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Abstract—In this paper, we introduce a new Control-Flow
Integrity (CFI) scheme for detecting Fault Injection Attacks
(FIA). Our scheme is designed to be as generic as possible and
to cover any microcontroller on the market, including non-
secure ones. It is a full software approach, designed to detect
CFI disruptions caused by FIA. The proposal is portable and
designed for a high-level language implementation (C in our case).
The main characteristic of our scheme is to link a predictable
computed Chain of Trust (CoT) with the assets of a program.
This approach classically allows the detection of fault injections
leading to an illegitimate path of execution. In addition, this
solution is designed to detect when a legitimate execution path is
wrongly followed due to FIA. Simulations on several benchmarks
finally validate the effectiveness of the method, using a multiple
instruction skip faults model.

Index Terms—Control flow integrity, Fault injection attack,
Multiple faults

I. INTRODUCTION

The Internet of Things (IoT) provides an increasing number
of devices with connected capabilities, leading to several
examples of attacks [12], [24], and thus to new security
challenges. Non-secure microcontrollers are widely used for
IoT devices due to their low-cost and low-power design, they
are vulnerable to FIA which can be done with low expertise and
equipment as demonstrated in [7], [9]. To mitigate this threat
under the constraint of limited resources, we may consider
hardware countermeasures, however, in most cases, these are
not suited to deal with the security needs of an already existing
microcontroller. To give a generic answer to these security
needs, we should not only rely on hardware security features,
instead, a software-only approach is cheap to integrate and
presents opportunities of evolution. In particular, we choose
to insert our countermeasures at the source code level using a
high-level language (C99).

In this work, we focus on Control Flow Integrity (CFI)
enforcement in order to detect FIA aiming at modifying the
execution flow of the target’s program. FIA may for instance
induce a test inversion allowing a privilege escalation despite
entering a wrong password (as shown in section VI). Our
solution monitors at runtime the followed execution path
which must be consistent with the control flow graph (CFG)
and the input data. This software-only CFI solution is based on
a Chain of Trust (or CoT) which is a chain of pre-computed

values that change according to the program’s execution path.
Chain values can be monitored at any point of program
execution to verify that the execution path is legitimate and
correct. Our main design goal is to mesh the program’s data
with values of the CoT. This CoT is established at compilation
time, and then computed and verified during execution.

FIA may result in various faulty behaviors (e.g. data cor-
ruption, instruction skip, etc.) [7]. We specifically considered
the instruction skip fault model, which consists in preventing
an assembler instruction from being executed. The targeted
instruction is said to be skipped but is rather corrupted in
a way that is similar to erasing it at run-time [8], [25].
This behavior is usually simulated by substituting the orig-
inal instruction with a no-operation instruction (or nop, a
legitimate instruction that has no effect on the target com-
putations). Much research papers consider single instruction
skip (a unique instruction is skipped), however multiple skips
targeting several instructions (consecutive or at different stages
of a program) can also be obtained. This latter fault model is
difficult to thwart as one fault iteration can be induced in order
to deactivate a FIA countermeasure [7]. As described below,
the CFI solution we propose is designed to tackle with multiple
instruction skips.

The main contributions of this research are:
• Software CFI scheme based on a CoT
• Computation of CoT values from the program data
• Computation of program data from the CoT values
• Detection of simple and double instructions skips
In this paper, we first remind the CFG and CFI notions in

section II. Then, section III presents a survey of previous
works about CFI and their limits against FIA. In sections
IV and V the design and mechanisms of our method are
explained. Section VI presents our experiments and results on
key examples for CFI enforcement. Lastly, we conclude and
present our ideas to further improve our approach.

II. BACKGROUND

A. Control Flow Graph

A Control-Flow Graph (CFG) describes the various paths
of execution a program may follow at run-time. The graph’s
nodes are Basic Blocks (BB), i.e. sequential sections of code
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which may start with a jump target and may end with a jump
instruction. High-level languages usually define a specific
structure to delimit each BB [11]. An example of a CFG
representing a switch case program over a Key Size (KS)
value is given in Table I and Fig. 1. The KS value, either 128
or 256 leads to two legitimate paths of execution, any other
value is caught by the default case as an error.

