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Abstract: New process developments linked to Power to X (energy storage or energy conversion to
another form of energy) require tools to perform process monitoring. The main gases involved in
these types of processes are H2, CO, CH4, and CO2. Because of the non-selectivity of the sensors,
a multi-sensor matrix has been built in this work based on commercial sensors having very different
transduction principles, and, therefore, providing richer information. To treat the data provided
by the sensor array and extract gas mixture composition (nature and concentration), linear (Multi
Linear Regression—Ordinary Least Square “MLR-OLS” and Multi Linear Regression—Partial Least Square
“MLR-PLS”) and non-linear (Artificial Neural Network “ANN”) models have been built. The MLR-OLS
model was disqualified during the training phase since it did not show good results even in the
training phase, which could not lead to effective predictions during the validation phase. Then,
the performances of MLR-PLS and ANN were evaluated with validation data. Good concentration
predictions were obtained in both cases for all the involved analytes. However, in the case of methane,
better prediction performances were obtained with ANN, which is consistent with the fact that the
MOX sensor’s response to CH4 is logarithmic, whereas only linear sensor responses were obtained
for the other analytes. Finally, prediction tests performed on one-year aged sensor platforms revealed
that PLS model predictions on aged platforms mainly suffered from concentration offsets and that
ANN predictions mainly suffered from a drop of sensitivity.

Keywords: sensor array; Power to X; multivariate analysis; PLS; ANN

1. Introduction

The development of green energies brings with it the problem of their intermittency.
One solution is to interconnect electricity, gas and heat networks. In this way, surplus
electrical energy produced at times of low household consumption could be stored in
chemical form by producing H2 through electrolysis [1]. H2 thus produced can be used for
mobility applications, inserted in limited quantities into the domestic gas network, or used
to capture CO2 (produced during natural gas combustion) that will be transformed into
CH4 via the methanation reaction [2].

Nowadays, there are various processes for producing dihydrogen and methane. These
include biogas reforming, pyrolysis or pyro-gasification of biomass, methanation (chemical
or biological), and electrolysis. The molecules that are mainly involved in those processes
(if we do not consider the different hydrocarbonated molecules that belong to the biomass)
are: CH4, CO, CO2, H2, and H2O.

As the development in this Power to X area intensifies, issues related to process safety
(CO or H2 leakage, possibly concomitantly) and process control (measurement of CO2 or
CH4 concentrations, possibly in the presence of H2) are emerging.

To monitor and control industrial processes, monitor stack emissions or detect leaks,
some companies are equipped with analyzers installed as close as possible to the part
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of the process to be characterized (reactors, pipes, unit operations). The nature of these
analyzers depends on the gases to be detected. Among the analyzer technologies used,
we can find infrared analyzers, chromatography, Raman spectroscopy-based analyzers,
and photoacoustic analyzers [3–5]. However, analyzers of those types cost several tens of
thousands of euros per unit. As a result, equipping a production unit with several analyzers
can be quite costly. An alternative solution would be to measure gaseous composition
using a multi-sensor platform, the cost of which would be reduced by a factor of 10 to
50 compared with an analyzer. After automatic sampling (using mass flowmeters), the
gaseous solution to be analyzed may have to be diluted to ensure that the concentrations to
be analyzed are compatible with the sensors’ detection ranges, and reduced to atmospheric
pressure, as most sensors have a restricted operating range in terms of pressure.

The well-known problem of sensors is their lack of selectivity [6–9]. To overcome this
problem, several approaches exist which have given rise to specific research. One of the
methods currently used consists of modifying the composition of the sensor. This can be
achieved by adding a selective sensitive layer that responds to one target gas [10–13] or
by integrating a filter that will block access to the sensor’s reaction sites to certain gases,
similarly to the work reported by Gao et al. [14]. Another method used to achieve good
selectivity consists of using sensor arrays. This technique may be used as an alternative to
the first one. In this case, no modification of the sensor’s composition is made but signal
treatment based on multivariate analysis enables the identification of the analytes’ nature
and concentration due to the increased size of data collected by the different sensors of the
array [15,16]. These arrays can use different sensors based on one transducing principle, or
can group sensors with different transducing principles (arrays of MOX sensors [17–19],
arrays of electrochemical sensors [20,21], and so on).

To achieve good prediction of a gas mixture composition, a model has to be built
based on the results obtained in a first phase (“training” phase) before being validated
through an independent dataset. Prediction models can be multilinear. In this case, the
model will consist of a matrix. Concerning the linear methods classically used for modeling
purposes, PCA calculates matrices to project variables into a new space, using a new
matrix to show the degree of similarity between variables. This method is classically
used in the sensor field to classify sensor signals of electronic noses into odor types [22]
which can be useful in the food industry or in testing indoor/outdoor air quality, for
example. However, this method is not relevant for the identification of both natures and
concentrations of gases as is required in the case of process control. For this purpose, Multi
Linear Regression—Ordinary Least Square (MLR-OLS) presents the advantage of being
quite simple to implement [23,24]. Modeling performances are interesting for calibration
and for concentration predictions when the explanatory variables (models inputs including
the sensor signals) are not correlated with each other. In this case, the PLS model is more
appropriate. Indeed, this method is very effective, especially when the sensor signals
are linear in their detecting range [25]. For example, in a study performed by Karami,
Rasekh [26], an e-nose with MOS sensor was used to detect oil oxidation. The reliability of
the PLS method in detecting this phenomenon was the most interesting among the tested
methods, and was assessed at 100%.

