axes of the ellipsoid, which forms the basic
shape of the SPHERE model, and a normal distribution for the intensity
of the texture random field 𝐺𝐶 . This ensures a correlation between
the morphological properties of the generated objects. Once the sample
of 250,000 random objects has been generated (Fig. 15), the method
described in the previous sections is used again to obtain an estimate
of the model parameters.

The estimators 𝑎𝑠 and 𝑏̂𝑠 are two joint density probabilities, obtained
from the kernel probability distributions 𝑓𝑎𝑝 and 𝑎𝑝 × 𝑓𝑒𝑝 , calculated
from the histograms of the projected major axes 𝑎𝑝 and the pro-
jected elongations 𝑒𝑝 = 𝑏𝑝∕𝑎𝑝 of the equivalent projected ellipses. The
other four parameters are then estimated by applying the PSO to the
optimization function 𝐹cost, the latter being redefined based on the
relative errors to the mean values of the morphological characteristics
considered. The result is an optimal parameterization 𝛺𝑠, which has
the following definition:

𝛺𝑠 = {𝑎𝑠, 𝑏̂𝑠,𝓁𝐴,𝑠,𝓁𝑇 ,𝑠, 𝑐𝐴,𝑠, 𝑐𝑇 ,𝑠} (17)

where 𝑥 is the estimated parameter 𝑥 and 𝑎𝑠 and 𝑏̂𝑠 are two random
variables.

Table 6 shows the deviations between the mean values of the two
populations, the sample of 250,000 objects on the one hand, and a
population of 10,000 objects generated by the SPHERE model using
the optimal parameterization 𝛺𝑠 on the other, and Fig. 16 shows
the deviations between the probability densities of the morphological
characteristics of these two populations. The results obtained tend to
validate the method, with relative errors on the mean values all below
6% and estimated probability densities in agreement with theoretical
data. In other words, the proposed method for estimating model pa-
rameters from measurements of morphological characteristics on 2D
projections of a population of 3D objects, and in particular by using an
optimization process, seems to make it possible to determine a model
parameterization with which a population of objects representative of
the initial population can be generated in order to estimate its 3D
morphological characteristics. In the next section, the method is applied
to a dataset consisting of images of latex nanoparticle aggregates
captured by a morphogranulometer, with the aim of estimating the 3D
morphological characteristics of the aggregates.

5. Application: Latex nanoparticle aggregates

In this section, the method for estimating the 3D characteristics of
a population of granular objects from 2D projections along a direction
orthogonal to the maximum Feret diameter is applied to a population
of latex nanoparticle aggregates.
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Fig. 18. Illustration of the correlation between the intensity coefficient 𝑐𝑇 of the
random field of texture 𝐺𝑇 and the circularity 𝐶. The data was generated by the
SPHERE model using the parameters in Table 3 with 𝑐𝑇 < 50%.

5.1. Methodology

A set of 3500 images is captured by a morphogranulometer (Mor-
phologi G3 – Malvern Panalytical), within which just over 5000 ag-
gregates are identified (Fig. 17). The aggregates have an average size
(ECD) of about 250 μm, with the smallest measuring a few tens of
microns and the largest a few hundred microns (Fig. 19(f)). The images
are cleaned and binarized, and projected 2D measurements are made
(Hamieh et al. [33]). The method described in the previous sections is
then applied. An optimal parameterization 𝛺𝑟 for the SPHERE model
is estimated from measurements made on real images.

𝛺𝑟 = {𝑎𝑟, 𝑏̂𝑟,𝓁𝐴,𝑟,𝓁𝑇 ,𝑟, 𝑐𝐴,𝑟, 𝑐𝑇 ,𝑟} (18)

where 𝑎𝑟 and 𝑏̂𝑟 are random variables estimated from the distributions
of the projected major axes and projected elongations of equivalent
projected ellipses. However, unlike the previous protocol, where the in-
tensity coefficient 𝑐𝑇 of the random field of texture 𝐺𝑇 was a scalar, the
non-negligible correlation between the circularity 𝐶 and the intensity
coefficient 𝑐𝑇 is taken into account to estimate the latter more finely.

