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Abstract 

Understanding the cure reaction in the pultrusion process is essential to improve the quality of 

the pultruded composites and propose different design alternatives that contribute to improving 

the process performance. In this work, a computational strategy was used to optimize the 

pultrusion process, where the computational model was implemented into Ansys CFX® and the 

optimization algorithm was developed in the Matlab® software. Different optimization 

strategies applied to the two pultrusion processes simulated in the recent literature were 

investigated. For the optimization, we seek to minimize the sum of the temperatures of the 

pultrusion mold heaters, considering a minimum curing degree of 0.89. Particle swarm 

optimization (PSO) and sequential quadratic programming (SQP) algorithms were tested for 

single objective optimization. The results indicate that PSO presented lower objective-function 

values while the deterministic methods presented high sensitivity to the initial estimate of the 

optimization. The PSO algorithm was also used for multi-objective optimization of the process, 

in which the pull speed maximization and temperature minimization were defined as objective 

functions. It was possible to construct the Pareto curve, representing the set of optimal points 

of the process. 
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1. Introduction 

Polymeric composites are manufactured by processes such as pultrusion, hand lay-up, 

filament winding, etc. The pultrusion consists of pulling a fiber set through a resin bath into a 

heated die where the part is cured. Outside the die, the composite part is pulled by a continuous 

pulling system and then a cut-off saw cuts the part into the desired length. Typically, the die is 

heated by electrical heaters coupled on its surface (Santos et al., 2015b). 

Pultrusion is one of the few continuous processes to produce composite parts and allow 

the high-volume manufacture of structural profiles with improved mechanical properties and 

quality. Pultruded composites are widespread in numerous industries, including construction, 

transportation, consumer goods, and the electrical and chemical sector (Nickels, 2019). The 

development of models provides better knowledge regarding the mechanisms (cure kinetic) 

behind the process (Safonov et al., 2018). 

Some researchers have studied the optimization of pultrusion in the last few years. 

Generally, the objectives are cost related, such as process time and energy consumption or 

quality-related, such as uniform degree of cure along the composite part. The constraints 

adopted include the maximum temperature allowed within the part to avoid degradation of the 

resin and the minimum degree of cure at the exit of the die (Struzziero et al., 2019). 

The Simulated Annealing method was used by (Coelho and Calado, 2002) to optimize 

the pull speed of impregnated fibers and the temperature profile (boundary conditions) imposed 

on the die wall. Several constraints were considered, such as a minimum degree of cure and the 

thermal degradation condition. Li et al. (2002) implemented an optimization algorithm. The 

results evidenced that a uniformly cured part could be obtained with the optimization strategy. 

Joshi et al. (2003) (Joshi et al., 2003a) optimized the pultrusion system by applying a 3D finite 

element/nodal control volume. It was observed that during pultrusion, the die-cooler and pre- 



heating system helped minimize the temperature overshoot within the composite. In the work 

of (Lam et al., 2003), optimization was realized to improve the production of a pultruded 

composite C-section. Die heating and pull speed were manipulated to enhance the degree of 

cure distribution, allowing an improvement of 52% in the uniformity of the degree of cure. In 

(Srinivasagupta and Kardos, 2004), a thermodynamic objective function was proposed to 

minimize the energy consumption during the cure reaction in an injection pultrusion process. 

The methodology determined the optimal values of the main parameters, such as temperatures, 

resin injection pressure and equipment specification. A one-stage optimization problem and 

multiperiod method were applied by (Acquah et al., 2006) to find the optimal cure temperature 

profile under uncertainty conditions for the pultrusion process. The authors observed that a few 

constraint violations reflect the need to use a global optimizer to satisfy the sufficiency 

conditions to reach the optimum solution. Carlone et al. (2007) (Carlone et al., 2007) employed 

a finite difference method to simulate the pultrusion process and subsequently proposed a 

hybrid approach combining the simplex method and genetic algorithms to improve the 

dimensional accuracy of fabricated parts. According to the authors, the distribution of the 

degree of cure at the die exit resulted in one of the main process parameters to obtain an 

optimized product. In previous work, Santos et al. (2012) (Santos et al., 2012) proposed a CFD 

(Computational Fluid Dynamic)-based optimization model to minimize the energy 

consumption of the pultrusion process. The algorithm was developed in a Fortran90 code 

coupled with the ANSYS CFX® software. It was possible to verify that the energy requirements 

could be reduced by changing the heating configuration of the pultrusion die. An alternative 

arrangement comprising internal heaters inside the die was proposed. Silva et al. (2014) 

investigated novel relative positions for the die heaters to optimize energy consumption. Finite 

Element Analysis (Chapra and Canale, 2003) was applied to identify the best relative position 

of the heaters into the die, considering the usual parameters involved in the process. In (Santos 



et al., 2015b), a Particle Swarm Optimization (PSO) algorithm was used to optimize a 

cylindrical pultruded part. The partial differential equation (PDE) system was solved by the 

finite difference method (Chapra and Canale, 2003). The results revealed that the proposed 

strategy might be a good alternative to find the best operating point regarding energy cost. In 

(Costa et al., 2018), the pultrusion process of a glass fiber-epoxy set with different geometries 

was simulated by using a three-dimensional finite element-nodal control volume (FE/NCV) 

approach for simulating the process, whereas a quadratic programming algorithm and a PSO 

were used. In the work of Tutum et al. (2015), an optimization methodology based on the 

Kriging algorithm was introduced. The design problem involved a pultrusion die with one, two 

and three heaters. For optimization, the heaters and pull speed were selected as decision 

variables. The results showed that the proposed methodology efficiently finds the optimal 

design parameters. Tutum et al. (2013) used the nondominated sorting genetic algorithm 

(NSGA-II) to simultaneously maximize the pull speed and minimize the energy consumption 

associated with the temperatures. The methodology helped to design a pultrusion die for 

different operating conditions. 

