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Abstract

Pre-trained large language models (LLMs)
have gained significant attention in the field
of natural language processing (NLP), espe-
cially for the task of text summarization, gener-
ation, and question answering. The success of
LMs can be attributed to the attention mecha-
nism introduced in Transformer models, which
have outperformed traditional recurrent neu-
ral network models (e.g., LSTM) in modeling
sequential data. In this paper, we leverage pre-
trained causal language models for the down-
stream task of failure analysis triplet generation
(FATG), which involves generating a sequence
of failure analysis decision steps for identifying
failure root causes in the semiconductor indus-
try. In particular, we conduct extensive com-
parative analysis of various transformer mod-
els for the FATG task and find that the BERT-
GPT-2 Transformer (Big GCVAE), fine-tuned
on a proposed Generalized-Controllable Vari-
ational AutoEncoder loss (GCVAE), exhibits
superior performance in generating informa-
tive latent space by promoting disentanglement
of latent factors. Specifically, we observe that
fine-tuning the Transformer style BERT-GPT2
on the GCVAE loss yields optimal representa-
tion by reducing the trade-off between recon-
struction loss and KL-divergence, promoting
meaningful, diverse and coherent FATS similar
to expert expectations.

1 Introduction

Failure Analysis Triplet Generation (FATG) is a
scientific process that aims to generate a sequence
of failure analysis texts for a given failure descrip-
tion. We approach FATG as a data-to-text gener-
ation task, where the input is a Failure Descrip-
tion Report (FDR) represented as structured tabu-
lar data, and the output is a lengthy sequence of
failure analysis triplets. Data-to-text generation is
the automatic generation of natural language re-
ports from non-contextual, non-linguistic inputs
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(Gatt and Krahmer, 2018). Early approaches em-
ployed knowledge-based expert systems (Kukich,
1983) to generate natural language reports from
computer databases. In recent times however, there
has been a notable rise in the use of end-to-end
auto-encoding architectures (Bahdanau et al., 2015)
for the purpose of data-to-text generation (natu-
ral language inference). These architectures in-
volve training encoder-decoder frameworks within
the framework of deep learning-based sequence-
to-sequence (Seq2Seq) models. Two prominent
types of Seq2Seq models, namely Long-Short-
Term Memory (LSTM) (Liu et al., 2016; Prajit Ra-
machandran, 2016; McCann et al., 2017) and Trans-
formers (Vaswani et al., 2017), have garnered sig-
nificant attention in the field of natural language
generation (NLG).

The LSTM-based Seq2Seq models have proven
to be effective in capturing the dependencies and
contextual information present in sequential data,
making them well-suited for NLG tasks. By
employing an encoder-decoder architecture, the
LSTM models are capable of encoding the input
data and generating coherent and contextually rel-
evant text as output. Transformers, on the other
hand, are a type of neural network architecture that
emerge as powerful alternatives to LSTM models
for sequence modeling tasks. Transformers use a
self-attention mechanism, which allows them to
capture global dependencies in the input sequence.
This makes Transformers particularly suitable for
natural language generation (NLG) tasks, which
require a broader context and can benefit from cap-
turing complex relationships between words or en-
tities. In the context of failure analysis triplet gen-
eration (FATG), the attention mechanism in Trans-
formers is employed to generate long-sequenced,
non-contextual natural language decisions made
by experts during failure root cause analysis. This
means that we can use Transformers to generate
textual response for analyzing failed components,
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Figure 1: Symbolic representation of FATG decision-making process

even if the input data is not in a contextual format.

The adoption of end-to-end auto-encoding
architectures, coupled with the training of
encoder-decoder frameworks employing LSTM or
Transformer-based Seq2Seq models, has signifi-
cantly advanced the domain of data-to-text gener-
ation. These methodologies have showcased re-
markable effectiveness in a numerous of Natural
Language Generation (NLG) tasks, thereby foster-
ing progress in machine translation, text summa-
rization, question answering, and natural language
inference.

The framework introduced in this paper for vari-
ational auto-encoder fine-tuning methodology in-
cludes the following aspects:

* Robust fine-tuning of a coupled BERT-
encoder and GPT-decoder: This approach
involves leveraging the Generalized Control-
lable Variational AutoEncoder (GCVAE) loss
with adaptive hyperparameters. These adap-
tive hyperparameters are instrumental in bal-
ancing the tradeoff between the quality of text
reconstruction and the disentanglement of la-
tent factors in the representation space, lead-
ing to structured human-like understanding
and generation (See Table 3). We also bene-
fit from maximizing the informativeness of
the latent space when finetuning using the
GCVAE loss for the domain task of failure
analysis generation.

* Maximizing efficiency of GCVAE loss for op-
timal latent space representation: To optimize
the latent space representation, this methodol-
ogy deliberately avoids the conventional prac-
tice of masking the BERT encoder. Instead,
it permits the unimpeded flow of information

through the bottleneck. During this process,
the primary focus is placed on evaluating the
mutual information during both inference and
reconstruction when optimizing of this loss
function.

The remaining section of the paper follows with
related works in Section (2), failure reporting and
corrective action system in Section (3), Pretrained
Large Language Models, in Section (4), Extensive
experimentation with quantitative and qualitative
analysis in Section (5) with conclusion and limita-
tions in Sections (6) and (7) respectively.

2 Related work

NLP in manufacturing. NLP plays a vital role in
improving quality control processes in the manu-
facturing industry. By analyzing textual data from
various sources, such as customer feedback, sensor
logs, and maintenance reports, NLP algorithms can
identify patterns and anomalies related to product
defects. This enables manufacturers to detect and
address quality issues promptly, thereby enhanc-
ing product reliability and customer satisfaction.
Notable research in this domain include works by
Biffl and Halling (2003); Loniewski et al. (2010);
Binkhonain and Zhao (2019) show remarkable
progress of NLP for defect detection. By lever-
aging sentiment analysis and topic modeling, man-
ufacturers can gain real-time visibility into mar-
ket trends, customer preferences, and demand pat-
terns (Garg et al., 2021; Biswas et al., 2022; Toora-
jipour et al., 2021; Pournader et al., 2021) for Sup-
ply Chain Management and Demand Forecasting.
This paper, along with previous publications by
Ezukwoke et al. (2021); Wang et al. (2022); Ram-
mal et al. (2023a), represents pioneering efforts



in exploring the application of Natural Language
Processing (NLP) and machine/deep learning tech-
niques for the identification of failure root cause
analysis in semiconductor industry.