In fact, Fig. 18 shows that there is some correlation between the
intensity coefficient 𝑐𝑇 on the one hand and the quantity

√

1 − 𝐶 on
the other, with an adjusted coefficient of determination 𝑅̄2 > 0.5.
Consequently, the estimator of the intensity coefficient 𝑐𝑇 ,𝑟 is a random
variable written as follows:

𝑇̂ ,𝑟 = 𝛼0 + 𝛼1
√

1 − 𝐶 + 𝜀 (19)

The three parameters 𝑎𝑟, 𝑏̂𝑟 and 𝑐𝑇 ,𝑟 are therefore random variables that
depend on the three joint probability density functions 𝑓𝑎𝑝 , 𝑓𝑒𝑝 and 𝑓𝐶
estimated by the 2D morphological characteristic measurements made
on the morphogranulometer images.

This estimate of the intensity coefficient 𝑐𝑇 makes it possible to
include objects whose circularity is very close to 1, which is impossible
if 𝑐𝑇 is a scalar, as shown in Figs. 8(f) and 9(f). The remaining three
parameters are then estimated by optimizing the cost function 𝐹cost
using the PSO algorithm.
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Table 8
Comparison of the mean values of 2D morphological characteristics measured on real images and on the population of 10,000 granular objects generated by the SPHERE model
using the optimal parameterization 𝛺𝑟. The mean values of the 3D morphological characteristics of synthetic objects are also shown. Values are rounded to the nearest two decimal
places.

Characteristics 2D 3D

𝐴 (μm2) 𝐴𝑐 (μm2) 𝑃 (μm) AR Co 𝐶 𝑉 (μm3) 𝑉𝑐 (μm3) 𝑆 (μm2) ESD (μm) SLD 𝛷𝑆

Ground truth 5.3 × 104 5.6 × 104 890 0.73 0.94 0.79 – – – – – –
SPHERE model 5.3 × 104 5.7 × 104 893 0.74 0.93 0.77 7.1 × 106 9.4 × 106 2.2 × 105 220 0.78 0.68
Relative error (%) 0% 0.8% 0.3% 0.4% 0.8% 3.1% – – – – – –
Fig. 19. Illustration of the results obtained by the proposed method on real data. The dashed red lines represent the kernel probability densities estimated from real data measured
on projected 2D images of latex nanoparticle aggregates. The histograms in green represent the 2D and 3D morphological characteristics of the aggregate population generated by
the SPHERE model using the optimal set of parameters 𝛺𝑟. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
5.2. Results & discussion

A population of 10,000 synthetic granular objects is generated by
the SPHERE model using the optimal parameterization 𝛺𝑟, as shown in
Fig. 17, and 2D and 3D measurements are performed. Table 8 shows
the results obtained and the relative errors made on the averages of
2D morphological characteristics measured on real data, on the one
hand, and on synthetic objects, on the other hand. Fig. 19 shows
the probability density functions for the 2D and 3D size and shape
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characteristics of the synthetic objects, allowing comparison of the
results obtained with the 2D morphological characteristics measured
on the real images from the morphogranulometer.

In particular, relative errors on 2D morphological characteristics are
very low, with excellent approximation of projected area and perimeter
distributions. The aspect ratio and convexity are also quite well approx-
imated. Only the measured and estimated circularity distributions show
a clear difference. As a first approximation, the estimated intensity coef-
ficient 𝑐 was a scalar, and this difference was even more pronounced.
𝑇 ,𝑟
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This discrepancy between the measured and theoretical distributions
can therefore be partly explained by a non-optimal estimation of the
parameters influencing the circularity, namely 𝑐𝑇 ,𝑟, but also 𝑐𝐴,𝑟, which
is still a scalar in the current model.

An important aspect of the proposed method is the consideration
of correlations between different morphological characteristics, as il-
lustrated in Figs. 19(f) and 19(l), where the joint probability densities
and marginal densities of circularity and ECD on the one hand, in
the 2D case, and sphericity and ESD on the other hand, in the 3D
case, are shown. In fact, it appears that smaller objects tend to be
more circular (or spherical), such that the elongation, circularity, and
sphericity tend to approach 1 as size (ECD or ESD) decreases. These
results are also consistent with previous work (Hamieh et al. [33])
where the 2D characteristics were measured by image analysis and the
3D size characteristics (ESD) were measured by laser diffraction.

Overall, the results obtained for the estimation of the distributions
of the 2D morphological characteristics are comparable to those of the
numerical validation of the method. Thus, the 2D agreement and the
agreement of the results with previous work on the same dataset tend
to validate the estimation of the main 3D morphological characteristics
of the aggregates studied, under the assumption that the objects are
indeed observed along a direction orthogonal to the maximum Feret
diameter.