TABLE I
SWITCH CASE C CODE

Basic Block C code
BB0 switch(KS) {

BB1

case 128:
get key128();
break;

BB2
case 256:

get key256();
break;

BB3
default:

error();

BB4
}
if (!encryption()) error();

BB5 if (!encryption check()) error();

128

switch(KS)

get_key128() get_key256() error()

encryption()

encryption_check()

256 default

BB0

BB1 BB2 BB3

BB4

BB5

Fig. 1. Control Flow graph

B. Control Flow Integrity

In the presence of FIA, CFI ensures that a legitimate (present
in the CFG) and correct (corresponding to the input data) path
of execution is taken. Assuming that KS is equal to 256, the
correct path of execution must follow BB0 → BB2 → BB4.
As a consequence, BB0 → BB1 → BB4 is a legitimate but
incorrect execution path (given the assumption that KS = 256)
and any other path is illegitimate (e.g. BB0 → BB4).

III. PREVIOUS WORKS

In previous CFI works, a first category protects against
software attacks based on code reuse attacks, such as return-
oriented programming [23] and jump-oriented programming
[2]. Software based [5] solutions as well as hardware based
[26] solutions have been proposed for this kind of threat.
However, these CFI schemes are not suited to counter FIA
threats which are relatively easy and affordable to mount
against low performances devices [9], [17]. FIA’s ability to

disrupt the execution flow leads to a second category of CFI
schemes [4], [11], [14], [16], [19], [21] which ensures that
the path of execution and the CFG of the program match.
Each BB is given a static signature value that is dynamically
recomputed and verified during execution to check that a
correct execution path has been followed (see Fig. 2 and
Fig. 3). In [11], two variables are used to ensure CFI: the
first tracks the current BB’s signature. The second variable
accumulates errors that come from both signature verification
and decision verification. In [14],several counters are used to
track the CFG paths, and parallel execution paths are protected
with different counters. For both schemes, when a decision is
made (a test on a variable leading to several possible BB such
as switch(KS)), each possible path of execution leads to
a different state of the tracking variables set. The detection
relies on a re-evaluation of the decision and the verification
that it matches the state of the tracking variables set. These
mechanisms target at protecting the decisions of the program
against single FIA.

Recently, Proy et al proposed a different approach in [20], its
aim is to protect the call graph of the program which is a sub-
graph of the CFG. This method protects directs function calls
in addition to their entry parameters: two tracking variables are
respectively updated before and after the function’s call, they
are eventually compared to ensure that the intended function
call has been performed. This protection is a lightweight CFI
scheme restricted to function calls and ignoring any other
CFG decision making. However, its ability to link the entry
parameters to the CFI scheme is an important improvement to
the state-of-the-art.

Fig. 2 provides a synthetic view of the main state-of-the-art
CFI schemes (such as [11], [14]) applied to CFG of a simple
switch case program (as illustrated in Table I and Fig.
1). The Tracking Variable (or TV) is a generalization of the
approaches in [14] (using a set of counters) and [11] (using a
set of BB signatures), it takes n+ 1 values denoted T0, ..., Tn

which are mapped to n+1 BB. This TV is used to enforce the
CFI of the protected code by updating its value (to keep track
of the executed BBs) or by checking that its current value is
set according to the code CFG.

In this example, only the protection of the switch case
decision is considered for our demonstration. For instance,
considering an instruction skip fault model, a skip of a branch
instruction can result in the execution of the wrong switch
case, i.e. a corruption of the decision made. The protection
relies on the verification of both the validity of the TV and
its matching with KS ((T1,128) or (T2,256)). This mechanism
ensures that a single FIA corrupting the KS’s decision will
be detected during the check operation before executing the
encrypt() function, for instance, if TV is equal to T2, we expect
the execution path to go through BB2 and in this case KS
should be equal to 256, any discrepancy will be interpreted as
a fault being successfully injected.

The main limitation of software state-of-the-art CFI is the
lack of dependencies between TV values and program’s de-
cisions, these TV values are mapped to the program’s CFG,



T0update(TV)

switch(KS)

get_key128()

update(TV) T1

get_key256()

update(TV) T2

(T1,128) or (T2,256)?

T3

check(TV,KS)

update(TV)

encryption()

TV==T3?