On the other hand, it seems interesting to consider non-linear models which can be
more effective in the case of strong non-linearity in the input sensor signals. More or
less complex artificial neural network (ANN)-based models will, for example, allow gas
mixture composition prediction [27] and also gave good results when used with e-noses to
assess the quality of products. As we will explain in the following sections, preliminary
tests consisting of exposing sensors to mono-analyte gas compositions gave, in almost
every case, linear responses in the targeted detection range. Non-linear models like neural
networks are suitable for linear behaviors but, due to the fact that the extraction of the
model parameters is based on reaching local minimums [28], the extracted parameters will
not always correspond to the most adequate model.
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Predictions can be biased due to numerous problems: different types of transitory
phenomena (temperature or pressure evolution), ageing of the electronics for signal treat-
ment, and drift/ageing of the sensors constituting the platform. Different reversible or
irreversible processes may cause short- or long-term sensor drift. Reversible damage, which
results in short-term drifts, can result from condensation of chemical vapor on the active
surface of the sensor, physical adsorption of chemical compounds, or evolution of ambient
atmospheric conditions (temperature, humidity, influence) [29]. Irreversible damage can
result from a brutal phenomenon, for example, the poisoning of MOX or electrochemical
sensors with sulfur compounds or from a continuous evolution over time. This last case can
be due to the evolution of the electronic components’ dedicated signal treatment or from an
evolution of the sensor’s active materials (electrodes, semiconductor oxides, and heating
element) due to surface chemical reactions or degradations due to mechanical stresses [30].

In this paper, two linear models and several neural network-based models with and
without a hidden layer will be compared in terms of predictive capabilities. Single analytes
and binary mixtures will be considered for developing and testing the models. In addition,
the article also includes the study of the pertinence of the concentration predictions after
one year of continuous use of the platform under controlled environmental conditions. In
this case, predictions will be affected by irreversible damage due to continuous ageing
of electronics or sensors. Comparison of the prediction performances of linear (PLS) and
non-linear (ANN) methods, initially and after one year of continuous platform use, will
be carried out. Indeed, one of the major objectives of this work will be to evaluate the
evolution over time of the performance of commonly used linear and non-linear models
for predicting gas concentrations in the simple case of binary mixtures.

2. Materials and Methods
2.1. Sensor Choice

The choice of sensors for the multi-sensor platform was made according to well-
defined specifications. The first one concerned the targeted gases: CO2, H2, CH4, and CO,
which are the most common gases in Power to X-linked processes. Additional temperature
and humidity sensors are also needed since those two parameters will vary during the
detection phase and since they constitute potential influences. The desirable gas concentra-
tion detection ranges are both a function of the gas concentrations that can be measured at
specific points of the processes and the possibilities offered by commercial sensors. In order
to detect traces of CO in H2 (methanization) or leakage of CO, the targeted detection range
expected for CO runs from a few ppm to some hundreds of ppm. For H2, requirements
relate to its monitoring in a process and the detection of H2 leaks. For safety reasons and
for reasons of sensor range limitations, the targeted detection range for H2 has been limited
from a few hundred ppm to 1%. For CO2 and CH4 gases, the requirements concern only
the gas concentration monitoring at different steps of the process. Ideally, sensor detection
ranges should be from a few hundred ppm up to 100% but, as will be shown, the sensors’
upper limit for those gases does not exceed a few tens of %.

In order to address the specifications, 5 commercial sensors were selected for this
project. These ones were deliberately chosen with very different operating principles in
order to maximize the versatility of the associated responses.

Prior to selecting the sensors, a study was carried out to determine the sensor tech-
nologies that could be used to detect the gases of interest to the project (CO, CO2, CH4, and
H2). The results are summarized in Table 1.

Sensor technologies can be classified into two families: chemical and physical sensors.
The first family is based on the change of an electrical output characteristic’s value due to a
chemical reaction. CO2 is a weakly reactive molecule. Therefore, chemical sensors (MOX,
catalytic, electrochemical) are not the most effective to detect it. Commercially, two physical
sensor technologies exist for the detection of CO2: Non-Dispersive Infrared (NDIR) sensors
and photo-acoustic sensors. The second technology is relatively recent and only a few
constructors propose it. The photo-acoustic effect is based on the absorption (by target
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molecules) of a modulated (or pulsed) light beam. As the molecules de-energize through
collisions, they generate sound waves that are detected by a condenser microphone. Yet,
the technology that is mainly used for the detection of CO2 remains the classical infrared
absorption-based one. As for the larger IR analyzers, those sensors will be based on the
detection of a change of luminous intensity due to absorption of NDIR rays by the gaseous
analyte. In an MOX sensor, the variation in electrical conductivity of an oxide semicon-
ductor layer is measured as a function of the presence of chemisorbed gaseous analytes
(redox interface reactions). Concerning electrochemical sensors, redox reactions are also
involved but at electrode/electrolyte/gas interfaces. Those reactions will affect the interface
resistance of the working electrode (mainly) and change the electromotive force measured
between the electrodes. For catalytic sensors, a specific combustion (redox) reaction will
occur on two alumina beads: a reference bead and another bead (for measurement) covered
with a catalyst which decreases the combustion reaction temperature. Those alumina
beads are traversed by a platinum wire, which is an RTD material, i.e., a material which
changes resistance with temperature. Resistance variation due to analyte combustion is
measured thanks to a Wheatstone bridge involving both the reference and the measure-
ment bead resistances. In those three technologies of sensors, electrochemical reactions are
involved. Due to the variety of semiconductor oxides used in MOX sensors, commercial
references were found for CO, H2 and CH4 compounds. For the electrochemical sensors, a
lot of references were found for CO detection and references were found for H2 detection
also. Concerning the catalytic sensors, references found mainly concerned the detection of
hydrocarbons (including CH4) and H2.

Table 1. Technologies of sensors commercially available and corresponding to our specifications
according to the target gas (X: Only a few commercial references found, XX: Many commercial
references could be found but only a few corresponding to our requirements, XXX: many commercial
references corresponding to our specifications found).

CO CO2 H2 CH4

MOX (semiconductors) X X X

Pellistors (Catalytic sensors) X XX

NDIR sensors XXX X

Photo-acoustic sensors X

Electrochemical XXX X

From the references identified, the next step was the selection of the sensors that will
be used in this work. This selection was performed according to many criteria: respect
of the process linked specification (presented earlier), the versatility of the sensor signal
expected (it was important to avoid collinearity between the sensor responses), and low
number of interferents (especially humidity and temperature interferents).