Intelligent decision-making necessitates the in-
telligent representation of historical expert deci-
sions, particularly in cases where a single type
of failure can have multiple failure analysis ap-
proaches. Hence, to design intelligent systems
capable of handling such scenarios, it is essen-
tial to extract meaningful information from fail-
ure reporting systems. This extraction process en-
ables the creation of intelligent systems that can
effectively interpret and utilize the knowledge de-
rived from historical expert decisions, leading to
improved decision-making capabilities in failure
analysis. Given the huge amount of textual data
obtained from the FA final report therefore, NLP
as a subdomain of artificial intelligence is used to
structure and find decision patterns in such data.
Notable works by Zimmer et al. (2019) used NLP
techniques to find pattern of decisions made by
expert during RAMP-UP production. Yue in Yue
et al. (2018) used CNN-LSTM for industrial fault
diagnosis and prognosis.

Representation learning and language model-
ing. To address the challenge of representation
of unstructured text obtained from industrial data,
it is crucial to explore techniques that can reduce
the dimensionality of the vector space, resulting
from numerization, while preserving the contex-
tual meaning of the text. AutoEncoders (Oshri,
2015; Chen and Zaki, 2017) and Variational Au-
toencoders (Dirichlet version) (Xiao et al., 2018)
have been widely employed for this purpose. Re-
cent studies have shown that Convolutional Neural
Networks based on Variational Autoencoders (Liu
et al., 2020) outperform other methods in terms
of preserving semantic meaning in large-scale text
data. Ezukwoke et al. (2021) used [3-Variational
AutoEncoder while Rammal et al. (2023b) used
Variational AutoEncoders together with genetic al-
gorithm to find a well disentangled optimal repre-
sentation space for failure analysis dataset where
clusters of decisions can be found using K-means
or Gaussian mixture model. This is attributed to
their ability of VAEs to extract semantic represen-
tations from textual data.

The challenge with using Variational AutoEn-
coder for modeling complex data is the problem of
vanishing Kullback-Leibler (KL) divergence (Bow-

man et al., 2016), where the unit Gaussian prior
of the encoder matches the posterior. This results
in a non-informative latent z, due to lack of disen-
tanglement (that is, collapsing different factors of
variation into a small region of the latent space).
Attempts to address the vanishing KL problem
includes using KL annealing schemes (Bowman
et al., 2016; Higgins et al., 2017; Fu et al., 2019a),
importance weighted autoencoders (Burda et al.,
2016), conditional variational autoencoder (Zhao
et al., 2017), controllable variational autoencoder
(Shao et al., 2020) and generalized controllable
variational autoencoder (Ezukwoke et al., 2022a).
Transformer-based Variational Autoencoders (Liu
and Liu, 2019) have demonstrated improved sen-
tence generation with more meaningful content
and coherent semantics in the latent space. Further
research reveal that by pretraining Transformers
with a BERT-encoder and a GPT2-decoder on vari-
ational loss (Li et al., 2020), the inherent solution
to the vanishing KL issue was achieved, leading to
the state-of-the-art performance in inference tasks.

Our paper is the first to consider fine-tuning
a pretrained Transformer (BERT-encoder and a
GPT2-decoder) on a robust generalized control-
lable variational autoencoder (GCVAE) loss (Ezuk-
woke et al., 2022a) and also applying it to the semi-
conductor manufacturing industry for decision in-
ference for failure root cause analysis. The results
(in Sections 5.5 and 5.6) suggests that the GCVAE
loss supports disentanglement and is capable of re-
ducing the trade-off between the reconstruction and
regularization, leading to more informative latent
space.

3 Failure Reporting and Corrective
Action System: FRACAS

FRACAS stands for "Failure Reporting, Analysis,
and Corrective Action System." It is a systematic
approach used in industries, particularly in engi-
neering and manufacturing, to manage the iden-
tification, analysis, and resolution of failures or
defects in products, systems, or processes. The
FRACAS process involves the collection of failure
data, analysis of the root causes of failures, and
the implementation of corrective actions to prevent
recurrence.

At the core of FRACAS is its database man-
agement system (DBMS), designed to categorize
failure modes into critical categories, enabling the
identification of product life cycle processes that



require significant attention for enhancing relia-
bility (Mario, 1992). Reports generated from the
FRACAS DBMS provide valuable insights into
failure types, origins of detection, and a series of
analyses represented as triplets, consisting of step
type, substep technique, and equipment, proposed
to identify the root cause of failures. These reports
also present conclusions drawn from the failure
analysis.

Throughout the subsequent sections of this pa-
per, the term pre-triplet will refer to failure de-
scriptions, while triplets (Step type; Substep tech-
nique; Equipment) will denote the collection of
analyses, each comprising three key components.
Each triplet contributes to a failure decision, and
the main objective of this paper is to generate a
set of n triplets that correspond to a specific failure
description.

3.1 FRACAS Variables

We describe the three important variables (the
triplets) for decision-making as follows:

* Step type:The initial stage of fault analysis
entails determining the fault analysis step type,
which represents the first analysis proposed
by the expert once the sample is validated
for analysis. At STMicroelectronics, the fault
analysis process is predominantly composed
of Non-destructive Inspection, Electrical Fail-
ure Verification, Sample Preparation, Physical
Analysis, Global Fault Localization, and other
step types, collectively accounting for 94.3%
of all conducted fault analyses. There is often
a correlation between the requested activity
and the specific analysis conducted. The ex-
pertise of an expert plays a crucial role in
comprehending the rationale behind a specific
request and selecting the appropriate path to
identify the origin of the defects.

= —

'~ [Physical Analysis
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Figure 2: Percentage distribution of Step types.
The Figure (2) shows the percentage distribu-

tion of Step type taken during failure analysis
between 2019-2021.

* Substep technique: In the context of fault
analysis, each step type is accompanied by
a corresponding substep technique. A com-
prehensive set of 91 distinct substep tech-
niques is employed for sub-analysis purposes.
Among these techniques, certain substep tech-
niques are frequently associated with specific
step types. Notably, package decap, optical
microscopy, SAM (Scanning Acoustic Mi-
croscopy), X-ray, SEM (Scanning Electron
Microscopy), die delaying, FIB (Focused Ion
Beam) cross-section, continuity test, electrical
parametric test, and mechanical cross-section
are the most commonly used substep tech-
niques.

Figure 3: Percentage distribution of Substep tehniques.

To visualize the distribution of the various
substep techniques in the dataset, a pie chart
is presented in Figure (3). This chart offers
valuable insights into the relative frequency of
each substep technique within the fault analy-
sis dataset.

Equipment: Equipment are the tools used
for failure analysis. The equipment are
1348 equipment types found in the data set.
OM113-LEICA M165C, PK103-PHOENIX
X-RAY NANOMEX, 727003 - CRI7, ZZ003
- CRI6, MICROSCOPE LEICA DM2700M,
SAM, AGR XRAY01, AGR MICROXCT 200
X-RADIA 3D, AGR STEREOSCOPIC MI-
CROSCOPE MS8-FA, AGR XPREPO1, AGR
DUALBEAM HELIOS 400, AGR PARAL-
LEL LAPPER 3-FA are the top ten equip-
ments frequently used for analysis (See Figure

).