T4

check(TV)

update(TV)

encryption_check()

128 256 default

error()

BB0

BB1 BB2

BB3

BB4

BB5

Fig. 2. State of the art CFI

which means that those remain correct in case of a legitimate
but incorrect path of execution due to a FIA (e.g. BB1 is
executed with KS being 256, a less secure 128-bit key could
be used, as exemplified in Fig. 3). In this case of legitimate but
incorrect path of execution, the protection entirely relies on a
single check test which will detect a single FIA. However,
a stronger attacker capable of multiple FIA [8] could both
corrupt the decision over KS and skip the check operation
in order to entirely defeat the protection: because there is
no dependency between the TV and the KS value, skipping
the check test following a decision’s corruption would let the
program correctly update the TV from T1 to T3. The expected
detection being avoided by a second fault, any upcoming
test would not detect the attack due to the absence of error
propagation as depicted in Fig. 3.

T0update(TV)

switch(256) Fault Injection

get_key128()

update(TV) T1

get_key256()

update(TV) T2

2nd Fault Injection

T3

check(T1,256)

update(TV)

encryption()

TV=T3

T4

check(TV)

update(TV)

encryption_check()

128 256 default

error()

BB0

BB2BB1

BB3

BB4

BB5

Fig. 3. State-of-the-art CFI and vulnerability to multiple FIAs

IV. DESIGN OF THE PROTECTION

The objective of our proposal is to deepen as much as
possible the dependencies between the TV and the decisions
of the program. Subsection IV-A presents the core mechanism
used to assign BB’s signatures. Then, subsection IV-B presents
our first improvement mechanism to state-of-the-art CFI.

A. Chain of Trust

The general idea of the protection is to implement a CoT: a
sequence of values which current state is stored into a variable,
and map these values to the program’s CFG. Each step value of
the CoT is recursively computed with a transition function, i.e.
each step value is chained with the previous one through the
transition function. The transition function and CoT expected
properties are:

• The transition function must provide a long enough series
of distinct values to avoid collisions.

• Each function or relevant part of the software should have
its own CoT. For this purpose, each CoT will start with a
distinct and arbitrary seed.

• Except when seeding the CoT, the current state must never
be set to a value, it must be computed from the previous
one.

For a given function composed of n+2 BB, its CoT is a set
of n+2 values C0, ..., Cn, Cf , the seed C0, being an arbitrary
value unique to this function, and Cf the final value, which
is expected to be reached in case of correct execution. Any
update of the CoT value is always made through a call of the
transition function TFunc with a transition value Tvalue as
follows:

CoT ← TFunc(CoT, Tvalue) (1)

These transition values are pre-computed during a pre-
processing step (see section VI-A), in particular, the transi-
tion step values TOSTEP(i) are arbitrary and used for the
next_step operation [3] which updates the CoT from Ci−1

to Ci. The complete definition of a n-length CoT is: C0 = SEED
∀i ∈ [[1, n]], Ci = TFunc(Ci−1, TOSTEP (i))
∀i ∈ [[0, n]], Cf = TFunc(Ci, TOFINAL(i))

(2)

The final value Cf can be computed from any CoT step,
including from C0, this is particularly interesting when a caller
function has to check the resulting CoT value of a called
function (see section VI-A). For this purpose, Cf is defined
directly from C0 and an arbitrary value named KEY CFI, it
is computed at execution time from Ci using a constrained
transition value TOFINAL(i) (in particular, TOFINAL(0) is
equal to KEY CFI):{

Cf = TFunc(C0,KEY CFI)
∀i ∈ [[0, n]], Cf = TFunc(Ci, TOFINAL(i))

(3)

During the pre-processing phase, for all i in the set of
defined exit points of the CoT, TOFINAL(i) will be computed
such that it allows the transition from Ci to Cf . This mecha-
nism defines the starting and ending values of the CoT without



knowledge of its internal complexity, while during execution,
every CoT value is computed from the previous one through
the transition function TFunc.

Several implementations of the transition function may be
considered, we only focus here on a simple and yet efficient
XOR operation ⊕:

TFunc(CoT, Tvalue) = CoT ⊕ Tvalue (4)

B. Decision’s protection

The above-described mechanism allows protecting a se-
quential section of code. In order to enforce the decision-
making we need an additional functionality that relies on the
CoT. Protecting decisions is done with a feed/compensate
(or CPS) mechanism, which involves inserting the decision
value into the CoT computation. This allows, for instance,
to split and merge back a CoT to protect parallel paths of
executions as depicted with our switch case example in
Fig. 4. The computation details of each operation present in
Fig. 4 are given in Table II, in particular:

OutputV alue = InputV alue⊕ TransitionV alue (5)

128 256 default

set_seed(CoT) C0

feed(CoT,KS) C0 ^ KS

switch(KS)

get_key128()

CPS(CoT,128) C1

get_key256()

CPS(CoT,256) C1

error()

check(CoT) CoT==C1?

encryption()

next_step(CoT) C2

check(CoT) CoT==C2?

encryption_check()

BB0

BB1 BB2

BB3

BB4

BB5

Fig. 4. CoT CFI

TABLE II
DETAILED STEPS OF OPERATION USING THE XOR TRANSITION FUNCTION.