Recent work on pultrusion process optimization has revealed that the advancement of 

computational resources has facilitated the development of tools for the simulation and 

optimization of engineering processes. In pultrusion, finite element tools have been used for the 

3D simulation of regular and irregular geometries. Generally, stochastic methods, such as 

particle swarm optimization and genetic algorithms, have been used for optimization. In fact, 

there are optimization processes of industrial interest that involve functions that present many 

local solutions. Therefore it is challenging to determine the optimal solution using deterministic 

optimization techniques. 

Table 1 summarizes the main contributions concerning the optimization of the pultrusion 

process. 



Table 1. Summary of the main contributions concerning the optimization of the pultrusion 

process. 

Reference OA SOO MOO 
 

(Coelho and Calado, 2002) SA 

(Joshi et al., 2003b) SD 

(Lam et al., 2003) SD 

(Carlone et al., 2007) SIMPLEX; GA  
(Santos et al., 2009)  PSO 

(Tutum et al., 2013) NSGA-II 

(Tutum et al., 2014) NSGA2 

(Santos et al., 2015a) PSO 

(Costa et al., 2018) CPLEX 

In this work, we have developed a computational tool for single-objective and multi- 

objective optimization of the pultrusion process. The simulation was developed in Ansys CFX® 

software, while optimization was developed in the Matlab2022® environment. The tool is an 

improvement of the strategy developed in the previous works of Santos et al. (2009), where 

Fortran90 was used as an optimization tool. 

2. Optimization 

 

2.1 General Description 

Optimization has found widespread use in the chemical engineering field. Problems in this 

area often have many alternative solutions with complex economic and performance interactions, 

so it is often not straightforward to identify the optimal solution through intuitive reasoning 

(Biegler, 2010; Nocedal, 1999). 

The following system represents a general optimization problem: 

 

𝑚𝑖𝑛𝐱𝑓(𝑥) 

s.t. 

 

 

(1) 

 

ℎ𝑗(𝐱) = 0; 𝑗 = 1, … , 𝑚𝑒 (1a) 

 

𝑔𝑗(𝐱) ≤ 0; 𝑗 = 1, … , 𝑚𝑖 (1b) 

 

𝐱𝑚𝑖𝑛 ≤ 𝐱 ≤ 𝐱𝑚𝑎𝑥 (1c) 



Where 𝑓, 𝑔 and ℎ refer to the objective function, inequality constraints and equality 

constraints, respectively, 𝑚𝑖 refers to inequality constraints while 𝑚𝑒 refers to equality 

constraints. 𝑥𝑖, 𝑖 = 1 ⋯ 𝑛𝑥 are the decision variables and 𝑛𝑥 is the number of decision variables. 

2.2 Multi-objective optimization (MOO) 

In Multi-objective optimization (MOO), the objectives are represented by two or more 

objective functions. In this way, equation (1) can be written according to equation (2): 

min𝐱[𝑓1(𝑥), 𝑓2(𝑥), ⋯ , 𝑓𝑁(𝑥) ] (2 

The representation of a MOO with two objective functions is sketched in Fig. 1. 
 

 

 

Fig.1. Representation of a MOO with two objective functions (minimization): 1(a) – left, 1(b) 

right. 

Notice in Fig. 1(a) that there is a feasible region between the two minimum points of objective 

functions, and this region depends on the weights assigned to each function. Fig. 1(b) shows the 

Pareto front resulting from different assigned weights. 

A MOO problem generally has two or more objectives involving decision variables and 

constraints. The mathematical formulation of a MOO with two objectives is given by equation 3(a- 

f): 

min𝐱∈ℝ𝑛𝑥 𝑓1(𝐱) (3a) 

min𝐱∈ℝ𝑛𝑥 𝑓2(𝐱) (3b) 

𝑠. 𝑡. (3c) 



𝐱𝑚𝑖𝑛 ≤ 𝐱 ≤ 𝐱𝑚𝑎𝑥 (3d) 

𝑔𝑗(𝐱) ≤ 𝟎, 𝑗 = 1, ⋯ , 𝑚𝑖 (3e) 

ℎ𝑗(𝐱) = 𝟎, 𝑗 = 1, ⋯ , 𝑚𝑒 (3f) 

The solutions of a MOO problem are known as the Pareto-optimal solutions. The following 

definition characterizes the Pareto-optimal solution: 

Definition: The set: 𝐱∗, 𝑓1(𝐱∗), 𝑓2(𝐱∗) is said to be the Pareto-optimal solution for the two-objective 

problem in equation (1) if, and only if, no other feasible 𝐱 exists such that 𝑓1(𝐱) ≤ 𝑓1(𝐱∗) 

and 

𝑓2(𝐱) ≤ 𝑓2(𝐱∗) with strictly inequality valid for at least one objective (Pardalos et al., 2017). 