3.2 Formalization

. In the context of FATG, we propose a general
symbolic representation for the decision-making
process (See Figure 1). In subsequent sections, we
explore language models, specifically pre-trained



Figure 4: Percentage distribution of Equipment.

language models based on the Transformer archi-
tecture, for FATG. To assess the performance of
different models, we employ widely used scoring
metrics such as BLEU, ROUGE, and METEOR.
We initially formalize our problem within a proba-
bilistic graphical framework and subsequently ex-
tend it to language modeling.

Given failure analysis description (FDR)
{z;}}¥, € RP, where N is the number of ob-
servation and D is the dimension of the prepro-
cessed data, and a set of failure analysis triplets
{\HY, € RM | where M is the dimension of \.
We express the FATG as data-to-text problem by
defining the input space as a joint space of x and
A. Let us begin by modeling them individually, the
FDR (input space) probability mass function is,

N
pz(z) = pr($i|931:i—1) (1)
i=1
and the failure analysis triplets (FAT),
N
pa(A) = [ pahilAri1) 2
i=1
The joint probability space is given as,
N
Par(T,A) = pr,/\(xi, XilZ1i—1, Asie1)  (3)
i=1

compact representation. We present a compact
representation for Equation (3) as follows. Let
us represent the joint space between failure de-
scription © € RP and failure analysis triplets
AeRMie {z;, \}Y, e RE as A € RE | where
K = D + M is the dimension of the joint space- a
sum of the dimensions of x and A respectively. We
define the compact joint probability space between
x and ) as,

N

p(A) =[] p(AilAris) “4)

i=1

This compact joint space can be modeled into a
likelihood function, 3>~ | log p(Ai|A1.i_1; ¢) and
its parameter, ¢ estimated using a deep neural net-
work.

4 Pretrained Large Language Model

4.1 Generative Pre-trained Transformer

Generative Pre-trained Transformer model (GPT)
(Radford and Narasimhan, 2018) is a type of trans-
former model that uses a multi-layer Transformer
decoder (Liu et al., 2018) instead of the encoder-
decoder model introduced by (Vaswani et al., 2017).
GPT is known for its ability to generate coherent
and contextually relevant text including human-like
responses, sentences completion, and even writing
entire articles. By leveraging its pre-trained knowl-
edge and fine-tuning on domain specific FA task,
GPT is capable of understanding the semantic and
syntactic structures of failure analysis description
and triplets, making it suitable for failure triplet
generation.

The model structure begins with training in
an unsupervised setting corpus of tokens, U =
{u1,...,u,} with a standard likelihood objective
to maximize:

Ll (Z/{) — Z lOgP(Ui|Ui_k, ey Uj—1; 9) (5)

Where k is the context window and © is the neural
network parameters obtained when modeling con-
ditional probability P. This model applies a multi-
headed self-attention operation over the input con-
text tokens followed by position-wise feed-forward
layers to produce an output distribution over target
tokens as follows:

ho = UW, + W, ©6)
hi = transformer_block(h;—1) Vi€ [l,n]
@)

P(u) = softmax(h,W1) (8)

Where U = (u_g, ...,u_1) is the context vector
of tokens, n here is the number of layers while
W, and W), are the token embedding and position
embedding matrix respectively.

4.2 Bidirectional Encoder Representations
from Transformers

Bidirectional Encoder Representations from Trans-
formers or BERT, is a natural language processing



(NLP) model developed to comprehensively under-
stand the context of words in a sentence by process-
ing language bidirectionally, capturing both left and
right context. This bidirectional approach signifi-
cantly enhances its grasp of semantics and mean-
ing. BERT is pretrained on vast amounts of text
data, allowing it to learn intricate language patterns
and nuances. It uses the transformer architecture,
known for its efficacy in modeling sequential data,
and employs self-attention mechanisms to capture
long-range dependencies. After pretraining, BERT
can be fine-tuned for specific NLP tasks, achiev-
ing state-of-the-art results in applications such as
text classification, question-answering, and senti-
ment analysis. During BERT’s pretraining phase,
it employs two main objectives: the Masked Lan-
guage Model (MLM) and Next Sentence Predic-
tion (NSP). In the MLM objective, a fraction of
input tokens is randomly masked, and BERT learns
to predict the original tokens in their context, us-
ing cross-entropy loss. The loss function for the
MLM objective is the sum of cross-entropy losses
for all the masked tokens in a training sample and
is expressed as follows:

Lyvim = — Y gilogp; ©)

Where p is the predicted probability distribution
over the vocabulary for the i-th masked token, and ¢
is the encoding of the true token for the i-th masked
token. It is important to note that during training,
BERT typically masks only a fraction of the tokens
in each input, so the sum is taken over the masked
tokens. The NSP objective helps BERT understand
sentence relationships by predicting whether a sec-
ond sentence follows the first. These two objectives
grant BERT a broad range of language comprehen-
sion skills. After pretraining on a large text corpus,
BERT is fine-tuned for specific NLP tasks using
task-specific loss functions, customized to meet
each task’s requirements. The loss function for the
NSP objective is:

Lnsp = —(glogp) — (1 — g)log(1 —p)  (10)
Here p and q are the predicted probability of the
next token and true label respectively.These two
objectives, the MLM and NSP objectives, collec-
tively provide BERT with a diverse set of language
understanding capabilities during pretraining.

Encoder Decoder
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Figure 5: An illustration of the Big GCVAE architec-
ture. On the leftmost is the unmasked BERT weights
loaded to the Encoder and GPT-2 weights loaded to the
Decoder.

43 Big GCVAE

Leveraging our previous understanding of varia-
tional autoencoder for learning high-quality latent
representations and optimal reconstruction of ob-
jects including text and images, we propose an
improved variational Large Language Model ac-
cordingly. This model, Big GCVAE, is adopted for
the FATG task by tying together two different trans-
formers architectures (Encoder and Decoder-only)
and fine-tuning them using GCVAE loss function
(the implementation code is available on GitHub").
The model is structured like a classic Transformer
model but loaded with pretrained weights. The
Encoder is an unmasked BERT model while the
decoder is a GPT-2 (for example, GPT-2 base,
small or large) and fine-tuned on a loss function
with adaptive hyperparameters (see Figure 5). The
proposed model consists of two essential compo-
nents: a generation module and an inference mod-
ule, which facilitate a bidirectional mapping be-
tween the smooth continuous latent and the sym-
bolic space, following Li et al. (2020). The genera-
tion module allows for the generation of samples
from the latent space, enabling the synthesis of new
instances in the symbolic domain. Conversely, the
inference module enables the mapping of symbolic
inputs to their corresponding latent representations,
facilitating the extraction of meaningful latent fea-
tures.

Inference is performed on the encoder section sim-
ilar to the work of Li et al. (2020), except, rather
than using the classical Evidence Lower Bound, we
maximize instead the mutual information between
the data = and latent z, I,(z, ) through a bottle-
neck, which yields a new evidence lower bound:

"https://github.com/FA4-0/Big-GCVAE
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We derive this lower bound in the next subsection.