Table 2 lists the name, model, type, detection range, and target gases for each selected
sensor. A digital NDIR sensor was chosen for CO2 measurement. This one incorporates
a temperature sensor as well as a humidity sensor, so that the CO2 concentration signal
delivered by the sensor incorporates compensation for temperature and humidity varia-
tions. Hence, our system will eventually have 7 sensors. The temperature and the humidity
sensor will also be used in the sensor network as input parameters in the multi-linear mod-
els, but not in the ANN as we feared this could lead to overfitting. Unlike other sensors,
the NDIR sensor is selective. Determining CO2 concentration will therefore not require
multivariate analysis as will be the case for the other gases. The platform also incorporates
two electrochemical sensors (EC-H2 and EC-CO) which are highly sensitive to H2 and CO,
but not selective. Finally, a catalytic sensor (CATA) and a Metal Oxide sensor (MOX) were
chosen for their sensitivity to CO, H2, and CH4.
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Table 2. List of selected sensors to be used in the sensor network cell.

Brand Name Model Type Detection Range Detected Gas **

EC-CO Membrapor CO/MF-1000 Electrochemical 0–1000 ppm CO

CATA Figaro TGS6812-D00 Catalytic 0–100% LEL * H2, CH4, C3H8

MOX Figaro TGS2612-D00 Semiconductor 1–25% LEL * H2, CH4, C3H8

CO2 Sensirion SCD30 Infrared 0–40% CO2 (+HR et T)

EC-H2 Membrapor H2/M-4000 Electrochemical 0–4000 ppm H2

* LEL stands for Lower Explosive Limit (which is the lowest concentration of a gas or vapor that will burn in
air—about 4%, 5%, and 12.5% respectively for H2, CH4, and CO). ** according to the sensors’ datasheets.

2.2. Experimental Setup

A gas bench equipped with a series of flowmeters was used to generate gas mixtures
of specified compositions with a total gas flow of 30 L/h (Figure 1a). In order to expose the
sensor platform to single analyte gases or binary mixtures, 2 sensor platforms of 7 sensors
(if we include the temperature and humidity sensors) were introduced in sealed cells such
as the one shown in Figure 1b and exposed to the gas mixtures. The sensor signals were
conditioned using commercial or laboratory-developed analogic and digital electronics
as can be seen in Figure 2. EC-CO and EC-H2 sensors require a special conditioning
step performed by analogic circuit boards. However, for the rest of the sensors, the
conditioning is performed by the central “laboratory-made” circuit board. Finally, signals
are digitized and computerized using an Arduino board for NDIR CO2 sensors, and a
National Instruments (NI) board for the others. Once the sensor data have been collected,
behavioral modeling of the platform is carried out using Excel software for the MLR-OLS
method (Multi Linear Regression—Ordinary Least Square), the Python algorithm using the
“PartialLeastSquares” library for the MLR-PLS method (Multi Linear Regression—Partial
Least Square) and Keras/Tensorflow in Python for the neural network method. These
models will be used for the final tests to predict a gas composition from the response of the
sensor array immediately in the weeks after the model building and also after an ageing
period of one year.
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2.3. Test Procedure
2.3.1. Role of Mono-Analyte Tests

Before exposing the sensor array to complex binary mixtures, it was important to
study the sensor responses to each analyte. The goal of these “mono-analyte tests” are of
different natures:

- to verify the reproducibility of the sensor responses,
- to check that the sensor drift is limited and close to zero,
- to analyze the transfer function linking the gas concentration of the analyte and the

sensor responses (linear or not),
- to check that the sensor responses to the introduced analytes are sufficiently uncorre-

lated to have enough variability in the information collected. If two sensors respond
the same way to all the analytes, they finally bring “collinear” information, which
would be prejudicial for the models. Indeed, it can lead to overfitting so that the model
will almost perfectly learn to match the training data but will be unable to capture the
validation data.

2.3.2. Sensor Network Exposure to Both Mono-Analyte and Binary Mixtures

A LabVIEW program is used both to control the flowmeters and therefore the gas
mixture composition in the gas line according to time, and also to collect the data from
the different sensors and gather them in a specific file. The program can be fed with a
file containing sequences of gas compositions at different times that will be applied to
the different flowmeters to obtain the expected gas concentration evolution as a function
of time (Figure 3). Each sequence lasts between 30 and 60 min and a set of sequences is
structured in the following way:

- first sequence under “base gas”: 12% O2/1% absolute humidity/N2,
- several sequences including introduction of analytes alone or in binary analyte

mixtures,
- last sequence under “base gas”: 12% O2/1% absolute humidity/N2 to verify the

return of the sensor signals to the base line, i.e., verify that the signal corresponding
to the first sequence is the same as the signal at this last sequence (no drift of the
sensor signals).
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Figure 3. Example of gas composition sequence and gas sensor response.

2.3.3. Modelling Step: Behavior Model Construction

During this step, the signals collected during the phase of sensor network exposure to
the different single and binary analyte mixtures will be used. They will constitute the input
data from our models and will be gathered in a matrix X constituted of the elements Xij,
where “i” corresponds to the sampled point number (which can be linked to time knowing
the sampling frequency) and “j” corresponds to the sensor number: 1 to 14 (2 cells with
7 sensors each). The output matrix of the model is a table Y constituted of the elements
Yik, containing the concentration evolution of the four targeted analytes according to time.
Here, “i” also corresponds to the sampled point number and “k” corresponds to the analyte
number (from 1 to 4).

Concerning linear models, MLR-OLS [31,32] and MLR-PLS [33,34] methods were
chosen. The MLR-OLS model is a modelling method in which the empirical estimation
of a calibration matrix, C, allows us to use experimental sensor data (matrix X) to get a
prediction matrix Ŷ (which corresponds, here, to modelled gas concentration values). C is
composed of the elements Ckj and is determined by least squares minimization (parameter
RMSE, Root Mean Square Error) between modelled values Ŷik and experimental values Yik:

RMSE =

√
∑N

i=1
(yik−ŷik)

2

N . The RMSE is calculated for each analyte “k”. In the linear model,
the relationship existing between the sensors’ matrix signals and the analyte concentrations
is the following:

X = Y·C + ones·R0 (1)

where ones is a one-column vector composed of imax elements (number of sampled points)
whose components are all equal to 1. R0 is a one line vector composed of jmax elements
(14 sensors here). It corresponds to the sensors’ response vector when no analyte is intro-
duced. R0 and the calibration matrix C determined during the training phase will constitute
the parameters of the model (C′ being the transpose of C).