Operation Input Transition Output
value value value

set seed(CoT) Null C0 C0

feed(KS) C0 KS C0 ⊕ KS
CPS(128) C0 ⊕ 128 C0 ⊕ 128 ⊕ C1 C1

CPS(256) C0 ⊕ 256 C0 ⊕ 256 ⊕ C1 C1

next step(CoT) C1 TOSTEP(2) C2

KS is used both for the CoT computation and the condition’s
evaluation: instead of mapping BB1 and BB2 to static values
T1 and T2, these BB are mapped to values derived from C0

and the decision value KS. This is done through the feed
operation which allows diverging from the nominal CoT by
merging the decision value (KS) into it. The compensate
operation allows converging back into the expected CoT only if
the right decision about KS has been made and executed. More
precisely, the transition value involved in the compensate
operation is computed to go from C0 ⊕ KS to C1 for each
expected value of KS. This feed/compensate mechanism
comes as a replacement for a next_step operation to
transition from C0 to C1, which means that skipping these
operations would result in an invalid CoT (missing an update).
A mismatch between the fed value and its compensation
counterpart would result in a corrupted CoT and therefore be
detected in all subsequent CoT tests. With this mechanism,
faulting the decision and then the check operation would not
defeat the protection because the CoT value would remain
incorrect and transmit this error to the next verification as
depicted in Fig. 5. This principle is applicable to any data that
is known at compilation time. Using this protection enforces
the execution and decision of even complex parts of code by
establishing links between program’s important data (assets)
and the sequence’s correctness.

C0

C0 ^ 256

set_seed(CoT)

feed(CoT,256)

switch(256) Fault Injection

get_key128()

CPS(CoT,128)

C1 ^ 256 ^ 128

get_key256()

CPS(CoT,256) C1

2nd Fault Injectioncheck(CoT)

encryption()

CoT!=C2

CoT!=C2

next_step(CoT)

check(CoT)

encryption_check()

128 256 default

error()

BB0

BB2BB1

BB3

BB4

BB5

Fig. 5. CoT CFI and FIA

V. COT DERIVATION

In previous sections, we have shown the error propagation
properties of the CoT, allowing to capture a fault even long
after it occurred, and a mechanism to compute the CoT from
program’s data. To further increase the link between the CoT
and the program execution, we describe a new mechanism
allowing to compute a data from the CoT. Fig. 6 shows an
application of this mechanism to the protection of a function
call.

In Fig. 6, the feed/compensate mechanism allows
the detection of an unauthorized or corrupted execution of
function G. Both functions F and G have their own CoT,
CoT G is fed into CoT F, then CoT G’s expected value CGfinal



next_step(CoT_F)CFn

CG0

CG1

CGFINAL
CFn+1

CFn+2

Token(CoT_F)

CoT_G = G(Token)

feed(CoT_F,CoT_G)

CPS(CoT_F,CGFINAL)

check(CoT_F)

next_step(CoT_F)

check(CoT_F)

compute_seed(CoT_G,Token)

next_step(CoT_G)

final_step(CoT_G)

Error_handler
CoT_F

Token

Function F

Function G

CFn ^
CG_FINAL

Fig. 6. FCall benchmark

is compensated, allowing F to integrate in its own CoT all
potential misbehavior reported by CoT G during its execution.
In particular, this mechanism ensures that a missing execution
or the execution of another function is detected (forward and
backward edge protection). Considering the case G is a critical
function, it is indeed mandatory to perform this detection a
priori, as an a posteriori detection is potentially happening
too late.

To perform an a priori detection, we propose providing an
execution token to function G, computed from CoT F. Through
the compute_seed() (see Fig. 6) function, function G
checks the execution token and uses it to initialize its CoT or
redirect the program’s control flow towards an error handler
(in the case where G was not intended to be called or function
F has been disrupted by a fault).