6. Strengths, limitations & prospects

6.1. Strengths

As mentioned in the first section, the strengths and originality of
the proposed approach can be summarized in three points.

1. The SPHERE model presented in Section 3 allows the efficient
generation of granular objects with complex morphology, as
shown qualitatively in Figs. 4 and 11, and as demonstrated by
the results obtained when modeling real data, with deviations of
less than 5% on average.

2. The SPHERE model, which uses 3D Gaussian fields, is indepen-
dent of the underlying mesh. This also allows a high degree of
flexibility while limiting the number of model parameters. The
FFT-based algorithm for generating the Gaussian random fields
provides very good performance. It also allows the optimization
process to be applied to a population of objects.

3. The optimization process, based on a multi-scale approach with
partial contour reconstruction using Fourier descriptors, is vali-
dated on real 3D printed data and on a population of synthetic
objects, with very good results in both cases.

The SPHERE model is therefore a fast and efficient way to generate
star-shaped objects with great flexibility and relatively good control
over their morphology (more than 1000 objects in only 5 s). The use of
3D fields makes the method completely independent of the mesh used
and can be adapted to any star-shaped object. In addition, the SPHERE
model can be easily extended and made more flexible by using more
than just two random fields, with each field adding two parameters to
the model, as shown in Section 3.3.5.

Finally, the ability of the model to generate granular objects with
controlled morphological properties extremely quickly may make it
useful in other areas, such as Discrete Element Method (DEM) simu-
lations of granular media (Cundall and Strack [56]), where circular or
spherical shapes are often used for simplicity.

6.2. Limitations & prospects

The results presented in the previous section, put into perspective
by the results obtained through the validation process with 3D printed
aggregates on the one hand and synthetic aggregates on the other,
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tend to validate the proposed method. In fact, the distributions of
the 2D size characteristics (area, perimeter, ECD) proposed by the
model are in excellent agreement with what can be measured on
the morphogranulometer images. As for the 2D shape and angularity
characteristics, aspect ratio and convexity are estimated quite well,
with only circularity showing a slight offset. Therefore, although the
ground truth is unknown, it can be assumed that the estimation of the
3D characteristic distributions is a first result, not perfect, but certainly
no less relevant. There are a number of reasons for these results, which
may be limitations of the model itself, but also prospects for future
work.

1. In the current model, three of the six parameters are scalars
that are fixed in advance, but the use of random variables that
depend on probability density functions, possibly correlated with
other model parameters, as in the case of the intensity coefficient
𝑐𝑇 of the random field 𝐺𝑇 , could perhaps provide more realistic
results.

2. As it stands, the number of model parameters is set to six, since
only two random fields are used. It is conceivable that a model
with more than two random fields could be used, with each
field requiring the addition of two parameters. A balance would
then have to be struck between the number of parameters and
the flexibility of the model, especially since adding parameters
can make it difficult to fit the data and account for subtle
correlations.

3. Finally, it is possible that the assumption that aggregates are
always observed in a direction orthogonal to the maximum
Feret diameter is questionable. Ideally, this hypothesis should
be discarded, which would also make it possible to work with
ex situ images of the reactor in which the latex nanoparticle
aggregation process takes place, where no hypothesis can be
made about the direction in which the aggregates are observed.

Nevertheless, the validation process, and in particular the validation
on 3D printed aggregates, showed the effectiveness of the method for
aggregates with relative cylindrical symmetry, improving on the results
previously obtained with overlapping sphere models (Théodon et al.
[13,55]).

In a future work, the method will be enriched and applied to
ex-situ images of latex nanoparticle aggregates observed in arbitrary
directions, making it necessary to abandon the assumption of observing
objects along a privileged direction. In addition, it would also be
interesting to build a multi-scale agglomeration model, where granular
objects generated by the SPHRE model presented in this article would
then be agglomerated to better represent reality. To this end, previous
models developed based on hard sphere packing could be adapted to
use the granular objects generated by the SPHRE model as building
blocks.

7. Conclusion

The SPHERE (Stochastic Process for Highly Effective Radial Expan-
sion) model, as described in this paper, proposes an original approach
to the geometric modeling of granular objects. Its ability to manipulate
an ellipsoid mesh with 3D Gaussian random fields has proven effective
in controlling both 2D and 3D morphological properties of granular
objects, demonstrating its flexibility and speed. Validated by compari-
son with real and synthetic objects, the model demonstrates accuracy
in reproducing the shape, angularity and texture of aggregates, with
relative errors below 6%.