4.3.1 Notations and definitions

Given a d-dimensional input space {z;}¥, € X
consisting of N-independently and identically dis-
tributed (i.i.d) samples; k-dimensional latent space
{zi}ij\;l € Z (where k < d) over which a gen-
erative model is defined. We assume an empir-
ical prior distribution py(z) ~ N(0,I) to infer
an approximate posterior distribution gy (2|z) ~
N (2|pg(x), 03 (x)I), with mean ji5(2) and vari-
ance oi(x)l used for re-parameterization sampling
of the latent space z (Kingma and Welling, 2014).
We model the data using conditional distribution
po(x|z) ~ N(z|pg(z),o2(x)I). Let us suppose
that the underlying distribution of the input space
p(x) follows a normal distribution, and its empir-
ical distribution is denoted by pp(x). I(2/, 2) is
the joint mutual information space between x’ and
z generated from the posterior py(x|z) after obtain-
ing an inference posterior g4 (z|x).

The optimization framework proposed in (Ezuk-
woke et al., 2022a) is given as follows:

max I,(z', 2)

0,6,6+,67,&p€ER
s.t IEDKL(%(Z\JJ) | po(2)) + Ip(a',2) < &~
st — IEDKL(%(Z)HW(Z)) <¢r
st Ip(a',z) <&
S.t §j7€:7£1P 2 07

The expansion of the above equations using sets
of Lagrangian multipliers is as follows,

[’(07¢7€+7£_7EP,OC767’Y717,T7V)
=Ip(a’,2) - B(E Dicr.(go(z]2)llpo (2))+
1,(&',2) =€) +9(E Dicc (as(2)lIpo2)) +€7)
—a(l(z's2) = &) —mE" —TE —vg (13)

The negative Lagrangian multipliers pose no chal-
lenge since they only exist to eliminate the error

terms §+a 5_3 £p7

5(91¢7£+7€_7€P70576777/’777—7’/)
=(1—a=p)L(2,2) = BE Drr(go(zl2)llpo(2))

+DkL(96(2)|Ipo(2)) + (B —mE" + (v — )&~
+(a—v)& (14)

Vi=1,...,n (12)

We take the gradient over the loss, VL for
£7,&", ¢, and apply KKT optimality conditions
to obtain,

L(O,p,a,8,7) = (1 —a-B)(x,2)
- 5PEDKL(Q¢(Z\$)HP9(Z))

+7Drr(qs(2)|lpe(2)) (15)
=(1-a-p) [In pe (x2)]

2~gg(2l2)
- ﬂ}EDKL(%(Z\UC)Hpe(Z))
+ 7Dk r(q5(2)||pe(2)) (16)

We set the Lagrangian adaptive hyperparameters as
follows,

E(Q,QS,Q,B,’Y) :(170%7/[%) E
z~qg(z|z)

=B E Dicr(gs(2[2)lpo(2))

+ 7 Drr(gs(2)l[pe(2)) 7)

[In pe (z[2)]

The adaptive weight a; controls the reconstruction
error while 3; ensures the posterior latent factor
¢4 (2|x) does not deviate significantly from its prior
pe(z). Varying both terms gives us better control of
the degree of disentanglement and helps us to un-
derstand the parameters affecting density disentan-
glement. The first term of the loss in Equation 17
with weight (1 — a; — ;) is the reconstruction loss,
the second term with weight 5; is the Kullback-
Leibler divergence, and the third term with weight
~¢ is a distance measure. oy, B and ; are control-
lable optimizable parameters based on reconstruc-
tion loss, KL-divergence and the distance measure
respectively. We select the controllable parameters
as proposed by (Ezukwoke et al., 2022a).

The adaptive weight o; controls the reconstruc-
tion error while [3; ensures the posterior latent
factor g4 (z|x) does not deviate significantly from
its prior py(z). Both prior, py(z) and posterior,
¢4(z|z) are typically modeled by a Gaussian dis-
tribution. Note that the resulting latent vector ob-
tained on inference is re-parameterized following
VAE style (Kingma and Welling, 2014). The En-
coder is parameterized by pretrained BERT (Devlin
et al., 2019) weights. BERT (Bidirectional Encoder
Representations from Transformers) is a model de-
signed to predict masked or hidden words within
a given text. It uses a masked language model-
ing objective, where a certain percentage of the
input tokens are randomly masked, and the model
is trained to predict the masked tokens based on the
context provided by the surrounding tokens which
allows it to learn bidirectional representations by
leveraging both the left and right context of the



masked tokens. However, the proposed model uses
an unmasked BERT Encoder version to allow for
the free flow of information to the latent space dur-
ing learning.

Generation is done through the decoder by taking
a re-parameterized latent code, z from a smooth
continuous latent space with prior, p(z). The text
sequence x is then generated by sampling from the
posterior conditional distribution pg(x|z), which
captures the conditional relationship between the
latent code and the generated text sequence, and
modeled as follows:

N

p(ﬁ) = Hp(%‘!xo;i—l, )

i=1

(18)

Where N is the size of the generated text sequence.
the prior, p(z) is modeled by a Gaussian distribu-
tion.

5 Experimentation

5.1 General Setup

Experimental Setup. The experimentation is con-
ducted on a High-Performance Computing (HPC)
cluster comprising 80 cores, 2 x Intel Xeon ES5-
2698 v4 2.20GHz CPUs (80 cores), 512GB RAM,
and 8 x Nvidia V100 32GB GPUs.

Pre-trained GPT-2. We fine-tune the medium
versions of GPT-2 with 335 million parameters af-
ter downloading the pre-trained weights through
the Huggingface API? for the purpose of failure
analysis generation. The beginning of sequence
token, "bos," is set to < |startoftext| >,
the end of sequence token, "eos," is set to
< J|endoftext| >, and the padding token,
"pad_token," is < |pad| >. The batch size for
training and evaluation is 1, the weight decay is
0.05, and the number of training epochs is 100.
GPT-2 is trained on 40GB of WebText data, which
consists of web pages from outbound links on Red-
dit, excluding Wikipedia pages. In our experiment,
we employ a tokenization technique known as byte-
level Byte Pair Encoding (BPE) to process the text
data. This method divides the text into sub-word
units, allowing for more effective handling of rare
or out-of-vocabulary words. The result of this tok-
enization process is a vocabulary containing 50,257
unique tokens with the text sequences, structured
as a series of 1024 consecutive tokens. This se-
quence length is carefully chosen to strike a balance

Zhttps://github.com/huggingface/transformers

between capturing sufficient contextual informa-
tion and managing computational efficiency during
training and inference.