TOKEN = CG0 ⊕ CoT F ⊕ CFn (6)

This execution token is a computation of G’s seed (CG0)
under the condition that CoT F takes its expected value CFn.
Not only an indirect verification of the caller’s CoT is made
before starting G’s execution, but in case an attacker skips this
verification, CoT G would carry the potential error due to its
assignation to token. In Fig. 6, we represent the conditional
access to function G from the nth step of function F, this
mechanism prevents the execution of function G outside a set
of chosen contexts.

Computing a program data from the CoT opens several
other interesting applications, for instance, it is possible to
protect data through a contextual masking, which will only
reveal the correct unmasked value if the CoT is correct.
Extending this idea to contextual use of critical data, it enables
limiting their use to very specific pieces of code, any out-of-
context access to these masked data resulting in getting back a
corrupted (unusable) version of them. This mechanism further
increases the dependency between the CoT computation and

the program’s execution, not only a corrupted CoT due to FIA
would lead to a detection, but in case of a skipped detection,
the program itself would not proceed correctly in its execution
due to corrupted data and denied function’s execution.

VI. EXPERIMENTS AND RESULTS

A. Insertion of the protection

The protection insertion is made at the source code level,
through a set of manual and automated steps. A preliminary
vulnerability analysis is performed in order to determine the
assets (e.g. KS in Fig. 1) to protect, then, the CoT is manually
inserted and linked to these assets through a set of macros.
Involving a security expert for identifying the places and
assets to protect is mandatory to ensure that primary assets
are protected. Insertion process is available at [3], it concerns
three steps:

1) The program is pre-compiled in order to expand the
macros, which defines every CoT value that need pre-
computation (mainly transition values).

2) A python script computes the CoT values.
3) Finally, the compilation process restarts, using the newly

computed values.
It is possible to implement our protection without the prepro-
cessing step; however, it was convenient to do so in order
to switch easily between transition functions with diverse
mathematical properties.

As previously mentioned the final value Cf is defined from
the seed C0 and dynamically computed from a step Ci during
execution: the consequence is that a CoT complexity has no
impact on its final value. Encapsulating a CoT into another
one (to handle for instance a function call) is trivial, one must
simply feed the computed CoT value and compensate the
expected Cf value. This eases the process of inserting coun-
termeasures into a given program, as well as the maintenance
of the code because any modification on a given CoT does
not have any impact on the encapsulated or the encapsulating
CoT. For instance, in Fig. 6, adding an arbitrary number of
steps to function G does not change the expected final value
CGfinal and as a consequence does not have any impact on
the computation of CoT F.

B. Tested code and attack scenarios

For the purpose of testing our protection method, we used an
Arm® Cortex®-M3 fault injection simulator based on unicorn
[15]. This simulator allows observing the effects of several
instruction skips on the execution of a program. Three different
faults models are implemented:

• Single instruction skip: the simulator lists every instruc-
tion present in a reference execution of the program,
then every possible substitution of an instruction with a
nop is tested. For every substitution scenario, if an asset
is altered without detection, the scenario is deemed an
”attack success”.

• Consecutive instruction skips [10] are similarly handled
than single instruction skip, once the address of the



first instruction to be skipped is determined, multiple
consecutive instructions are replaced with a ”nop”.

• Double instruction skips are based on single instruction
skip scenario, for each scenario resulting in a fault
detected, every possible instruction skip of a second in-
struction are tested in an attempt to bypass the detection.

The benchmarked functions are the following:

• switch(): as presented in sections II, III and IV.
• FCall(): as presented in section V.
• min_array(): Presented in [11] to illustrate the CFI

protection named YACCA. It compares term-by-term two
arrays and stores the smallest element into a third array.

• Memory access functions, i.e. functions used to manip-
ulate stored data in memory: memcmp(), memcpy()
and memset(). These functions are involved in critical
operations such as erasing critical data or comparing two
buffers to make a decision over the comparison result
(e.g. a signature verification).

• VerifyPin(): it consists in testing a four-digit user
code and comparing it with a reference four-digit PIN
code (as described in [6]), a counter tracks the number
of attempts to avoid brute force attacks.

• ECDSA_verify() is an open source implementation
[22] of ECDSA ’s signature verification function (Elliptic
Curve Digital Signature Algorithm).

• ECDSA_sign() is an open source implementation [22]
of ECDSA’s signature function.