For solving the MOO problem the weighted sum method may be applied: 

𝑓1(𝐱) − 𝑓𝑚𝑖𝑛 𝑓2(𝐱) − 𝑓𝑚𝑖𝑛 
min 𝜙  1  + (1 − 𝜙)  2  (4) 

𝑓𝑚𝑎𝑥 − 𝑓𝑚𝑖𝑛 𝑓𝑚𝑎𝑥 − 𝑓𝑚𝑖𝑛 
1 1 2 2 

Where 𝜙 is the weighting factor and the superscripts 𝑚𝑖𝑛 and 𝑚𝑎𝑥 refer to the minimum and 

maximum values of objective functions. These vector components are used for normalizing the 

objectives, which are likely to have significantly different magnitudes in applications. 

2.3 Numerical Implementation 

This paper aims to show the advances obtained regarding the previous research of 

Santos et al. (2012, 2014), in which the optimization and communication with the Ansys CFX® 

simulator were developed in a Fortran90 code. Fig. 2 summarizes the optimization strategy. 

The simulation-optimization are performed cyclically, in which the temperature profiles and 

degree of cure are sent to the optimizer. After the objective function's evaluation, the computed 

values of decision variables are sent back to the simulator to perform a new iteration. Fig. 3 

illustrates the structure of the Matlab-Ansys® CFX® communication, described by Algorithm 

1. 



 

 

Fig. 2. Flowsheet of the optimization strategy of the pultrusion process. 
 

Algorithm: Optimization strategy 

1: Ansys CFX® process simulation. 

2: .def output file generation. 

3: Reading the .def file in MATLAB®. 

4: Calculate the objective function (with temperature, degree of cure and speed values). 

5: Calculation of the values of decision variables. 

6: Update the .def file. 

 7: Return to step (1).  



 
 

 

Fig. 3. Flowsheet of the cyclic communication between Matlab®-CFX® softwares. 

 

3. Case Study: Pultrusion of a composite with C-section 

 

3.1 Model description 

Pultrusion of a composite C-section is simulated to validate the model studied by Joshi et 

al. (2003b). The die length, width, and height correspond to 915 mm, 72 and 72 mm, 

respectively. The heating system comprises six steel heaters with dimensions of 255 mm 

(length) and 72 mm (width), which are consecutively spaced by 30 mm. The empty zone is 

subjected to convective boundary conditions. The heaters were positioned in a sequence: (T1, 

T2, and T3 refer to the heating platens on the top of the die, and T4, T5, and T6 refer to the 

heating platens on the bottom of the die, in the same order) are shown in Fig. 4. A total 6891 

nodes and 27,518 tetrahedral elements were used to create the FE model in Ansys CFX. The 

material and kinetic parameters are listed in Table 1, and the die and composite dimensions are 

detailed in Figures 4 and 5, respectively. 



Table 1. Process parameters. 

 

Material ρ (kg/m3) 𝑐𝑝 (J/Kg · K) k (W/m ∙ K) 

Epoxy resin 1260 1255 0.21 

Glass fibers 2560 670 11.4 

Crome (5%) steel 7833 460 40 

 

72 mm 
 
 

 
72 mm 

 
 
 
 
 
 
 
 
 

 
Fig. 4. Case 1:schematic view of pultrusion die. 

 

72 mm 
 
 
 
 
 
 
 

 
72 mm 

 
 
 
 
 
 
 

 
Fig. 5. Case 1:schematic view of pultrusion cavity. 

 

The inlet degree of cure and temperature were considered zero and 298.15 K, 

respectively. The pultrusion die was considered adiabatic and the temperature distribution and 

pull speed were set according to the values presented in Table 3. 
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Table 3. Pull speed and temperature of the simulated process. 

 

𝐹obj T1[K] T2[K] T3[K] T4[K] T5[K] T6[K] 𝑢 

2554.4 378.65 421.65 473.15 388.15 419.65 473.15 2.299 

 

3.2 Single-objective Optimization (SOO) 

For the PSO algorithm, the strategy of external penalties (Nocedal, 1999) was used to 

include the constraint of the degree of cure in the objective function. In this case, the 

optimization problem is formulated according to the following system: 

𝐦𝐢𝐧𝑇  
𝑖, 𝑖=1⋯𝑛 

𝑛 
𝑖=1 𝑇𝑖 ] + ℘ ∙ |𝑚𝑖𝑛{(0, 𝛼 − 𝛼∗)}| (5) 

subject to: 
 

𝜌 𝑐 𝛛𝑇 ( + 𝑢 𝛛𝑇) = 𝛻(𝑘 𝛻𝑇) + 
𝑑𝐻

 (5a) 
𝑐 𝑝𝑐 𝛛

𝑡 

𝑧 𝛛𝑧 𝑐 𝑑𝑡 

 

𝛛𝛼 = 𝜌 𝜙 𝐻 𝑟 (5b) 
 

𝛛𝑧 𝑟  𝑟 𝑡 𝑎 

 

𝑟𝑎 = (𝐴𝑒 
(
−𝐸𝑎)

 

𝑅𝑇 ) (1 − 𝛼 )𝑛 (5c) 

 

where ℘ is a constant factor equals 103. 

