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Abstract. The combination of advection and migration of grain boundaries is analyzed on the basis 
of a simple mesoscale model, where parallelepipedic grains are considered under uniaxial 
compression straining. Strain hardening and dynamic recovery are described by the classical Yoshie-
Laasraoui-Jonas equation. Grain-boundary migration is driven by the difference in dislocation 
densities between one representative grain and the average over the material. Finally, nucleation is 
assumed to occur at grain boundaries. Special attention is paid to the aspect ratio, which starts from 
unity (infinitely small cubic nucleus) and tends to zero when the grain disappears. In spite of the role 
of migration, the average shape of the grains is determined as a first approximation by their lifetimes. 

Introduction  

Microstructures induced by thermomechanical treatments are of primary importance, because they 
determine the mechanical properties of the products. The major features are the grain size and the 
crystallographic texture, but grain shapes are also taken into consideration since equiaxed 
microstructures are generally desired. In low to medium stacking fault energy materials such as the 
austenitic stainless steels, such microstructures are precisely obtained by the occurrence of 
discontinuous dynamic recrystallization (DDRX): When strain is sufficiently large, a steady state is 
achieved where the average aspect ratio of the grains remains close to one. This is rather unexpected 
because the advection movement of grain boundaries, which follow the material flow, tends to flatten 
or elongate grains during deformation. 

A simple grain scale (or mean field) model has been formerly developed by the authors [1] to 
analyze various aspects of DDRX steady state, such as the influence of the specific strain hardening 
and dynamic recovery behaviour of the material [2] or the effect of grain boundary migration induced 
softening (BMIS) [3]. On the other hand, the combined effects of interphase-boundary advection and 
migration on the shape change of a second phase particle during growth or dissolution has been 
recently investigated [4]. However, DDRX grain scale models have so far systematically considered 
spherical grains, which precludes any change of their aspect ratio. In the present investigation, a new 
approach involving parallelepipedic grains and including advection is proposed, which leads to 
simple calculations, while allowing to analyze the evolution of the shape of the grains during DDRX 
steady state. 

Outline of the Model and Mathematical Developments 

A set of parallelepipedic grains submitted to uniaxial compression is considered. If the DDRX 
nuclei are assumed cubic, the grains will keep a quadratic shape during deformation. Let a and b be 
the current half lengths of the edges of one grain parallel and perpendicular to the compression axis, 
respectively. 

The evolutions of a and b with strain are given by the following two equations: 
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The first terms of the right hand sides are associated with advection (uniaxial compression field), 
while the second terms correspond to grain boundary migration driven by the difference between the 
average dislocation density   of the material and the current dislocation density   of the grain. M 

is the grain boundary mobility,  is the line energy of the dislocations and   the prescribed strain 
rate. The strain dependence of  is determined by both strain hardening and dynamic recovery. A 
modified Yoshie-Laasraoui-Jonas (YLJ) equation will be used here [5]: 
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where h and r are the strain hardening and dynamic recovery parameters, and V the volume of the 

grain. The last term on the right reflects the effect of BMIS [3]. Expressing 28V ab  and using Eqs 
(1), the above equation becomes: 
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It is convenient at this stage to introduce non-dimensional variables: let ˆ / h   and / h  . 
Equations (1) and (3) can then be rewritten in the form: 
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where ˆ /a a L , ˆ /b b L , with /L M h   . The system of the above three equations can be 

numerically integrated for any given ̂  to get the strain dependence of the two edges of the grain 

as well as its dislocation density between its nucleation at 0   ( ˆˆ 0a b  , ˆ 0  ) and its 

disappearance at   . More specifically,  is defined as the strain where the volume of the grain 
goes to zero. Calculations show that the side a parallel to the compression axis always cancels first 
as expected, which means that the grain vanishes in the form of a flattened pancake. 

 In order to determine ̂ , a closure equation is used, which means that upon steady state each grain 
gives birth to one unique new grain in its lifetime. This condition can be written in the form [1, 3]: 
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where 28 16S b ab   denotes the surface of the grain, which means that DDRX nucleation occurs 
mainly at grain boundaries, and the factor 1/ 2  accounts for the fact that each boundary is shared by 
two grains. Nk  is a nucleation parameter which characterizes the nucleation rate. 

Introducing the non-dimensional variables into (4) leads to: 
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which can be inverted to give: 
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where the integral 2

0

ˆ ˆˆ( , ) ( 2 ) dG r b ab


    has no analytical expression in the general case. 

It is important to note that, except for r, all material parameters (usually strain rate and temperature 
dependent) and deformation conditions are collected in the variable A, while the left hand side of 
Eq. (5’) depends only on   and r. 

In Fig. 1,   is plotted as a function of 3 ( , )A G r   for various values of the dynamic recovery 
parameter r. In the absence of dynamic recovery ( 0r  ), the double logarithmic curve is perfectly 
approximated by a straight line, which means that   is a power law function of A, viz.: 

0.1240.710 A  . (6) 

This is no longer the case when r is not zero, although the above approximation is still valid for values 

of A less than roughly 910 . In any case, the average dislocation density   of the material can be 
determined with the help of Eq. (5’), as soon as the material parameters are known. It should be noted 
that /h r   , where   is the virtual steady state dislocation density in the absence of DDRX, 

wherefrom 1/ r  . 