To predict the value of the concentration matrix in the model validation phase, linear
algebra is used to extract the concentration matrix Ŷ:

Ŷ = (X − ones·R0)·C′·
(
C·C′)−1 (2)

In the case where the number of predicted variables (matrix Ŷ) is rather high and at
the same time the amount of information from experimental data (matrix X) insufficient,
the OLS method becomes unstable because the system is undetermined. Similarly, when
the number of experimental variables (sensors as predictors) is large and the amount
of data used in the model-building phase is insufficient, OLS models then suffer from
multi-collinearity and overfitting problems.

The MLR-PLS model will then seek to define a model that will maximize the covariance
between X and Y using latent variables. These variables replace explanatory variables
(sensor signals in our case) with a more or less strong collinearity. Indeed, they constitute
linear combinations of those in which the factor affected by each explanatory variable is
chosen so as to maximize the covariance between the newly created latent vector and the
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concentration matrix. Then, the multilinear regression is not performed on the explanatory
variables but on the latent variables. In this work, a version of the algorithm developed by
Abdi et al. [35] in 2010 was used through Python code.

We also decided to model the relationship between the analyte concentrations and the
sensor signals through a series of artificial neural networks (ANN) [36], as illustrated by
Figure 4 for the case of H2 concentration prediction.
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fact,1 = tanh and fact,2 = linear are the two activation functions we have chosen. When
nhidden = 0, there is no hidden layer and the concentration of the considered analyte (H2 in
the following equation) can be determined by:

YH2,i,ANN = fact,1

(
∑nsensors

j=1 ωjXij + ω0

)
(3)

where Xij is the value returned by the j-th sensor of the regressor combination at time i and
the ωj are weights to be optimised based on the training data set. ω0 is the weight of the
bias neuron. In the presence of a hidden layer, the pollutant concentration (for instance H2)
can be calculated using the following equation:

YH2,i,ANN = fact,2

(
∑nhidden

j=1 ω2,j ∗ fact,1

(
∑nsensors

k=1 ω1,k,jXik + ω1,0,j

)
+ ω2,0

)
(4)

where the weights ω1,k,j and ω2,j are to be optimised based on the training data set. ω2,0 and
ω1,0,j are the weights of the bias neurons for the output and the hidden layer, respectively.

The weights are optimized through the minimization of RMSE given by:

RMSE =

√
∑ntime

k=1

(
Yspecies,ANN,k − Yspecies,k

)2
(5)

where ntime is the number of time points in the training data set, Yspecies,k, is the considered
experimental species concentration at the k-th time point of the training data set, and
Yspecies,ANN,k is the prediction of this value by the ANN. The Gradient Descent Method
with momentum [37] was employed for the optimization. After a random initialization, the
weights of the neural network are iteratively adapted according to these coupled equations:

ωt+1 = ωt − ε·vt+1 (6)
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With:
vt+1 = ρ·vt + (1 − ρ)∇ωRMSE(ω) (7)

ε is the learning rate which was set to 0.2, whereas ρ is the momentum constant which
was set to 0.9, and v0 is set to 0 in Keras/Tensorflow.

If ∆tRMSE = RMSEt − RMSEt−1 < 10−4 for a duration equal to patience = 500 itera-
tions, the optimisation is stopped as we consider that no further significant improvement
can be made. The optimisation is always stopped after a maximum of 10,000 iterations. It
is worth emphasizing that this is the RMSE of the training data set as the validation data
set is only used after the end of the optimization to test the ability of the model to predict
independent experiments. Both the regressors (sensors) and the target concentrations were
normalized before the beginning of the training of the ANN so that they only take on values
between 0 and 1. This is preferable if we want to use activation functions such as “tanh”.

3. Results & Discussions
3.1. Mono-Analyte Tests

Mono-analyte test results presented in Figures 5–8 allowed us to answer all the ques-
tions raised in part 2.3 and to validate the potentialities of the sensor array to be used for
predictions. The first point to validate was reproducibility. All the results presented in
Figures 5–8 were reproduced two times and, in each case, less than 10% difference was
observed between the sensor responses, which is, in the case of analogue sensors, quite
reasonable. Then, it was important to check that no major drifts occurred in the sensor
responses, i.e., that the base line before and after the introduction of the analytes is at the
same level and that the slope of the response curve according to time finally tends towards
a horizontal asymptote after the gas mixture composition has been changed. This also
could be validated in the results shown in Figures 5–8. Another very important point was
to check that the difference in the sensor array’s responses from one gas to another was
sufficient to discriminate the target gases. It can be seen from Figures 5 and 6 that sensor
responses to H2 and CO are relatively close even though the amplitudes of the responses of
the different sensors are not comparable. One element that could permit to discriminate H2
and CO when they are in binary mixtures with another gas is the fact that H2 induces a
significant response in the MOX sensor, whereas for CO this is not the case. Concerning
CH4, only the MOX sensor responds to this analyte (Figure 7), in contrast to H2 or CO.
Mixtures of H2 and CH4 may be less convenient to identify for low concentrations of CH4
since the correlation between H2 concentration and MOX sensor is also very strong. For
the three gases mentioned in this paragraph, multivariate analysis is required since two
conditions are not fulfilled for those gases:

- induce a response in only one sensor;
- this last sensor should only respond to this analyte.

However, this is the case for CO2. Indeed, CO2 induces a response only in the NDIR
sensor (Figure 8) and, at the same time, this last sensor does not respond to the other
analytes (Figures 5–7—curve f). Thus, CO2 will not require any multivariate analysis to be
discriminated. The information from the NDIR sensor will be sufficient. Therefore, in the
multivariate analysis performed in the following sections, CO2 will not be involved.
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Figure 5. (a) Gas sequence with H2 concentrations between 100 ppm and 1000 ppm. (b) EC-H2

sensor signal. (c) EC-CO sensor signal. (d) MOX sensor signal. (e) Catalytic sensor signal. (f) CO2

sensor signal.
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sensor signal.
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Figure 7. (a) Gas sequence with CH4 concentrations between 800 ppm and 10 000 ppm. (b) EC-H2

sensor signal. (c) EC-CO sensor signal. (d) MOX sensor signal. (e) Catalytic sensor signal. (f) CO2

sensor signal.
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Figure 8. (a) Gas sequence with CO2 concentrations between 1000 ppm and 30,000 ppm. (b) EC-H2

sensor signal. (c) EC-CO sensor signal. (d) MOX sensor signal. (e) Catalytic sensor signal. (f) CO2

sensor signal.