For the SQP algorithm (Nocedal, 1999), the minimum cure degree constraint is 

addressed directly in the optimization problem: 

𝐦𝐢𝐧𝑇  
𝑖, 𝑖=1⋯𝑛 

𝑛 
𝑖=1 𝑇𝑖 ] (6) 

subject to: 
 

𝜌 𝑐 𝛛𝑇 ( + 𝑢 𝛛𝑇) = 𝛻(𝑘 𝛻𝑇) + 
𝑑𝐻

 (6a) 
𝑐 𝑝𝑐 𝛛

𝑡 

𝑧 𝛛𝑧 𝑐 𝑑𝑡 

 

𝛛𝛼 = 𝜌 𝜙 𝐻 𝑟 (6b) 
 

𝛛𝑧 𝑟  𝑟 𝑡 𝑎 

 

𝑟𝑎 = (𝐴𝑒 
(
−𝐸𝑎

)
 

𝑅𝑇 
) (1 − 
𝛼)𝑛 

(6c) 

 

𝛼 ≥ 𝛼∗ (6d) 

[∑ 

[∑ 



In equations (5) and (6), 𝜌 is the composite density; 𝑐𝑝𝑐 
is the composite-specific heat; 𝑘𝑐 is 

the composite conductivity; 𝑤 is the pull speed, 𝑧 is the pull direction, 𝑡 is the time and  denotes 

the gradient operator. The term 𝑑𝐻/𝑑𝑡 defines the rate of internal heat generation due to 

cure reaction. 𝐻𝑡 represents the total reaction heat per unit mass of resin, 𝜙𝑟 is the resin volume 

fraction, 

𝛼 is the is degree of cure, 𝐵0 is the pre-exponential constant, 𝛥𝐸 is the activation energy, 𝑅 is the 

universal gas constant, 𝑛 is the reaction order and subscript 𝑟 denotes resin. 𝑑𝛼/𝑑𝑡 describes 

the cure reaction rate. 

3.3 Multi-objective Optimization (MOO) applied to Pultrusion Process 

In the MOO of the pultrusion process, the goal is to minimize the total temperature and 

maximize the pull speed. The formulation of the MOO problem is written in equations 7(a-c). 

 

 

 

 

 

 

 

 

𝑐 𝑝𝑐 𝛛
𝑡 

 
 

𝑧 𝛛𝑧 

 
 

𝑐 𝑑𝑡 

 
𝑑𝐻 = 𝜌 𝜙 𝐻 𝑢 𝛛𝛼 −𝛥𝐸 ( )𝑛 

𝑑𝑡 𝑟  𝑟 𝑡  𝑧 
 

 

𝛛
𝑧 

= 𝜌𝑟𝜙𝑟𝐻𝑡𝑢𝑧 [𝐵0 ∙ exp 
( 

) ∙ 
𝑅𝑇 

1 − 𝛼 ] (7c) 

where 𝛼𝑚𝑖𝑛 corresponds to the minimum degree of cure to be attained (in the center of the 

composite part). 

The multiple objective functions are defined according to equation (8): 

 

𝐹𝑜𝑏𝑗 = 𝜙𝐹1 − (1 − 𝜙)𝐹2 (8) 

 
In which 𝐹1 = ∑𝑛 [(𝑇𝑖 − 𝑇𝑚𝑖𝑛)/(𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛)] and 𝐹2 = [(𝑢𝑧,𝑖 − 𝑢𝑧,𝑚𝑖𝑛)/(𝑢𝑧,𝑚𝑎𝑥 − 𝑢𝑧,𝑚𝑖𝑛)]. 

𝑖=1 

 

The values of 𝑇𝑚𝑖𝑛, 𝑇𝑚𝑎𝑥, 𝑢𝑚𝑖𝑛 and 𝑢𝑚𝑎𝑥 were estimated after the solution of the 

SOO. The parameters of PSO and SQP algorithms as given in the Appendix of this 

manuscript. 

minT𝑖, 𝑖=1⋯𝑛 
[𝐹𝑜𝑏𝑗] (7) 

subject to: 
  

𝛼 ≥ 𝛼𝑚𝑖𝑛 
 

𝛛𝑇 
𝜌 𝑐 (+ 

 

 

𝑢 
𝛛𝑇

) = 𝛻(𝑘 𝛻𝑇) + 
𝑑𝐻

 

(7a) 

 
(7b) 

 



4. Results 

 

4.1. Simulated Results 

The temperature and cure profiles in the composite control volume obtained in the 

simulation are illustrated in Figs. 6 and 7, respectively. By analyzing the temperature profile, it 

can be noted that the temperature peak of 474.28 K occurs close to the end of the process. It is 

also clear that the temperature drops slightly close to the die's outlet, characterizing the 

beginning of the post-cure period. It is known that the temperature peak also occurs due to the 

exothermic character of the curing reaction, which releases heat throughout the process. 

 



 

 

Fig. 6. Simulated temperature profile. 
 

 

 

 

 

Fig. 7. Simulated and theoretical temperature profiles at the composite centerline. 