 

Figure 1.   vs. A double logarithmic plot for various values of the strain rate sensitivity parameter r 
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Results and Conclusions 

A first set of results is reported below, for which material parameters pertaining to a high purity 

Ni-1 %Nb alloy, deformed at a temperature of 900 °C, and strain rates of 210  and 11s  were used 

[3]: 9 4 15 10 m sNk   x , 3 10.1 m sM   , and 21000 mh   . It has been observed that the strain- 

hardening exponent h does not vary significantly with strain rate [6]. On the other hand, the possible 
strain-rate dependences of Nk  and M  are not established to date. We will therefore assign the same 

values to the three parameters for the two strain rates. The main data and model predictions are 
reported in Table 1. 

 
 

Table 1. Material data used in the model and some selected predictions 
 

1[s ]   A     [s]t  1m.s ]mv   ( )zS  0 ( )zS  

0.01 
127.854 10x  0.029 0.121 12.1 1.396 0.930 0.915 

1 
67.854 10x  0.164 0.639 0.639 7.695 0.699 0.659 

 
 

Figures 2a and b show the evolutions of the two semi-axes of the grains during their lifetimes at 

the two strain rates 0.01   and 11s . The broken line represents the dislocation density and the 

critical value    is indicated, which corresponds to the strain where the volume 28V ab  of the 
grain goes through its maximum. The diagram shows that the maximum values of a and b are slightly 
shifted backward and forward, respectively. Comparison of the two diagrams shows that the grain 
size (estimated for instance by the average of the two axes) is lower at the larger strain rate, whereas 
the strain when the grain disappears (  ) is much larger (Fig. 2b). Its dislocation density is then 

five time larger than at 10.01 s . This means that increasing the strain rate slows down DDRX, as 
expected. 

More specifically, the current migration rate of the boundaries is given by mv M    , where 

the absolute value reflects the fact that 0mv  . The average migration rate weighted by the surface 

of the grain 28 16S b ab   is then: 
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This gives 1.396mv   and 7.695 1ms  at 0.01 and 11s , respectively. At the same time, the lifetime 

of the grain /t     drops from 12.1 to 0.164 s, which opposes the increase of the migration rate. 

Figures 2c and d were obtained from a former version of the model: they display the evolutions of 
spherical grains deformed in the same conditions without advection effects. Comparison with Figs 2a 
and b shows that the grain sizes, lifetimes and dislocation densities are not significantly modified by 
advection. 

 
It is not possible to assess directly the effect of grain boundary migration, since in the absence of 

the latter no nucleation and therefore no DRX can take place. Nevertheless the main contribution of 
the present model is to allow the evaluation of the shape changes of the grains, which is quantified 
by the aspect ratio /a b  . In Fig. 3, zS  is one quarter of the current section of the grain parallel to 



 

the compression axis, i.e. zS a b , which is commonly observed and measured in metallography. 

The aspect ratio is plotted along the horizontal axis. In other words, the diagrams exhibit distribution 
functions of the aspect ratios of the grains weighted by their section areas. Upon nucleation, 1   by 
assumption and it then decreases continuously as a result of advection until it reaches zero when the 
grain disappears. Note that the aspect ratio decreases with increasing strain, as expected in 
compression. The curves are displayed for three values of the recovery parameter, viz. 0, 2.5 and 5r   

at 10.01 s  (Fig. 3a) and 0,1and 2r   at 11s  (Fig. 3b), respectively. The horizontal broken line 

indicates half the maximum of zS  for 0r  . 
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Figure 2. Evolutions of the semi-axes and the dislocation densities of the grains during their 

lifetimes at (a) 0.01   and (b) 11s ; (c) and (d): evolutions of spherical grains without 
advection 

 

At 10.01s  , all grains with a significant size have a large aspect ratio. More quantitatively, for 
all grains of section area larger than half the maximum, 0.85  , which means that they are almost 

equiaxed. By contrast, at 11s  , the area fraction of flattened grains is much larger and for the 

population of larger grains, 0.45 0.85  . The weighted averages by zS , referred to as ( )zS  are 

given in Table 1. A tentative comparison is proposed with the case of an initially spherical grain of 
finite radius (in contrast with a DDRX nucleus) submitted to the same compression strain of 
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amplitude  in the absence of grain boundary migration. The weighted average aspect ratio can be 
derived analytically: 

 0
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and numerical values are reported in Table 1. They are only slightly lower than in the previous two 
cases. Although this comparison is questionable, it suggests the conclusion that the effect of migration 
is limited during DDRX and therefore that the shape of the grains is mainly determined by their 
lifetimes. 
 

(a) 
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Figure 3. Distribution functions of the aspect ratios of the grains weighted by their section areas 

at (a) 0.01   and (b) 11s  
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