5.2 Big GCVAE Setup

Two key technical challenges suffice during pre-
training of Big VAE (Li et al., 2020) that need to
be addressed for Big GCVAE when incorporating
BERT and GPT-2:

* Sentence Representation: Since BERT and
GPT-2 use different tokenization schemes, it
becomes necessary to determine how to rep-
resent sentences consistently. This involves
finding a compatible representation that can
bridge the gap between the two models’ tok-
enization methods.

* Conditional Input Adaptation: Another
challenge arises when attempting to adapt a
pre-trained GPT-2 model to handle arbitrary
conditional inputs without requiring retrain-
ing. While previous studies have explored
controllable versions of GPT-2 by providing
specific control codes or tokens, it remains
unclear how to effectively ground GPT-2 to
arbitrary conditional inputs, where no prede-
fined control codes or tokens are provided.

5.2.1 Tokenization

In BERT, WordPiece Embeddings (WPE) proposed
by Wu et al. (2016) is used for tokenization, with
a vocabulary size of 28,996 token vocabulary for
the cased version. Following the BERT convention,
the initial token of each sequence is consistently
assigned as a distinct classification token ([CLS1]),
and final hidden state associated with this token is
used as the aggregated representation of the entire
sequence. This aggregate representation serves as
a valuable input for downstream tasks, enabling the
model to capture and leverage the contextual infor-
mation of the sequence in a meaningful manner.

In GPT-2, a modified version of Byte Pair En-
coding (BPE) introduced by Radford et al. (2019)
is employed for tokenization, with a vocabulary
size of 50,260. Each token is represented as h g
by summing the corresponding token, position, and
segment embeddings. To compute the reconstruc-
tion loss, we present a sentence using both types
of tokenization: WPE for the input of the encoder
and BPE for the output of the decoder.



5.2.2 Unmasking

Masking is a concept introduced in BERT model
and involves selectively hiding certain tokens
within an input sequence during the pre-training
phase. A percentage of the input tokens are ran-
domly chosen for masking to enable the model
learn a bidirectional representation by predicting
the masked tokens based on their context (Devlin
etal., 2019). This effectively gives BERT the name,
Masked Language Model (MLM). Selected tokens
are then replaced with special [MASK] tokens. Ad-
ditionally, a small portion of the selected tokens are
replaced with random tokens from the vocabulary
to introduce further variation, making masking an
effective technique in the encoder-only transformer
for token prediction or classification purposes.
However, when incorporating a decoder compo-
nent, such as the GPT-2 model, to complete the
Big GCVAE Encoder-Decoder model, we hypoth-
esize that the exclusive use of masking limits the
model’s ability to learn a quality bidirectional rep-
resentation. Consequently, this restriction hampers
the generalization of the latent space and consid-
erably diminishes the mutual information within
the bottleneck. This is because the loss function
of the GCVAE that we are minimizing takes into
account that we are reducing the mutual informa-
tion in the encoder. Therefore, masking the tokens
adds an extra layer of information compression. To
overcome this challenge, we propose the omission
of masking, allowing for constructive summariza-
tion of mutual information within the latent space,
as observed in classical transformer architectures.
This allows us to revert BERT to the classic left-to-
right (Peters et al., 2018; Radford and Narasimhan,
2018) bidirectional Language Model (biLM) and
fitted for generative architectural pairing for failure
analysis triplets generation without loss of general-

1ty.
5.2.3 Latent Injection

Following a similar approach to BERT, the initial
token of each sentence in Big GCVAE is a spe-
cial classification token ([CLS]). The hidden state
hicps) in the last layer, corresponding to this token,
is extracted as the sentence-level representation.
To construct the latent representation z, we em-
ploy the use of the weighted matrix W € REXH
where z is a P-dimensional vector and Wg is the
weight matrix. In order to enable the use of 2 in
GPT-2 decoding without necessitating retraining
of the weights, two schemes are considered. These

schemes aim to effectively incorporate z into the
GPT-2 model during the decoding process, thereby
allowing for the generation of text conditioned on
the latent representation without the need for exten-
sive model retraining.

* Within the Big GCVAE framework, the latent
representation z serves as an additional mem-
ory vector, denoted as h e, which GPT-2 at-
tends to during decoding. This is achieved by
calculating A pzerm, as the product of the weight
matrix Wy, and z. The resulting hjsep, is a
vector of length L, where L represents the
number of layers in GPT-2 and H denotes the
length of each vector. Each element of A pzerm,
is attended to by GPT-2 in its corresponding
layer.

¢ In addition to the memory role, z is also di-
rectly incorporated into the original embed-
ding layer of GPT-2. This is accomplished by
adding the weighted version of z, denoted as
Wpz, to the original embedding representa-
tion hjzem. The weight matrix Wp € REXP,
is used to transform z into a suitable dimen-
sionality for the addition. The resulting em-
bedding representation is Ay, = hgmp +
WDZ .

5.3 Dataset

In our experimentation, we use real failure analy-
sis data obtained from a semiconductor industry,
specifically focusing on successful failure analy-
sis cases from the year 2019. To prepare the data
for training the transformer model, we concatenate
all input features, including the triplet data, along
the horizontal axis (z-axis). After preprocessing,
the size of the data for the year 2019 reduces to
5809 observation (or FA analysis) of which 70%
(4066) is used for training and 30% (1743) is used
for evaluation. The input features used for training,
also referred to as Expert features, encompass
ten distinct aspects including Reference, Subject,
Site, Requested activity, Priority level, High confi-
dentiality, Context, Objectives / Work description,
Source of failure / request, and Source of failure
(Detailed), and preprocessed using NLP techniques
according to Ezukwoke et al. (2021).

5.4 Evaluation metric

NLG Evaluation. Bilingual Evaluation Under-
study (BLEU) is a context-free precision-based
metric for evaluating the quality of text which



has been machine-translated from one natural lan-
guage to another (Papineni et al., 2002; Lin and
Hovy, 2003) and dialog generation task (Sai et al.,
2022). It is a precision-based metric that computes
the n-gram overlap between the reference (orig-
inal) and its hypothesis. In particular, BLEU is
the ratio of the number of overlapping n-grams
to the total number of n-grams in the hypothesis.
Recall-Oriented Understudy for Gisting Evaluation
(ROUGE) (Lin, 2004) is a recall-based metric sim-
ilar to BLEU-N in counting the n-gram matches
between the hypothesis and reference. METEOR,
proposed by, Banerjee and Lavie (2005) addresses
the major drawback of BLEU including, its in-
ability to account for recall and inflexible n-gram
matching by proposing an F-measure with flexible
n-gram matching criteria. LEvenshtein Sequen-
tial Evaluation (LESE) (Ezukwoke et al., 2022b)
metric is a measure used to quantify the dissimi-
larity or similarity between two sequences. The
LESE metric is based on the concept of edit dis-
tance, which represents the minimum number of
operations required to transform one sequence into
another.