3.2. Sensor Transfer Function

The sensor transfer function towards each analyte is a very important piece of infor-
mation to collect to get indications of the type of models that may be the most suitable to
perform concentration predictions. Indeed, if most of the sensor responses to the analytes
were not linear, attempts to build a linear model to perform prediction would be unsuitable.
From Figure 9, it can be noticed that most of the transfer functions are linear for all the
considered sensors and analytes. Two exceptions to this statement exist. The first one
concerns the response of the catalytic sensor to H2. In this case, the response is linear
until a concentration of 600 ppm, after which there seems to be an asymptotic behavior
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(saturation of the sensor). The second exception concerns the MOX sensor’s response to
CH4, for which the sensor’s response is purely logarithmic.
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Figure 9. Transfer function of the sensors submitted to different concentrations of: (a) H2, (b) CO,
(c) CH4.

Despite these two non-linear transfer functions, multi-linear models remain good
candidates to perform prediction of analyte concentrations because of the measurement
uncertainty (mainly composed of reproducibility errors) which could be less amplified by
linear models.

3.3. Building up Models from Training Data

To build up the different models (linear and non-linear), four specific test sequences
were carried out twice each. To avoid overloading the article, these specific test sequences
will be presented in Appendix A in graphical form. The sensor data from these tests were
collected, formatted and used to build the models. On the raw sensor data, the transient
parts correspond to both the response time of the multi-sensor array and the air renewal
dynamics in the large 0.4 L cell volume (which is a function of the total flow rate of 30 L/h
on the two cells). Those transient parts were removed in the data used to build up the
model, leaving only the stationary parts. The data are composed of 14 columns for the
14 sensors (two cells of seven sensors) that will constitute the explanatory variables of the
different models plus four columns containing the gas concentrations that will constitute
the response variables. Those concentrations are accurately known since the LabVIEW
program controls them through the flowmeters. From the model parameters estimated
based on the training data, “modeled” analyte concentrations could be calculated using
sensor responses and compared to the “real” experimental concentrations used during the
training tests. The accuracy of these concentration predictions is evaluated based on the
RMSE (Table 3). The only linear model enabling good concentration predictions on the
training data is MLR-PLS. In Figure 10, analyte concentration predictions performed on the
training dataset with this last model are represented as a function of time and compared to
experimentally imposed values of H2, CO, and CH4 concentrations. It can be noticed that
good prediction results are globally obtained for those three analytes. Yet, concerning the
base line (concentration of 0 ppm of analytes), some false positive or negative values are
obtained for CO and CH4. Those false positive or negative concentration prediction values
are, then, expected to occur also on predictions performed on validation tests.

Table 3. RMSE obtained with concentrations predicted from training data used to build the models.

Model
Training Prediction RMSE (ppm)

H2 CO CH4

MLR—OLS 1801 895 11,060

MLR—PLS 66 35 656

Best ANN 103 34 671
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Figure 10. (a) H2, (b) CO, (c) CH4 concentration predictions based on PLS modelling with train-
ing data.

A series of artificial neural networks based on different sensor combinations as regres-
sors and numbers of neurons in the hidden layer were trained and validated, as explained
in Appendix B: Results of the Neural Networks. While the quality of the prediction of the
validation data set for CO generally increases with the complexity of the ANN structures,
this is not the case for CH4 where we can only see a decrease in the training RMSE. When it
comes to CH4, the training RMSE sometimes increases as the complexity of the ANN is
increased, which can only stem from the optimization method becoming stuck inside local
minima, since the most complex structures include the less complex ones as a special case.

The results of the different models for the training phase can be seen in Table 3. The
obtained RMSE are quite comparable with those obtained with the PLS method even if
the prediction of H2 concentration seems a little less accurate for the best ANN model
compared to the PLS model. These results are confirmed in Figure 11 in which we can see
that the prediction results are quite comparable to those obtained with the PLS method
(Figure 10).
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Figure 11. (a) H2, (b) CO, (c) CH4 concentration predictions based on ANN modelling with
training data.

3.4. Validation Tests and Comparison of Models

In this section on validation tests, the best linear model and best non-linear model are
selected and used to perform prediction on data that have not been used to construct the
model. The sensor data used for prediction were collected during gaseous exposure of the
platform to the sequence shown in Figure 12 for the gases H2, CH4, and CO, alone or in
binary mixtures. Gas concentration prediction results for PLS and ANN methods are shown
in Figures 13 and 14, respectively. The predictions made for the three gases are relatively
satisfactory in terms of determining the nature of the gases present. However, there are still
some imperfections: over/underestimation of concentrations, and false positives/negatives.
Prediction of H2 and CO gas concentrations seems quite comparable between PLS and
ANN methods even if H2 prediction seems slightly better with the PLS method, as is
confirmed in Table 4. Concerning CH4, prediction results are better with the ANN method
as can be seen in Figures 13 and 14 and confirmed by an RMSE result of 497 compared to
755 for the PLS method (Table 4). Less effective prediction of CH4 with the PLS method is
consistent with the fact that CH4 only induces a significant response on the MOX sensor,
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which is logarithmic. Thereby, the limits of the linear PLS model compared to ANN are
shown here, even if CH4 concentration prediction results are consistent.
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Figure 12. Sequence used to predict H2/CH4/CO analyte concentrations alone or binary mixtures.
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Figure 13. Prediction of concentrations of: (a) H2, (b) CH4, (c) CO by the MLR-PLS method.
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Figure 14. Prediction of concentrations of: (a) H2, (b) CH4, (c) CO by the ANN method.

Table 4. RMSE obtained with concentrations predicted from validation data.