For these functions we considered the followings attack sce-
narios:

• switch(): The attack is successful if the loaded key is
incorrect without detection.

• FCall(): The aim of the attack is to obtain a correct
return code for the function F with an incorrect return
code for the function G.

• min_array(), memset(), memcpy(): We compare
the faulted execution’s resulting array with a reference
one, if there is a difference and no detection, the attack
is pass.

• memcmp(): two arrays with one different term are com-
pared, if the comparison succeeds the attack is considered
a success.

• VerifyPin(): We tested two different scenarios with
this example code and several versions with different
countermeasures as proposed in [6] (results are shown
for VerifyPin7, but we tested versions zero and one
as well):

– The first scenario of attack consists into making an
incorrect pin code being accepted by the verification
process.

– The second one consists into bypassing the maxi-
mum number of attempts resulting in a fast brute
force attack. We consider that the attacker enters the
pin code and that he has zero attempts left (if the

maximum number of attempts can be bypassed a
brute force attack is then trivial).

• ECDSA_verify(): The aim of the attack is to make
an incorrect signature accepted.

• ECDSA_sign(): based on the attack described in [1],
this attack has a simple countermeasure that consists
in verifying that the point P is on the elliptic curve
[18]. In this scenario, we assume that the elliptic curve
parameters have been compromised by the attacker which
aims to bypass the countermeasure with fault injection. If
a fault injection allows getting the corrupted signature in
output, then according to [1] we assume that a further
cryptanalysis allows recovering information about the
secret key and the attack is pass.

C. Results

In Table III, we show the number of attack successes for
each attack scenario previously introduced with and without
our CFI scheme in the presence of a single instruction skip.
Every optimization option present with the GCC compiler
were tested but only the -O3 optimization results are presented.
The -O3 option is one of the most aggressive levels of
optimization (with -Os) and it is the most unfavorable option
for our countermeasures, the results with others levels of
optimization would not add any additional ”attack success”
scenario.

TABLE III
SIMPLE INSTRUCTION SKIP ATTACK

Scenario attack success
no CFI CFI

switch() 276 0
FCall() 3 0
memset() 12 0
memcpy() 16 0
memcmp() 3 0

VerifyPin() Password 2 0
VerifyPin() Counter 3 0
ECDSA_verify() 4 0
ECDSA_sign() 3 0

Table IV presents the overhead of our protection for the
presented scenarios, this overhead is highly variable, from
negligible (ECDSA scenario) to a thirty-five time increase
(FCall() scenario). This high variability comes from the
fact that the overhead fully depends on the protected assets
manipulations. For instance, memcmp() has a high overhead,
as almost every line of code needs to be protected. However, in
ECDSA examples, only a small portion of the code is involved
in the attack and the overhead is marginal. In the switch()
example we consider only one asset to protect which is the
key size, its protection comes with a low overhead but as it is
a simplified example, pushing the details even further would
certainly add other assets to protect and an higher overhead.



TABLE IV
OVERHEAD: CODE SIZE AND NUMBER OF CLOCK CYCLES

Scenario code size clock cycles
no CFI CFI no CFI CFI

switch() 200 384 528 580
FCall() 32 500 4 142
memset() 14 448 55 538
memcpy() 98 476 40 620
memcmp() 66 552 18 630

VerifyPin() Password 36 108 20 145
VerifyPin() Counter 36 108 11 67
ECDSA_verify() 27808 28472 9.8M 9.8M
ECDSA_sign() 27704 28344 8.5M 8.5M

The scenario min_array() comes from [11] as an illus-
tration of the YACCA CFI method. We tested this protection
(enriched version from [11]) with our simulator as described
in Table V. We declared the variables manipulated by YACCA
as volatile [13] otherwise the execution time would be
significantly lower (550 vs 1116 cycles) but the number of
attack success would be significantly higher (62 vs 25). Under
the same test conditions we can see that with our method we
were able to cover every attack success scenario with a much
lower overhead than YACCA (507% vs 1298%). In the given
example, the minimum term by term of arrays a and b is
stored into a third array x. YACCA ensures that the path of
execution is legitimate, and the decisions are correctly made,
which means that the correct value between a[i] and b[i] is
chosen and the corresponding BB is executed. But an asset is
not protected: the resulting array x, the assignation of x[i] to
a[i] or b[i] is easily corrupted with our fault model.