Cluster Analysis. Silhouette score (Rousseeuw,
1987) measures how well each data point is as-
signed to its own cluster compared to how well it
could be assigned to other clusters. A Silhouette
score of 1 indicates that all data points are per-
fectly clustered, while a Silhouette score of -1 indi-
cates that all data points are assigned to the wrong
clusters. Conversely, a low or negative score sug-
gests overlapping clusters or misclassification. The
Calinski-Harabasz index (CH index) or variance
ratio criterion, originally by Califiski and Harabasz
(1974), measures the ratio of the between-cluster
variance to the within-cluster variance. A high CH-
index suggests that the clusters are well-separated
and the data points within each cluster are similar
to each other. The Davies-Bouldin index (Davies
and Bouldin, 1979) measures the average similarity
between each cluster and the cluster that is most
similar to it, relative to the size of the clusters. A
lower Davies-Bouldin index value indicates better-
defined and more compact clusters.

5.5 Quantitative Evaluation: Big GCVAE

We conduct performance comparison between Big
GCVAE and derivative models of GCVAE, such
as ControlVAE and (3-VAE with Annealing KL-
divergence (Li et al., 2020). We adopt two versions

of Big GCVAE based on the correlation measure
as follows:

Big GCVAE": D (g4(2)|Ipo(2)) < Maximum
Mean Discrepancy.

Big GCVAE!: Dkp(gs(2)||pe(2)) < Squared
Mahalanobis distance.

For the decoder component, we employed the GPT-
2 medium-size model, while the encoder is an
uncased-BERT. This comparison aimed to eval-
uate and contrast the performances of these mod-
els. For Big VAE (8 > 0), a KL thresholding
scheme (Li et al., 2019; Fu et al., 2019b), where
>, maz[\, Dir(qs(zilx)||pe(2i))] replaces the
classical KL divergence term in the VAE loss func-
tion. The metric reported in this section and the
next (Section 5.6) is for one training step.

Model Evaluation | Reconstruction | KL divergence

loss loss

GPT2-M 0.19 - -
Big VAE 1.10 128.34 6.49
Big ControlVAE 1.18 1.10 9.85
Big GCVAE' 1.18 1.09 8.23
Big GCVAE* 1.11 1.09 3.80

Table 1: Performance evaluation of Big GCVAE models and
its derivatives. Both Big GCVAE' and Big GCVAE?* have
the lowest reconstruction loss compared to Big VAE (Li et al.,
2020).

The optimal cluster size is determined using the
Bayesian Information Criterion (BIC), which in-
volves running the GMM multiple times with dif-
ferent predefined parameters. Note that the cluster
labels obtained from clustering the latent space
applies in visualizing the clusters in t-SNE Embed-
ding.

Latent space z

Model Silhouette score T CH-index 1 DB-score |
Big VAE 0.26 1697 1.42
Big ControlVAE 0.19 584 1.91
Big GCVAE 0.22 1998 2.12
Big GCVAE 0.17 590 2.05
t-SNE Embedding
Big VAE 0.17 1430 1.38
Big ControlVAE 0.13 1495 2.25
Big GCVAE' 117 2071 1.84
Big GCVAE? 0.10 819 7.92

Table 2: Validity indices showing the results of GMM
on the latent space, z and the 2-D t-SNE embedding.
High CH-index (Calinski and Harabasz, 1974) of Big
GCVAE! indicates well separated clusters.

The performance of these models was analyzed



in comparison to the GPT-2 medium-size decoder-
only transformer as a baseline. Big GCVAE! model
demonstrates superior performance compared to
the benchmark Big variational model across var-
ious evaluation metrics, as indicated in Table (3).
When specifically applied for the FATG task, the
Big GCVAE! model outperforms GPT-2 medium,
highlighting the efficacy of controllable Lagrangian
hyperparameters in achieving optimal representa-
tion and generalizing the latent space. The use
of pretrained BERT-GPT-2 weights within the Big
GCVAE model significantly contributes to mitigat-
ing overfitting issues and reducing the trade-off
between reconstruction and KL-divergence (see Ta-
ble 1). A disentangled representation is one whose
latent factors are well summarized and indepen-
dently factored as a vector in the latent representa-
tion space.

Big GCVAE' model yields quality latent presen-
tation as shown in Figure 6 with well separated
clusters (See CH-index in Table 2), given their low
reconstruction loss and moderate KL-divergence.
The moderate properties of the Big GCVAE results
in a well factored latent space whose clusters are
nicely knitted in the t-SNE embedding space as
shown in Figure 6. We hypothesize the reason for
the fuzziness of the latent space of Big ControlVAE
is due to the monotone increasing KL divergence
despite having competitively low reconstruction
loss in comparison to Big VAE. Conversely, the Big
GCVAE?! (Mahalanobis metric) faces challenges in
capturing the correlation between various failure
decisions, resulting in a fuzzy latent representation,
primarily caused by collapse of the precision ma-
trix. This issue arises due to the high likelihood of
similarity in the embedding space, increasing the
likelihood of the inverse covariance matrix collaps-
ing. To address this issue, we employ an alternative
approach by using the inverse of the diagonal ele-
ments rather than the entire covariance inversion.

5.6 Qualitative Evaluation: Big GCVAE

We conduct an evaluation of the generative capabili-
ties of the Big GCVAE models and its variants. The
results reveal a notable enhancement in the distri-
bution of BLEU-1, BLEU-3, and LESE-1, LESE-3
scores, as depicted in Figure (7). The figure clearly
demonstrates an increased frequency of accurately
generated FATs by the model that closely align
with the expert failure analysis. This observation

is particularly evident in the right-hand side of the
same Figure 7, first row. When compared to the
decoder-only transformer model (GPT-2), the Big
GCVAE exhibits the potential to generate failure
analysis sequences that are notably more realistic
(following the order of Step type; Substep tech-
nique and Equipment). This improvement can be
attributed to the Big GCVAE’s ability to general-
ize effectively within the latent embedding space
associated with the task.

Subsequently, we conduct a performance com-
parison between Big GCVAE! and GPT2 to assess
their generative capabilities and determine whether
the generated outputs are plausible decisions that
a failure analyst engineer would make. Note that
all assessment of the generative strength of each
model based on the output for specific failure de-
scription is validated by industrial expert. In the
next Section 5.6.1, we provide a comprehensive
analysis of the failure root cause analysis generated
for a given failure description from the expert’s
perspective.

5.6.1 FATG: Comparing Big GCVAE and
GPT-2

* Grenoble Kostal leakage on GH2: The fail-
ure analysis triplets generated by Big GCVAE
for root cause analysis on product packages
are generally plausible, except for the third
triplet (Physical analysis; Optical inspection;
Stereomicroscope szx16 (ecn 6590)). The dis-
crepancy in this triplet arises from the fact
that the Substep technique, Optical inspection,
and Equipment, Stereomicroscope szx16 (ecn
6590), are not appropriate for a Physical anal-
ysis (Step type). In other words, the Substep
technique and Equipment are correct for the
step type Electrical Failure Verification, rather
than Physical analysis. On the other hand, the
FATs generated by GPT2 are also plausible,
but they contain a higher number of redun-
dant failure analysis triplets. Furthermore, the
FATs generated by GPT-2 are more focused
on root cause analysis within the silicon.