Model
Training Prediction RMSE (ppm)

H2 CO CH4

MLR—PLS 197 26 755

Best ANN 207 19 497

3.5. Data Post-Treatment

For the data predicted by the best linear and non-linear models, there are still problems
that seem avoidable, particularly when the predicted concentration values are negative or
positive while the actual concentrations seen by the sensor network are zero. To overcome
these false negatives and false positives, a post-processing algorithm has been developed.
This is based on the knowledge of sensor signal values when analyte concentrations are
zero, and will be limited to concentration predictions in the latter case only, in order to
avoid introducing bias. It consists of setting the analyte concentration to 0 when the signals
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of the different sensors constituting the platform remain under thresholds specific to each
sensor. Post-treatment results are presented in Figures 15 and 16 and Table 5 for MLR-PLS
and ANN models, respectively. The corrections are very effective for the H2 analyte. In this
case, both false negative and positive could be removed. In the case of the CH4 analyte,
results are very good too, even if the algorithm seems less effective at removing the few
false positives obtained. Finally, post-treatment results obtained in the case of the CO
analyte are less good, especially when CH4 is in binary mixture with H2. In the latter case,
in spite of the absence of CO, the proximity of the sensor responses to H2 and CO makes it
very difficult to distinguish H2 from CO and CO predicted concentration is, in this case,
not equal to 0.
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Figure 15. Predictions results before (_Raw) and after (_PT) application of post-treatment algorithm
for PLS prediction curves: (a) H2 predictions results, (b) CH4 predictions results, (c) CO predictions
results.
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Figure 16. Predictions results before (_Raw) and after (_PT) application of post-treatment algorithm
for ANN prediction curves: (a) H2 predictions results, (b) CH4 predictions results, (c) CO predictions
results.

Table 5. RMSE obtained with concentrations predicted from validation data and post-treated.

Model
Training Prediction RMSE (ppm)

H2 CO CH4

MLR—PLS 194 22 622

Best ANN 205 19 424

3.6. Ageing of Sensors

Next, the multi-sensor platforms were maintained for a year under electrical power,
atmospheric pressure, and air. At the end of the year, the gas sequence to which the sensors
had been exposed for the prediction testing a year earlier was used again, to check the
relevance of the prediction model. Figure 17 shows a comparison between sensor responses
before ageing and after a one-year ageing period when subjected to the gas sequence
shown in Figure 17a. For the EC-H2 (Figure 17b) and EC-CO (Figure 17c) sensors, an
overall decrease in sensitivity is observed. This is more pronounced for the EC-H2 sensor
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than for the EC-CO sensor. The same trend is observed for the catalytic sensor (Figure 17d),
except at higher H2 concentrations, where the response of the aged sensor is greater. Finally,
for the MOX sensor (Figure 17e), a greater sensitivity is observed for the sensor after one
year of ageing as long as H2 is present is the gas mixture.

Sensors 2024, 24, x FOR PEER REVIEW 16 of 24 
 

 

Finally, for the MOX sensor (Figure 17e), a greater sensitivity is observed for the sensor 
after one year of ageing as long as H2 is present is the gas mixture. 

 
Figure 17. Comparison between the sensor responses before ageing and after one year of ageing: (a) 
Gas sequence used for the test, (b) Electrochemical EC-H2 sensor, (c) Electrochemical EC-CO sensor, 
(d) Catalytic CATA sensor, (e) Metal-Oxyde MOx sensor. 

Based on the sensor platform’s responses and applying the MLR-PLS and ANN mod-
els previously developed (without post-treatment), predictions of the concentration of H2, 
CO, and CH4 have been performed. Concerning the predictions made using the ANN 
model (Figure 18), different conclusions can be drawn according to the gas considered. 
Indeed, for H2, a global underestimation of the concentration is observed. When H2 con-
centration seen by the sensors is too low, predicted H2 concentration becomes 0. Concern-
ing CH4, it seems that when this analyte is present alone in the base gas mixture, predicted 
CH4 concentration is close to 0. However, as long as H2 is present in sufficiently high con-
centration (even without the presence of CH4), predicted CH4 concentration raises. This 
indicates that, when trying to predict CH4 concentration, the ANN model will actually be 
more representative of the H2 concentration in the mixture. Finally, the best prediction 
results of ANN on aged sensors is obtained for CO. The concentration evolution is glob-
ally well reproduced. However, false positives in CO concentration predictions can be ob-
served when H2 is present in a mixture that does not contain CO. 

 
Figure 18. Gas concentration predictions (_Pred in the legend) on aged sensor platform for: (a) H2, 
(b) CH4, (c) CO using the previously developed ANN model—comparison to experimental used 
concentrations (_Exp in the legend). 

0

0.1

0.2

0.3

0.4

0.5

0.6

0 2 4 6 8 10 12

Vo
lta

ge
 (V

)

Time (hours)

MOX sensor non aged
MOX sensor aged

0

0.1

0.2

0.3

0.4

0.5

0.6

0 2 4 6 8 10 12

Vo
lta

ge
 (V

)

Time (hours)

MOX sensor non aged
MOX sensor aged

0.84

0.85

0.86

0.87

0.88

0.89

0.9

0 2 4 6 8 10 12

Vo
lta

ge
 (V

)

Time (hours)

CATA sensor non aged
CATA sensor aged

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0 2 4 6 8 10 12

Vo
lta

ge
 (V

)

Time (hours)

EC-H2 sensor non aged
EC-H2 sensor agedEC-H2 

EC-H2

0

0.05

0.1

0.15

0.2

0.25

0.3

0 2 4 6 8 10 12

Vo
lta

ge
 (V

)

Time (hours)

EC-CO sensor non aged
EC-CO sensor aged

0

50

100

150

200

250

0

2000

4000

6000

8000

0 5 10

Co
nc

en
tra

tio
n 

CO
 (p

pm
)

Co
nc

en
tra

tio
n 

H 2
/ C

H 4
(p

pm
)

Time (hours)

H2
CH4
CO

H2 

CH4 

(d) (e)

(a) (b) (c)

−100

 0

 100

 200

 300

0 5 10

Co
nc

en
tra

tio
n 

(p
pm

)

Time (hours)

CO_Exp
CO_Pred

0

2000

4000

6000

8000

0 5 10

Co
nc

en
tra

tio
n 

(p
pm

)

Time (hours)

CH4_Exp
CH4_Pred
CH4 _Exp
CH4 _Pred

(a) (b) (c)
−500

 0

 500

 1000

 1500

 2000

0 5 10Co
nc

en
tra

tio
n 

(p
pm

)

Time (hours)

H2_Exp
H2_Pred
H2 _Exp
H2 _Pred

Figure 17. Comparison between the sensor responses before ageing and after one year of ageing:
(a) Gas sequence used for the test, (b) Electrochemical EC-H2 sensor, (c) Electrochemical EC-CO
sensor, (d) Catalytic CATA sensor, (e) Metal-Oxyde MOx sensor.