 

Fig. 7 shows the simulated and theoretical cure profiles in the centerline of the 

composite part. Notice that the material achieves the degree of cure of 0.90 at the die exit. It is 



possible to observe that both curves have presented a similar tendency, which indicates that the 

simulated cure profile represents reasonably the theoretical behavior for the considered thermal 

configuration. 

 

 

 

Fig. 8. Simulated and theoretical cure profiles at the composite centerline. 

 

4.2 Sensitivity Analysis 

The sensitivity analysis of the objective function and degree of cure concerning the 

temperature values was performed. The results of this analysis are shown in Figs 7(a-c), where 

the contour curves referring to the degree of cure were plotted in relation to each heater's 

temperature pair (upper-lower). Each temperature value was varied for the analysis, keeping 

the other values constant and equal to the steady-state reference values (Table 3). 



 

 
 

 

Fig. 7(a) – Contour lines of the degree of cure (red lines) for T1 and T4. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7(b) – Contour lines of the objective function (black traced lines) and degree of cure (red 

lines) for T2 and T5. 
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Fig. 7(c) – Contour lines of the degree of cure (red lines) for T3 and T6. 

 

It can be seen in Fig 7(a) that the relationship between the degree of cure and 

temperatures follows a nonlinear relation, in which the degree of cure increases directly with 

temperature. In some situations, there is more than one combination of temperatures for a given 

cure degree value of 0.879. For example, points (I) and (II) have the same degree of cure with 

different temperature values: point I (T1 = 363.2 K; T4 = 424.1 K) and point II (T1 = 

448.7 K; T4 = 320.0 K). It is important to note that these results depend on the other heaters' 

temperatures. 

4.3 Results of Single Objective Optimization 

4.3.1 Optimization with Particle Swarm Optimization 

As the PSO is a stochastic algorithm, the optimal solution can converge to different points 

in each optimization computation. Therefore, the PSO was tested for different particle numbers and 

iteration values to perform the optimization. 

Table 4 summarizes the objective function values, temperatures, number of iterations and 

computational cost for five PSO runs with 30 (3) and 50 (2) iterations. 



Table 4. Analysis of the PSO results for 30 and 50 iterations and 15 particles. 

 

Case 𝑭𝐨𝐛𝐣 (𝐊) 𝐓𝟏[K] 𝐓𝟐[𝐊] 𝐓𝟑[K] 𝐓𝟒[𝐊] 𝐓𝟓[𝐊] 𝐓𝟔[𝐊] 𝓵 CPU(h) 

Reference 2554.4 378.65 421.65 473.15 388.15 419.65 473.15 - - 

PSO [1] 2356.5 300.00 431.61 473.15 300.00 378.57 473.15 30 7.62 

PSO [2] 2451.8 300.00 473.15 432.37 300.00 473.15 473.15 30 7.71 

PSO [3] 2420.0 302.20 473.15 472.27 300.00 473.04 399.37 30 7.44 

PSO [4] 2447.1 300.83 455.43 464.34 300.00 473.15 453.39 50 10.72 

PSO [5] 2442.1 473.15 472.78 300.00 422.92 472.98 300.31 50 10.87 
μ𝑃𝑆𝑂 2424.0        8.88 
𝜎𝑃𝑆𝑂 39.7        1.76 

Table 3 indicates that the lowest objective function was 2356.5 for case-1. This value 

corresponds to a 7.74% reduction concerning the reference value (𝐹obj = 2554.4). The highest 

value of 2451.8 was obtained in case-4. The mean value of the objective functions was 2453.022 

and the standard deviation was 39.40. Except for case-5, the solutions indicate that the entrance 

heaters [1] and [4] present low temperature values. 

The average CPU was 7.59 h and 10.80 h for the cases with 30 and 50 iterations, 

respectively. However, these results indicate that the higher number of iterations did not necessarily 

correspond to the best solution obtained, as shown in the cases-4 (𝐹obj = 2447.1) and 5 (𝐹obj = 

2442.1), which presented objective-function values higher than the values encountered in cases-1 

(𝐹obj = 2356.5)and (𝐹obj = 2420.0). 

The influence of the number of particles was also evaluated for 15, 20, 25 and 30 particles. 

 

This analysis is summarized in Table 5. 

 

Table 5. Influence of the number of particles for 30 iterations. 

 

Particles 𝑭𝐨𝐛𝐣 (𝐊) 𝐓𝟏[K] 𝐓𝟐[𝐊] 𝐓𝟑[K] 𝐓𝟒[𝐊] 𝐓𝟓[𝐊] 𝐓𝟔[𝐊] CPU (h) 

Reference 2554.4 378.65 421.65 473.15 388.15 419.65 473.15 - 

15 2356.5 300.00 431.61 473.15 300.00 378.57 473.15 7.62 

20 2407.8 300.00 473.00 324.99 303.77 492.98 493.00 8.61 

25 2495.2 300.00 473.15 473.15 301.3 475.31 472.31 9.98 

30 2403.7 301.12 473.15 475.12 301.7 473.15 473.15 10.65 
μ𝑃𝑆𝑂 2434.2       9.21 
𝜎𝑃𝑆𝑂 72.8       1.36 



Table 5 shows that the objective-function did not present a crescent variation with the 

number of particles since the minimum values were encountered with 15 particles (𝐹obj = 2356.5) 

and the worse value was found with 25 particles (𝐹obj = 2495.2). Nevertheless, the computational 

cost increased with the number of particles, suggesting that setting this parameter at high values is 

not advantageous. 