This model is notable for its independence from mesh type and its
computational efficiency, generating over a thousand aggregates in a
few seconds. While efficient in its current form, the model is primarily
suited to star-shaped objects, suggesting potential areas for future ex-
ploration and extension. The results and methodology presented in this
study can be used as a basis for future applications and enhancements
in various scientific and industrial fields where accurate morphological

characterization of granular materials is critical.
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Fig. 20. Illustration of five different types of spherical meshes with a total of 642 vertices.
Fig. 21. Illustration of the relative difference between measurements made on objects generated with the SPHERE model from five different meshes. Reference measurements are
made on an icosphere with 10,242 vertices.
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Additional resources

The MATLAB® (2023b) code for the SPHERE model is available in
a GitHub repository at: https://github.com/ltheodon/SPHERE.

The STL files used to design the 3D printed aggregates are available
for purchase on CGTrader at: https://www.cgtrader.com/3d-models/
food/fruit/blackberry-001.

Appendix. Mesh comparison

Deforming the mesh of a sphere from a random field can be difficult
to implement. Traditional techniques use spherical noise (e.g., Perlin
or Simplex) or random fields that must satisfy periodicity conditions.
For all these reasons, using an arbitrary mesh can sometimes be chal-
lenging. For example, Mollon and Zhao [23] uses a geodesic mesh
with 2562 vertices obtained by three successive subdivisions of an
icosahedron. The mesh is then deformed by several 2D Gaussian ran-
dom fields whose covariance matrices are all precomputed for different
chord lengths. However, this method is not feasible for irregular or
random meshes. In this appendix, five different meshes of a sphere
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are deformed from the SPHERE model and the relative errors for
different morphological features are calculated, taking as reference
measurements obtained for a mesh of 10,242 vertices of an icosphere.

A sphere can be meshed in different ways depending on the context
and requirements. For example, some applications may require regular
or uniform meshing. The five meshes being compared are defined as
follows.

1. A geodesic mesh (here an icosphere) can be obtained by succes-
sive subdivisions of a regular polygon, in this case an icosahe-
dron (Fig. 20(a)). For example, three subdivisions yield a mesh
with 2562 vertices, and four subdivisions yield a mesh with
10,242 vertices. While this has the advantage of providing a
uniform distribution of points on the sphere, it does not allow the
selection of an appropriate number of vertices for a particular
application (Kent [57]).

2. A Thomson configuration (T-design) proposes a uniform distri-
bution of mesh vertices over the surface of the sphere
(Fig. 20(b)). It can be obtained by energy minimization from
an initial configuration by moving the vertices so that they
are farthest apart. It can be computationally expensive, but the
number of vertices is up to the user (Brauchart and Grabner
[58]).

3. A mesh based on a Fibonacci grid (Fig. 20(c)) has the advantage
of being extremely easy to implement, but the major drawback
is the quasi-uniform distribution of points, which may not be
suitable for certain applications (Keinert et al. [59]).

4. A rectangular or quadrilateral mesh is a classic subdivision of a
sphere along meridian and parallel lines, and has the advantage
of being very easy to implement (Fig. 20(d)). However, the
distribution of the vertices is not uniform, with a high density
at the poles, and the size of the faces is larger at the equator.
This is the mesh used by the sphere function in MATLAB®.

5. A Voronoi mesh provides a uniform distribution of vertices on
the surface of the sphere. The mesh can be obtained by succes-
sively applying the Loyd relaxation algorithm to any random
distribution of points on the sphere (Du et al. [60]), or by
iteratively adding new vertices (Augenbaum and Peskin [61]).
In fact, generating this mesh with the assurance of a quasi-
uniform spatial distribution of vertices can be computationally
time-consuming.

https://github.com/ltheodon/SPHERE
https://www.cgtrader.com/3d-models/food/fruit/blackberry-001
https://www.cgtrader.com/3d-models/food/fruit/blackberry-001
https://www.cgtrader.com/3d-models/food/fruit/blackberry-001
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Ten different objects are generated using the SPHERE model, each
object using the five different types of meshes with the same number of
vertices (except for geodesic meshes). Morphological characteristics of
shape and size are measured and compared with values obtained from
an icosphere mesh with 10,242 vertices. Fig. 21 shows that for a mesh
of 10,000 vertices, the relative errors are less than 0.2%. Furthermore,
the relative error curves are all very similar, confirming that the 3D
random field deformation method is independent of the mesh used.
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