Based on the sensor platform’s responses and applying the MLR-PLS and ANN models
previously developed (without post-treatment), predictions of the concentration of H2, CO,
and CH4 have been performed. Concerning the predictions made using the ANN model
(Figure 18), different conclusions can be drawn according to the gas considered. Indeed, for
H2, a global underestimation of the concentration is observed. When H2 concentration seen
by the sensors is too low, predicted H2 concentration becomes 0. Concerning CH4, it seems
that when this analyte is present alone in the base gas mixture, predicted CH4 concentration
is close to 0. However, as long as H2 is present in sufficiently high concentration (even
without the presence of CH4), predicted CH4 concentration raises. This indicates that, when
trying to predict CH4 concentration, the ANN model will actually be more representative
of the H2 concentration in the mixture. Finally, the best prediction results of ANN on
aged sensors is obtained for CO. The concentration evolution is globally well reproduced.
However, false positives in CO concentration predictions can be observed when H2 is
present in a mixture that does not contain CO.
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Figure 18. Gas concentration predictions (_Pred in the legend) on aged sensor platform for: (a) H2,
(b) CH4, (c) CO using the previously developed ANN model—comparison to experimental used
concentrations (_Exp in the legend).
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Then, concerning the predictions made using the MLR-PLS model (Figure 19), for the
different gases, a prediction offset is observed in each case. For H2 and CO, a positive offset
is noticed while a negative prediction offset is observed for CH4. Even if the prediction
response amplitude seems in correlation with experimental gas concentration, the presence
of this offset completely ruins prediction quality for the different gases. Application of
the post-treatment algorithm described earlier is not efficient in this case because of the
important offsets observed. However, those offsets could be easily removed by periodic
zero calibration of the platform. In Figure 20, prediction results including offset compen-
sation are shown. Offset-compensated H2 predictions reveal global underestimation of
H2 concentration. In the case of CH4, concentration overestimation is reported. When H2
is present without CH4, false positives are also present. For the PLS model, best (offset-
compensated) prediction results are obtained for CO, for which concentrations are quite
accurately predicted. False positive CO concentration prediction is also obtained when a
high concentration of H2 is present (without CO) in the gas mixture.
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Figure 19. Gas concentration predictions (_Pred in the legend) on aged sensor platform for: (a) H2,
(b) CH4, (c) CO using the previously developed MLR-PLS model—comparison to experimental
concentrations (_Exp in the legend).
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Figure 20. Offset-corrected gas concentration predictions (_offset shift in the legend) on aged sensor
platform for: (a) H2, (b) CH4, (c) CO using the previously developed MLR-PLS model–comparison to
experimental concentrations (_Exp in the legend).

4. Conclusions

In a context of process developments linked to Power to X, the first goal of this work
was to select commercial sensors to build a multi-sensor platform able to detect H2, CO,
CH4, and CO2 concentrations when gases are alone or in binary mixtures while respecting
specifications linked to the applications. With the sensors selected, the processing chain
enabling signal treatment and digitalization was developed. Finally, the main task was to
build linear (MLR-OLS and MLR-PLS) and non-linear (ANN) models capable of detecting
gases in binary mixtures. The first step was training. This allowed us to train the models by
estimating their coefficients and then evaluate them by their ability to reproduce the data
they were trained with. This step allowed us to disqualify the MLR-OLS model, which was
clearly not able to predict analyte concentrations based on the sensor signals. Another set of
experimental sensor data was then used to compare the prediction performances of MLR-
PLS and ANN in the case of “fresh sensor data”, i.e., data not used to build up the models.
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The main result was that the gas concentration predictions were quite comparable for H2
and CO (slightly better for H2 concentration predictions with the PLS method) for linear
and non-linear methods and better for ANN in the case of CH4 concentration predictions,
which is in accordance with the fact that the MOX sensor’s response to CH4 is logarithmic.
To improve the sensor prediction performances, a post-treatment algorithm was developed
to correct for the case where predictions should give 0 ppm analyte concentration. This
helped to improve the RMSE, especially in the case of CH4.

Finally, prediction tests were performed on a sensing platform that had been aged for
one year. Due to the evolution of the sensors’ responses, the quality of the predictions per-
formed by the ANN and PLS models greatly deteriorated. While ANN predictions suffer
from high underestimation of H2 and CH4 concentrations (predictions for CO concentra-
tions being correct), the PLS model suffers from big prediction offsets. After compensation
of the offset by calibration, the quality of the prediction by PLS becomes much better
than ANN, even if global underestimation of H2 concentrations and the presence of false
positives in the prediction curves of CO and CH4 reduce prediction quality compared to
the unaged sensing platform case.

In future works on the subject, our first goal will be to test sensor signals at differ-
ent stages of ageing and propose an ageing model, which would act as a second layer
added to the already developed linear and non-linear models to compensate the effects of
sensor ageing.

Our second goal will be the determination of more complex gas mixture compositions,
such as ternary and quaternary mixture compositions, based on sensor signals. This will
require the development of new models and possibly the addition of new sensors to the
sensor array used in this work to enrich the information provided by the latter.
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Appendix B. Results of the Neural Networks

The results of the training and validation of the artificial neural networks can be seen
in Tables A1–A3 for H2, CO, and CH4, respectively.

Table A1. Model performance (H2, training—one validation file).