Note that the most significant reduction occurred in heaters T1 and T4, representing the 

heaters close to the inlet region. The heat generated from the exothermic cure reaction probably 

warmed the system in the initial part of the process. In this way, the optimal strategy suggests that 

the region enclosed by the two first heaters can be used as a pre-heating phase, in which the heaters 

are effectively used in the second and third parts of the pultrusion die. 

4.3.2 Optimization with Sequential Quadratic Programming (SQP) 

In this topic, we present the results of the SQP optimization method. As it is an algorithm 

based on the computation of the gradient of the objective function, the initial estimative of the 

decision variables can influence the computed optimal value. Therefore, the system was optimized 

for five estimation values (in Kelvin). Table 6 summarizes the results for optimization with the use 

of the SQP algorithm. 

 

Table 6. Analysis of SQP results 

 

Case 𝑭𝐨𝐛𝐣 (𝐊) 𝐓𝟏[K] 𝐓𝟐[𝐊] 𝐓𝟑[K] 𝐓𝟒[𝐊] 𝐓𝟓[𝐊] 𝐓𝟔[𝐊] 𝓵 CPU (h) 

Reference 2554.4 378.65 421.65 473.15 388.15 419.65 473.15 - - 

SQP [1] 2319.2 300.00 473.04 473.01 300.00 300.00 473.13 54 5.31 

SQP [2] 2319.2 300.00 473.08 473.02 300.00 300.00 473.13 60 5.78 

SQP [3] 2411.4 300.00 468.31 470.53 300.00 417.82 454.77 59 5.67 

SQP [4] 2434.4 300.00 473.15 473.15 300.00 473.15 414.99 73 6.41 

SQP [5] 2442.8 300.00 448.25 473.15 300.00 473.15 448.23 77 6.23 
μ𝑆𝑄𝑃 2385.4       5.78 5.78 

𝜎𝑆𝑄𝑃 61.52       0.37 0.37 



 

In Table 6 the temperature values were estimated according to equation (9): 

 

𝑇𝑘 = 𝑇𝑚𝑖𝑛 + 𝑘 ∙ Δ𝑇 (9) 

In which Δ𝑇 = (𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛)/4 and 𝑘 = 1, ⋯ ,4 corresponds to the 𝑘𝑡ℎ optimization with initial 

estimative 𝑇𝑘. In the present case, 𝑇𝑚𝑖𝑛 = 300 K, 𝑇𝑚𝑎𝑥 = 473.15 K e Δ𝑇 = 43.2875 K.. 

The results evidence that there is a significant influence of the initial temperature estimative 

on the optimal value computed by the SQP algorithm. The average value of the objective function 

was 2385.4 K with a standard deviation of 61.52 and an average CPU of 5.78 h. Clearly, the case- 

1 presented the lowest value of the objective function (𝐹obj = 2319.2), in which 300 K 

was considered the initial temperature estimate. 

4.3.3 Comparison between PSO and SQP algorithms 

Table 7 summarizes the best results encountered by the PSO and SQP algorithms. The 

objective function, temperature values, and computational cost are reported in such analysis. 

Table 7. Analysis of SQP and PSO results 

 

Algorithm 𝑭𝐨𝐛𝐣 (𝐊) 𝐓𝟏[K] 𝐓𝟐[𝐊] 𝐓𝟑[K] 𝐓𝟒[𝐊] 𝐓𝟓[𝐊] 𝐓𝟔[𝐊] CPU 

Reference 2554.4 378.65 421.65 473.15 388.15 419.65 473.15 - 

PSO[1] 2356.5 300.00 431.61 473.15 300.00 378.57 473.15 7.62 

SQP[1] 2319.2 300.00 473.04 473.01 300.00 300.00 473.13 5.31 

RD(%)1
 -1.58 0.00 +9.60 -0.03 0.00 -20.75 -0.004 -30.31 

1 RD: relative deviation. 

The results reported in Table 7 indicate that the SQP algorithm could find an objective 

function value 1.58% lesser than the value computed by the PSO algorithm. It is also possible to 

observe that the algorithms showed a similar thermal configuration tendency, with higher 

temperature values for the (T2, T5) and (T3, T6). However, the optimal values computed for T2 

and T5 presented the most significant deviations. The results suggest that the PSO has greater 

difficulties than the SQP in finding the best solution. However, it is not sensitive to initial estimates, 

as in the case of the SQP. Therefore, changes in the tuning parameters of the SQP can possibly 



improve the success rate in finding the optimal point of the analyzed system. However, the 

computational cost of the PSO algorithm depends on the configuration of the algorithm parameters, 

but in the case analyzed the SQP presented a cost 30.31% lower. 