TABLE V
ENRICHED YACCA VS COT

Scenario attack success clock cycles
no CFI CFI YACCA no CFI CFI YACCA

min_array() 56 0 25 86 436 1116

Memory functions manipulate critical assets in more com-
plex programs, they represent an interesting example as pro-
tecting them at all cost can drastically increase the security
of a program without too much global overhead despite an
important local one. These functions are missing a context of
execution as for instance, memcpy() is able to write arbitrary
data to nearly any address, this is an opportunity for an attacker
to extract, insert or erase critical data. This design issue led us
to give a special attention to these functions, in every scenario
we attacked the function’s call and its parameters along with
the internal part of the function. We redefined the memory
functions to take a C99 structure data type as parameter (see
[3]), this structure contains the previous parameters as well
as an integrity data which allowed us to counter every attack
scenario even in the most unfavorable case where faults are
injected while building the parameter’s structure.

In order to highlight the conditional execution of a function
described in section V, we tested a variation of the second

attack scenario for VerifyPin(). We still considered an
attacker in possession of the pin code with zero attempts left
and trying to bypass this protection with a FIA. But, in this
case we did not want the program to execute the comparison
function at all. Previously, the attack detection by the CFI
protection would be sufficient to consider the scenario as ”fault
detected”, we consider here as an ”attack success” any case
where the comparison function is executed, even with the CoT
detecting an attack later on. This leads to two new attacks
scenarios uncovered with the feed/compensate mecha-
nism only. The implementation of the mechanism described
in section.IV-B allows covering the two mentioned ”attack
success” scenarios.

TABLE VI presents our multiple fault results following
the fault models described in Section VI-B. Consecutive
instruction skips have been studied in previous works [10] and
the results of our protection against such threat is presented
in the column ”1 double skip”. The other category ”2 single
skips” is an attempt to bypass the detection based on single
instruction skip scenario, this implies a high simulation time:
for instance, the switch() scenario requires 580 simulations
to exhaustively test single instruction skips, but 36 745 simu-
lations to test double instructions skips.

TABLE VI
FIA: DOUBLE INSTRUCTIONS SKIP ATTACK

Scenario 1 double skip 2 single skips
Attack success (%) Attack success (%)

switch() 0 0
FCall() 0 0
memset() 1.86 0.04
memcpy() 0 0.09
memcmp() 0 0

VerifyPin() Password 0 3
VerifyPin() Counter 0 0
ECDSA_verify() 0 0
ECDSA_sign() 0 0

VII. DISCUSSION

A. Transition function

We implemented three different transition functions: XOR,
affine modular and Cyclic Redundancy Check (CRC). To
keep the explanations of our method as simple as possible,
we focused on practical examples with the XOR transition
function. One must keep in mind that the trivial mathematical
properties brought by the XOR are not present with more
complicated transition’s functions such as CRC. The main
downside of the XOR transition function is the presence of
a neutral element 0, this is an issue because applying 0 to the
CoT leaves it unchanged. To avoid this, instead of applying a
value expected to be 0 to the CoT, we apply this value plus an
arbitrary constant. The XOR transition function is similar to
the affine modular transition function in terms of performance
and security, while the CRC transition function is significantly
slower but has the advantage of not having neutral element in
top of other advantages beyond the scope of this paper. The



CRC transition function (or any other complex function) should
be chosen over the XOR in case of a hardware functionality
justifying this choice.

B. Fault model

Our protection proposal is designed to detect transient
instruction corruptions, depending on the assumptions made
on the attacker, it addresses single or multiple faults.

In the case of a single fault injection, we tested exhaustively
every single instruction skip (a subcategory of instruction cor-
ruptions [25]) with our simulator, testing exhaustively instruc-
tion corruption would take too much computation time even
for small examples. However, we state that our proposal covers
this fault model because the detection relies on loading a
protected asset from memory twice, any corrupted or misused
loaded value would result in a mismatch between the computed
CoT and the execution path.

Considering multiple faults injection, we state that our
protection offers high coverage against multiple instruction
skips. Due to the CoT being computed from the decision
values, a fault corrupting a decision value results in a corrupted
CoT value. Then the error propagation properties of the CoT
implies that the attack described in section III which corrupts
an asset and skips the corresponding verification cannot defeat
the protection.