Grenoble B601 Face ID H9A HCMOS9A
WLCSP CSP H9A HCMOS9A CSP gate
oxide breakdown Please to find root cause
on Face ID issue: The failure analysis triplets
generated by both Big GCVAE and GPT2 are
plausible for the respective contexts of prod-
uct packages and silicon. A surprising ques-



ROUGE-1 ROUGE-L LESE-1 LESE-3

Model BLEU-1 BLEU-3 MET. Lev-1 Lev-3 PPL
Prec. Rec. F1 Prec. Rec. Fl Prec. Rec. Fl Prec. Rec. Fl

mini-GPT 11.54 7.51  34.61 1122 16.12 12.63 10.19 14.79 11.52 8.11 857 7.11 46.69 038 027 0.30 16.0 -

GPT2-M 21.26 1547 26.74 3037 33.28 29.15 27.65 304 2656 21.08 22.06 1941 43.0 923 9.79 855 150 1.52

Big VAE 21.87 16.15 26.64 35.83 32.57 31.23 33.05 29.94 28.73 25.13 22.58 2146 39.0 11.29 10.05 9.57 140 6.49

Big ControlVAE =~ 22.25 16.38 27.10 35.96 33.09 31.55 33.03 30.30 28.89 25.09 22.82 21.54 40.0 11.11 10.21 9.58 14.0 6.98
Big GCVAE! 22.09 1625 27.01 3529 32.87 31.17 32.48 30.13 28.58 24.54 22.84 2136 40.0 1093 10.19 9.50 15.0 6.94
Big GCVAE? 22.53 17.00  27.63 35.67 33.61 31.71 32.79 30.83 29.08 24.97 2345 21.79 39.0 11.18 10.39 9.70 14.0 6.64

Table 3: Model comparison on BLEU (Papineni et al., 2002), ROUGE-1 & L (Lin, 2004), METEOR (MET.) (Banerjee
and Lavie, 2005) and LESE (Ezukwoke et al., 2022b). Higher values (in bold-blue) is preferred for all metric except Lev-n
(average n-gram Levenshtein distance). Big GCVAE?* performs better across all evaluation metric. Observe the approximately
3-point increase in performance of the generative strength for ROUGE-1 and LESE-1 and a comparable increase for the triplet
evaluations.
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Figure 6: 2D Latent representation space (top) and t-SNE Embedding (bottom). Observe the quality of clusters in the latent
space for Big GCVAE! (best), Big VAE (second best) and Big GCVAE? (less fuzzy). The latent space of Big Control VAE is the
most fuzzy with overlapping cluster of densities in t-SNE Embedding space.

Failure description: Grenoble Kostal leakage on GH2
GPT2 Big GCVAE

Sample preparation Die extraction wire and glue removal CHEMISTRY Sample preparation package decap laser decap
Sample preparation Die Delayering NE9© Sample preparation package decap hotplate
Sample preparation Die Delayering MANUAL Physical analysis optical inspection stereomicroscope szx16(ecn 6590)
Sample preparation Die Delayering CHEMISTRYao Non destructive inspection x-ray 3d x-ray
Sample preparation Die Delayering BINOCULAR Electrical failure verification optical inspection stereomicroscope
Physical Analysis SEM MAGELLAN szx16(ecn 6590)
Others administrative activity REQUEST MANAGEMENT Chemical analysis edx sem2

Others administrative activity REPORT GENERATION

Others CAD layout CAD

Global fault localisation Thermal microscopy PHEM0S1000-COMBO

Non destructive Inspection X-ray XRAY DAGE XD7600NT DIAMOND FP
Global fault localisation Static Laser Techniques PHEM0S1000-COMBO
Global fault localisation EMMI IREM-II

Electrical Failure Verification Continuity test AUTOMATIC CONTINUITY
TESTER - CURVE TRACER

Global fault localisation emmi lsm
Electrical failure verification electrical parametrical test bench test

Failure description: Grenoble B601 Face ID H9A HCMOS9A WLCSP CSP HO9A HCMOS9A CSP gate oxide breakdown Please to find
root cause on Face Id issue

GPT2 Big GCVAE

Sample preparation bake / temperature storage to300

SENPIE MREFEETEn Uy J B0 EREheih prep AR - i Sample preparation application/board sawing tool decap

Sample preparation Wafer / Die Backside prep BUEHLER 01

sample preparation Package decap LASER DECAP Sample preparatJ:.on d;e extract:!.on W]:.I"e and glue removal plasma etch
sample preparation Package decap CHEMICAL HOOD Sample preparation die extraction wire and glue removal

Physical Analysis Optical inspection L2600 MICROSCOPE 2 chemicaldecap(ecn 6452)

Physical Analysis Optical inspection NIKON STEREO MICROSCOPE IN CPL FA Sample preparation die delayering chemicaldecap acid

Others administrative activity FINAL REPORT GENERATION Physical analysis sem fib/sem

Global fault localisation Static Laser Techniques LSM Physical analysis optical inspection microscope mx51

Non destructive inspection sem sem2

Global fault localisation static laser techniques emmi obirch
Electrical failure verification continuity test curve tracer 2
Non destructive inspection x-ray 3d x-ray

tion by failure analyst expert is how both mod- to different context (product package and
els are able to specifically find FATs specific silicon). We hypothesize that Big GCVAE
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Figure 7: BLUE-1 and BLUE-3 scores distribution (top) and LESE-1 and LESE-3 scores distribution (bottom) for Big

ControlVAE, VAE, GCVAE and GCVAE! models.

generates FAT's from the abundance of space
it generalizes. This may be a reason why it
generates two incorrect sample preparation
triplets, including: Sample preparation bake /
temperature storage to300 and Sample prepa-
ration application/board sawing tool decap.

* B601 RIGEL3 ORT AMKOR HTOL
Small Leakage Consumption VINCORE2
in power down: The failure analysis triplets
generated by both Big GCVAE and GPT-2 are
entirely incorrect and implausible. This can be
attributed to the lack of guiding keywords (or
prompts), which are crucial for the models to
make accurate predictions for the next words
(triplets) in the sequence. The effectiveness
of generative models relies on the ability to
associate seed words with relevant data points
in the embedding space in order to generate
meaningful and contextually appropriate to-
kens.

* PPM ASSESSMENT F9V 4MEG CROSS-
SECTION: Similar to the previous FATG
challenge, the failure analysis triplets gener-
ated in this case are incorrect and lack plausi-
bility for the given failure description. This is
primarily due to the absence of the keyword
cross-section in the proposed sets of analysis,
and since no cross-section keyword is found
in the generated FATs, it is a hallucinated de-
cision. Including this keyword with sufficient
context in the failure description is essential
for generating relevant and accurate failure
analysis triplets that align with the specified
failure scenario.