4.3.4 Analysis of Temperature and Degree of Cure Profiles 

The temperature profiles (measured in the centerline of the composite part) of the 

composite region are illustrated in the Fig. 8. For comparison, the non-optimal (simulated) 

temperature profile is also plotted. As observed, in the beginning of the die's entrance, the 

temperature presents lower values and grows continuously until the exit of the die part. The 

maximum temperature achieved was approximately 460 K. A considerable difference is noted 

in the temperature profile of optimal and non-optimal cases. Unlike the non-optimal case, the 

first heaters had a temperature substantially lower than the heaters of the second zone, as 

evidenced by the optimization algorithms. The temperature profiles evidence that a more 

uniform temperature distribution could be obtained in optimal conditions. These results indicate 

that the optimal energy configuration benefits from the energy released by the cure reaction. 

 

 

 

 

Fig. 8. Optimal temperature profiles centerline of the composite part. 



Fig. 9 illustrates the degree of cure profile at the composite's centerline. The degree of cure 

presents values slightly lower than those obtained in the non-optimal case (simulated data), reaching 

a value of 0.9 in the outlet section. 

 

 

 

Fig. 9. Optimal cure profiles centerline of the composite part. 

 

4.4 Results of Multi-Objective Optimization 

In Fig. 12 each point in the Pareto curve corresponds to an optimal solution found by the PSO- 

WSM. The curve formed by the optimal points outlines the Pareto boundary that segregates the 

feasible region (shown above the Pareto curve) from the unfeasible set that does not represent 

realistic solutions. The Pareto curve can be employed to evaluate all possible optimal solutions and 

to choose the most feasible one for the process operating conditions. 

Notice that the optimal point in the upper left corner corresponds to the maximum sum of 

dimensionless temperature values that would require greater energy consumption. On the other 

hand, the right part of the graph corresponds to the lowest values of the dimensionless pull speed. 

Thus, the intermediate region comprises solutions based on a compromise between the two 

conflicting objectives. The solution that will be ultimately chosen from the Pareto curve depends 



on the engineer's preferences, knowledge about the process, constraints, and decision variables. 

Therefore, decision-makers must select the most suitable solution based on their experience and 

context. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Minimum 

Energy 
 

 

Maximum 

Pulling Speed 

 
Fig. 12. Pareto curve resulted from the MOO procedure. 

 

To analyze the obtained results, the optimal values were computed for three different 

points (denoted as A, B and C) on the Pareto curve, as outlined in Fig. 12. Point A represents the 

highest values of 𝑓1 and 𝑓2, point C represents the intermediate values, and Point B represents 

the lowest values of 𝑓1 and 𝑓2. Point D corresponds to a non-optimal solution outside the Pareto 

curve. 

Table 9. Analysis of points A, B, C and D 
 

Data 
C B A D 

OP NOP 

𝑓1 (dimensionless temperature) 0.31 0.05 0.60 0.37 

𝑓2 (dimensionless pull speed) 0.22 0.08 0.75 0.33 

*OP: optimal points; NOP: non-optimal point. 

Feasible 
region A  

 

 
C 

B 
 



The results reported in Table 9 evidence that the highest dimensionless temperature value 

(0.63) was obtained at Point A, while the lowest values were obtained at Point B (0.05). As 

discussed in the previous section, increasing temperature increases energy consumption and pull 

speed to attain the minimum degree of cure. 

Point D can be deemed a feasible solution; however, it does not represent an optimum point 

since it is not located on the Pareto curve. It is possible to observe that both temperature and pull 

speed can be optimized from point D by increasing the pull speed or decreasing the temperatures. 

Table 10 lists the temperature values for each point specified in Fig. 12. 

Table 10. Computed temperature and pull speeds for MOO. 

 

Case 𝑭𝐨𝐛𝐣 𝐓𝟏[K] 𝐓𝟐[𝐊] 𝐓𝟑[K] 𝐓𝟒[𝐊] 𝐓𝟓[𝐊] 𝐓𝟔[𝐊] 𝒖𝒛(mm/s) 

Reference 2554.4 300.0 439.8 458.6 300.00 452.3 473.15 2.299 

A 2495.88 326.41 446.62 473.15 307.61 468.94 473.15 3.90 

B 2225.24 300.00 412.3 410.0 300.00 401.63 401.31 2.20 

C 2354.95 300.00 410.60 427.00 300.01 456.11 461.23 2.55 

D 2382.55 303.10 417.20 434.11 302.41 464.52 461.21 2.82 

Fig. 12(a-b) illustrates the cure and temperature profiles for points A, B, C and D. 
 

 

 

 



 

 

 
 

 

 

Fig. 12(a) shows that the minimum degree of cure of 0.9 could be attained for four evaluated 

cases. In addition, the cure profiles presented a similar tendency, indicating that the optimization 

strategy was able to keep the variables on the optimal Pareto curve. In other words, the temperatures 

of the heaters are adjusted for each scenario, in which the speed has different values. However, the 

composite temperature profile has higher values for higher temperature values, as shown in Fig. 12 

(b). 

5. Conclusions 

In this paper, we have developed an optimization strategy that joins Matlab® and ANSYS 

CFX® solver. The results showed that the PSO algorithm presented higher temperature values 

than the values calculated by the SQP algorithm. Additionally, the average computational cost 

of the PSO was 43.50% higher than the cost obtained by the SQP algorithm. However, the SQP 

was more dependent on initial estimates of heater temperatures. 