However, a powerful enough attacker can defeat the imple-
mented protection with double fault injection, considering that
he is able of corrupting instructions and has enough control
over the corruption. For instance in Fig. 5, the attacker needs
to corrupt the load instruction over the key size and change
the value loaded from 256 to 128 twice. The first time, as
the feed operation is made and the second when the switch
decision is taken. Doing this will produce the exact behavior
of both the program and the protection as if 128 was stored in
memory. Such a powerful attacker defeats the implementation
of our protection because it is based on a double load of the
KS value from memory, however, it is possible to implement
a stronger version of our protection based on triple (or more)
loading of assets from memory, increasing both the security
level and the overhead of the protection.

C. Compiler optimizations

We choose to position our protection on top of the compiling
process, which means that compiler’s optimizations must be
dealt with in order to prevent them from optimizing out our
countermeasures.

The first idea that naturally comes is to declare the CoT
value as volatile [13]. This is necessary in order to avoid
the CoT to be optimized out and reassigned later, its value
must exist at all time. This is not sufficient because while
linking an asset to the CoT, the protection against simple
FIA relies on the redundancy of the access to the asset in
memory. As an example if we take a decision over an asset
A present in memory, we must load its value into a register
R and the decision will be made over the value contained
in R. If the access is corrupted and the value A’ is loaded

instead of A, we can argue that both the decision and the
feed/compensate will be made over the corrupted value
and the attack undetected. However, if A is volatile, its
value will be read both before the decision and before its
integration to the CoT, leading to a detection if both readings
are not consistent. This means that a solution is to have both
the CoT value and the fed values defined as volatile.
Defining the assets as volatile isn’t convenient, this is why
we used a macro to make volatile access to any variable
in order to force the compiler to read an asset when we access
it. Then, we were able to obtain the same fault coverage with
every optimization options present with GCC against FIA.

D. Method Comparison

TABLE VII
CFI PROTECTIONS

Method fault double faults simple fault Overhead Insertionmodel coverage coverage

Proposal [3] instruction high high low selectivecorruption
Lalande jump no high high systematicet al [14] attack

Goloubeva et al bit-flips no high high systematic(YACCA) [11]

Proy et al [20] control flow no low low automatedcorruption

TABLE VII presents the overview of the main CFI protec-
tions discussed in this paper. Our proposal offers a different
approach regarding countermeasures insertion compared to
state-of-the-art protections. The automation of countermea-
sures insertion is viewed as a requirement, however we choose
a different approach for two reasons. The first reason is
the balance between overhead, fault coverage and insertion,
given a high fault coverage, automating the countermeasures
insertion means that they are systematically applied to the
totality of the code and this results in additional overhead.
A selective manual insertion allows us to carefully pick the
important parts of the code to protect and to avoid as much
as possible unnecessary countermeasures and overhead. The
second reason is the fault coverage, defining critical data
(assets) and parts of the code is necessary in order to ensure
that they are correctly secured, for instance our method allows
different protection mechanism for securing a function call
depending on its criticality (see section V).

Regarding fault coverage, our protection provide a slightly
better single fault coverage, however the main appeal is the
double fault coverage. State of the art CFI are not designed
to detect double fault attacks, verification are placed into the
code which allows to detect single fault attacks. However,
there are no mechanisms to protect these verification which
allows double faults to successfully bypass these schemes,
our proposal fix this issue by meshing program’s values with
signatures values and ensuring error propagation through the
signature value CoT. In top of the proposed CFI detection
mechanism based on a CoT, we propose others applications



focused on contextual execution such as conditional execution,
data access or contextual masking (see section V).

VIII. CONCLUSION

We designed an original software-only CFI protection
method applied at the source code level, which allows pro-
tecting the assets of a program against instruction(s) skip(s)
attacks without binding ourselves to a given compiler or CPU
core. By establishing a strong interdependence between the
assets of a program and a CoT, we can detect a corrupted
decision-making, propagate this information to ensure detec-
tion later on or protect the access to an asset or function.
The protection not only allows the detection of illegitimate
and incorrect execution paths, but also prevents the correct
execution of the program in case of a corrupted CoT. The
resulting overhead of our protection is highly variable. By
carefully choosing the assets of our program to protect we have
shown through examples that it can be limited to under one
% for a complete example and up to thirty-five time increase
for limited but critical sections of code.

For future improvements, we are looking into using our
mechanism for different purposes such as anti-tampering and
reverse engineering protection. The idea to rely on a CoT as
a basis to implement protection functionalities is not fully
explored with a CFI approach, and we want to dive deeper
into this software protection.
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