This paper presents real-world use cases to
demonstrate the generative efficacy of Big GCVAE,
a large-scale language model that has been fine-
tuned on failure analysis data from the semiconduc-
tor industry using an adaptive loss function called
GCVAE. Our findings highlight that although the
model may not consistently generate precise fail-
ure analysis sequences specific to a given failure
description, it showcases a robust representation
space that can be further enhanced by providing
high-quality failure description keywords and an
initial failure analysis triplet as a seed. This under-
scores the potential of Big GCVAE in assisting fail-
ure analysis engineers during the decision-making
process for failure root cause analysis.

In our comparative analysis between Big GC-
VAE and GPT2, we observed that Big GCVAE
generally demonstrates superior generative perfor-
mance. The model exhibits the ability to generate
more coherent and contextually appropriate failure
analysis triplets for decision-making during failure
root cause analysis.

However, despite its overall proficiency, Big GC-
VAE faces occasional challenges in accurately cap-
turing the correct sequence of triplets from the la-
tent space z. As a result, it may produce unrealistic
triplets that do not align with the expected con-
text or domain-specific knowledge. An example
of such a limitation is when the model erroneously
associates a Substep technique, such as Optical in-
spection, with an inappropriate Step type, such as
Physical Analysis, instead of the correct Electrical
Failure Verification type. These occurrences indi-
cate that while Big GCVAE excels in generating
meaningful triplets, there is still room for further
enhancement in its ability to ensure precise corre-



Failure description:

B601 RIGEL3 ORT AMKOR HTOL Small Leakage Consumption VINCOREZ2 in power down

GPT2

Sample preparation Wafer / Die Backside prep X-PREP

Sample preparation Die extraction wire and glue removal CHEMISTRY
Sample preparation Die Delayering NE9®

Sample preparation Die Delayering MANUAL

Sample preparation Die Delayering CHEMISTRY

Sample preparation Application/board sawing MECHANICAL SAW x
Physical Analysis SEM MAGELLAN

Non destructive Inspection Optical microscopy INM100 LEICA - FA
Global fault localisation Static Laser Techniques PHEM0S1000
Global fault localisation EMMI IREM-II

Electrical Failure Verification Continuity test ELECTRICAL TOOLS

Failure description: PPM ASSESSMENT FOV 4MEG CROSS SECTION

Big GCVAE

Non destructive inspection sam sam (ecn5823)

Non destructive inspection x-ray 3d x-ray

Electrical failure verification electrical parametrical test curve
tracer 2

GPT2

Sample preparation Die extraction wire and glue removal BINOCULAR
Sample preparation Die extraction wire and glue removal ACIDE 2
Physical Analysis IR microscopy PHEM0S1000

Others administrative activity REPORT GENERATION

Others administrative activity REQUEST MANAGEMENT

Non destructive Inspection X-ray XRAY DAGE XD76@@NT DIAMOND FP
Non destructive Inspection SAM SONOSCAN GEN6

Non destructive Inspection Optical microscopy KEYENCE VHX-6000
Global fault localisation Thermal microscopy THEM0S1000

Global fault localisation Static Laser Techniques PHEM0S1000
Electrical Failure Verification Continuity test AUTOMATIC CONTINUITY

TESTER - CURVE TRACER

spondence between the generated triplets and their
relevant context within the failure analysis domain.

6 Conclusion

To overcome the challenges of robust representa-
tion and high-quality generation of failure analysis
triplets, we propose a new approach that involves
fine-tuning a Transformer-based Variational Au-
toencoder (VAE) architecture using an unmasked
pre-trained BERT Encoder and a GPT2 Decoder.
By leveraging the Generalized-Controllable Vari-
ational AutoEncoding (GCVAE) loss, our model
aims to achieve an optimized representation with
a low reconstruction loss and highly disentangled
latent space. Our evaluation of the model’s perfor-
mance in generating failure analysis triplets yields
the following key findings:

* Big GCVAE can generate failure analysis
triplets that are logical and reasonable, provid-
ing valuable insights for expert failure analyst
engineers in the decision-making process.

* The model demonstrates its ability to generate
failure analysis triplets specifically tailored to
root cause identification in product packages,
and it can also address potential root causes
within a Silicon. This is made possible by the
model’s ability to generalize and draw predic-
tions from the embedding latent space.

Big GCVAE

sample preparation package decap laser decap

sample preparation package decap hotplate

sample preparation package decap chemicaldecap acid

physical analysis optical inspection stereomicroscope szx16(ecn 6590)
physical analysis optical inspection metalgraphic microscope mx61

non destructive inspection optical microscopy metalgraphic microscope mx61
global fault localisation static laser techniques emmi obirch emmi obirch
non destructive inspection sam sam (ecn4003)

non destructive inspection x-ray 3d x-ray

electrical failure verification optical inspection metalgraphic microscope
5740 (rmsees)

non destructive inspection optical microscopy metalgraphic microscope mx61
global fault localisation static laser techniques emmi obirch

electrical failure verification electrical parametrical test bench test
electrical failure verification continuity test chemicaldecap acid

* Notably, Big GCVAE is a self-supervised
model that operates with adaptive-controllable
hyperparameters, eliminating the need for hu-
man intervention in the decision-making pro-
cess.

In summary, Big GCVAE is a robust model that can
generate failure analysis triplets (sequences of text-
encoded steps for analyzing defective components
in the semiconductor industry) that are logical, rea-
sonable, and tailored to specific problems. The
model is able to do this by learning to represent
failure analysis triplets in a latent space that is both
disentangled and informative. Additionally, Big
GCVAE is a self-supervised model, meaning that it
can be trained without the need for human-labeled
data.

Big GCVAE has the potential to be a valuable
tool for failure analyst engineers in the semiconduc-
tor industry. By providing them with logical and
reasonable failure analysis triplets, Big GCVAE
can help them to identify root causes more quickly
and accurately. Additionally, Big GCVAE’s ability
to generalize and draw predictions from the em-
bedding latent space makes it a powerful tool for
addressing new and emerging failure scenarios.



7 Limitation

Despite the overwhelming performance of Big GC-
VAE (BERT-GPT2) model for the task of failure
analysis triplets generation, it stills suffers signifi-
cant challenge that can be addressed. It is crucial
to acknowledge that the model may occasionally
generate unrealistic failure analysis triplets due to
the phenomenon of hallucination. This can be both
a problem of overgeneralization and overfitting.
However, no particular metric perfectly addresses
this phenomenon, except the quantitative and do-
main expert evaluations mentioned in sections 5.5
and 5.6 respectively. This limitation highlights the
need for further refinement and improvement by
prompt engineering failure description and using
reinforcement learning to mitigate the occurrence
of unrealistic outputs.
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