The multi-objective optimization was performed using the PSO algorithm using the 

weighted sum strategy to construct the objective function. The Pareto curve of the system could 



be obtained, where the optimum values of velocity and temperatures could be obtained. The 

following results can be highlighted: 

1. The simulation performed in the Ansys CFX® software presented satisfactory results, with 

cure degree and temperature values close to those theoretical results. The proposed Matlab®- 

Ansys CFX® interface has proved to be a valuable tool for optimizing the system. 

2. The PSO and SQP algorithms proved to be efficient methods to optimize the cure cycle. 

 

According to the reported results, it was possible to minimize the rate of energy consumed and 

increase production. Besides, the results showed that the cure could be better distributed 

throughout the process. 

Nomenclature 

 

 

 

Acronyms 

 

CFD Computational Fluid Dynamics 

GA Genetic Algorithm 

OA Optimization Algorithm 

PDE Partial Differential Equations 

PSO Particle Swarm Optimization 

SA Simulated Annealing 

SD Steepest Descent 

SOO Single Objective Optimization 

SQP Sequential Quadratic Programming 

MOO Multi-objective Optimization 

NSGA-II Non Sorting Genetic Algorithm 

WSM Weight Sum Method 

 

 

Latin letters 

 

𝐴 Activation energy 

𝑐 Specific heat 

𝐸𝑎 Activation Energy 



𝑔 Inequality constraints 

ℎ Equality constraints 

𝐻 Enthalpy 

𝑘 Thermal conductivity 

𝐹𝑜𝑏𝑗 Objective function 

𝑅 Universal gas constant 

𝑇 Temperature 

𝑢 Pull speed 

𝑟𝑎 Kinetic rate 

𝑥 Decision variables 

𝑧 Pull direction 

 

 

 

Greek letters 

 

𝛼 Degree of cure 

℘ Penalty parameter 

𝜌 Density 

𝜙 Volume fraction s 

 

 

Mathematical notation 

 

max Maximization 

min Minimization 

 

Indices, subscripts and superscripts 

 

(∙)𝑚𝑖𝑛 Lower bound 

(∙)𝑚𝑎𝑥 Upper bound 

(∙)𝑟 Resin 

(∙)𝑓 Fiber 

(∙)𝐶 Composite 

(∙)𝑡 Total 
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Appendix A – Parameters of Optimization Algorithms 

(A1)  Particle Swarm Optimization 

Particle Swarm Optimization (PSO) is an evolutionary algorithm developed by Kennedy and 

Eberhart (1995) based on the simulation of the social behavior of a flock of birds during flight. Each 

bird makes an analogy to a candidate for the optimization problem's solution, called a particle. 

Particles evolve over the iterations in the search for the optimum, only through competition and 

cooperation between them, without considering genetic operators (Marini e Walczak, 2015). 

Regarding 𝑛𝑧 particles, one single particle 𝑖 has the position 𝒛𝒊 = [𝑧𝑖1, 𝑧𝑖2, … , 𝑧𝑖,𝑛𝑧] and 

velocity 𝒗𝒊 = [𝑣𝑖1, 𝑣𝑖2, … , 𝑣𝑖,𝑛𝑧], in which 𝑛𝑧 is the dimension of the optimization problem. 

Considering two successive iterations 𝑘 e 𝑘 + 1, the values of 𝒛𝒊 and 𝒗𝒊 are computed according to 

equations (2) and (3), respectively: 

𝒛𝒊
𝒌+𝟏 = 𝒛𝒊

𝒌 + 𝒗𝒊
𝒌+𝟏 (A1) 

 
𝒗𝒊𝒌+𝟏 = 𝜆𝑣𝑖𝒌 + 𝑐1𝑅1(𝑝𝑘  − 𝑧𝑖𝑘) + 𝑐2𝑅2(𝑔𝑘  − 𝑧𝑖𝑘) (A2) 

𝑔,𝑖 𝑔,𝑖 

In which 𝑝𝑔,𝑖 is the best position encountered by the particle 𝑖, 𝑔𝑔,𝑖 is the best position regarding all 

particles, 𝑅1 and 𝑅2 are random numbers regarding a uniform distribution [0,1]; 𝑐1 = 2 and 𝑐2 = 2 

are acceleration constants. The inertia parameter 𝜆 is written according to equation (4). 

𝜆(𝑡) = 𝜆 𝑚𝑎
𝑥 

− 
𝜆𝑚𝑎𝑥−𝜆𝑚𝑖𝑛 ∙ 𝑡 (A3) 

𝑡𝑚𝑎𝑥 

where 𝜆𝑚𝑎𝑥 e 𝜆𝑚𝑖𝑛 are the maximum and minimum values and 𝑘𝑚𝑎𝑥 is the maximum number 

of iterations. 

Table A lists the PSO parameters. 

 

Table A. PSO parameters. 

  Parameter Valu 

Number of iteration  100 

Population size  100 

Crossover probabilit 0.9 

 Mutation probabilit 0.01 



(A2) Sequential Quadratic Programming 

 
Table B. SQP Parameters 

 

 

Description Value  Observations 

Constraints tolerance  10-6 SQP algorithm 

Objective function tolerance 10-6 SQP algorithm 

State tolerance 10-6 SQP algorithm 
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