Regressors hnn rmset r2t rmsev r2v

H2(V) 0 173.50 0.92 246.00 0.77
H2(V) 1 154.21 0.94 237.45 0.78
H2(V) 2 153.31 0.94 238.42 0.78
H2(V) 3 152.48 0.94 239.18 0.78
H2(V) 4 153.24 0.94 237.92 0.78

H2 (V), CATA (V), MOX (V) 0 174.12 0.92 246.97 0.76
H2 (V), CATA (V), MOX (V) 1 149.66 0.94 228.62 0.80
H2 (V), CATA (V), MOX (V) 2 134.30 0.95 218.96 0.81
H2 (V), CATA (V), MOX (V) 3 127.45 0.96 217.53 0.82
H2 (V), CATA (V), MOX (V) 4 115.21 0.97 210.05 0.83

H2 (V), CATA (V), MOX (V), CO (V) 0 120.76 0.96 230.07 0.80
H2 (V), CATA (V), MOX (V), CO (V) 1 105.49 0.97 226.49 0.80
H2 (V), CATA (V), MOX (V), CO (V) 2 102.05 0.97 223.08 0.81
H2 (V), CATA (V), MOX (V), CO (V) 3 102.50 0.97 227.69 0.80
H2 (V), CATA (V), MOX (V), CO (V) 4 102.25 0.97 224.73 0.80

H2 2 (V) 0 420.11 0.54 205.20 0.84
H2 2 (V) 1 400.72 0.58 208.63 0.83
H2 2 (V) 2 395.83 0.59 214.47 0.82
H2 2 (V) 3 396.50 0.59 216.22 0.82
H2 2 (V) 4 394.87 0.60 211.07 0.83

H2 2 (V), CATA 2 (V), MOX 2 (V) 0 283.06 0.79 213.99 0.82
H2 2 (V), CATA 2 (V), MOX 2 (V) 1 281.79 0.79 226.30 0.80
H2 2 (V), CATA 2 (V), MOX 2 (V) 2 247.85 0.84 264.74 0.73
H2 2 (V), CATA 2 (V), MOX 2 (V) 3 176.59 0.92 206.41 0.84
H2 2 (V), CATA 2 (V), MOX 2 (V) 4 162.69 0.93 231.02 0.79

H2 2 (V), CATA 2 (V), MOX 2 (V), CO 2 (V) 0 248.21 0.84 262.64 0.73
H2 2 (V), CATA 2 (V), MOX 2 (V), CO 2 (V) 1 244.35 0.85 248.91 0.76
H2 2 (V), CATA 2 (V), MOX 2 (V), CO 2 (V) 2 239.22 0.85 253.51 0.75
H2 2 (V), CATA 2 (V), MOX 2 (V), CO 2 (V) 3 158.88 0.93 228.72 0.80
H2 2 (V), CATA 2 (V), MOX 2 (V), CO 2 (V) 4 155.62 0.94 253.60 0.75

H2 (V), H2 2 (V) 0 172.93 0.92 242.12 0.77
H2 (V), H2 2 (V) 1 153.97 0.94 237.42 0.78
H2 (V), H2 2 (V) 2 148.86 0.94 243.59 0.77
H2 (V), H2 2 (V) 3 148.91 0.94 243.34 0.77
H2 (V), H2 2 (V) 4 149.08 0.94 240.26 0.78

H2 (V), CATA (V), MOX (V), H2 2 (V), CATA 2 (V), MOX 2 (V) 0 152.32 0.94 219.50 0.81
H2 (V), CATA (V), MOX (V), H2 2 (V), CATA 2 (V), MOX 2 (V) 1 134.75 0.95 206.36 0.84
H2 (V), CATA (V), MOX (V), H2 2 (V), CATA 2 (V), MOX 2 (V) 2 126.60 0.96 224.33 0.81
H2 (V), CATA (V), MOX (V), H2 2 (V), CATA 2 (V), MOX 2 (V) 3 125.43 0.96 219.67 0.81
H2 (V), CATA (V), MOX (V), H2 2 (V), CATA 2 (V), MOX 2 (V) 4 108.90 0.97 208.77 0.83

H2 (V), CATA (V), MOX (V), CO (V), H2 2 (V), CATA 2 (V), MOX 2 (V), CO 2 (V) 0 119.35 0.96 222.67 0.81
H2 (V), CATA (V), MOX (V), CO (V), H2 2 (V), CATA 2 (V), MOX 2 (V), CO 2 (V) 1 102.79 0.97 207.34 0.83
H2 (V), CATA (V), MOX (V), CO (V), H2 2 (V), CATA 2 (V), MOX 2 (V), CO 2 (V) 2 100.22 0.97 216.92 0.82
H2 (V), CATA (V), MOX (V), CO (V), H2 2 (V), CATA 2 (V), MOX 2 (V), CO 2 (V) 3 96.87 0.98 210.69 0.83
H2 (V), CATA (V), MOX (V), CO (V), H2 2 (V), CATA 2 (V), MOX 2 (V), CO 2 (V) 4 95.22 0.98 227.32 0.80

For H2 mole fraction prediction, we can see that increasing the complexity of the ANN
in terms of number of regressors and of neurons in the hidden layer strongly increases the
fit to the training data set. Thus, it decreases RMSEt but it also generally fails to decrease
the RMSE of the validation data set, which indicates that while the ANN becomes more
and more able to learn how to reproduce the training data, it is not able to generalize
this learning through better predictions of the validation measurements. Best validation
RMSEv is reached for H2 2(V) (205.20) but the training RMSEt is very large (420.11) which
makes it likely that the model has not properly learned the relationship between sensor and
mole fraction. Consequently, we decided to consider H2(V), CATA(V), MOX(V), CO(V),
H2 2(V), CATA 2(V), MOX 2(V), CO 2(V) with 1 neuron in the hidden layer as the best
model as RMSEv = 207.34 is only slightly larger than RMSEv = 205.20 whereas the training
RMSEt = 102.79 is much better.
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Table A2. Model performance (CO, training—one validation file).

Regressors hnn rmset r2t rmsev r2v

CO (V) 0 87.34 0.65 59.34 0.27
CO (V) 1 84.93 0.67 59.05 0.28
CO (V) 2 80.64 0.70 56.61 0.34
CO (V) 3 80.42 0.70 56.62 0.34
CO (V) 4 80.46 0.70 56.68 0.33

CO (V), CATA (V) 0 85.68 0.66 57.90 0.31
CO (V), CATA (V) 1 84.16 0.67 57.50 0.31
CO (V), CATA (V) 2 80.35 0.70 55.01 0.37
CO (V), CATA (V) 3 77.86 0.72 50.10 0.48
CO (V), CATA (V) 4 71.12 0.77 55.98 0.35

CO (V), CATA (V), MOX (V), H2 (V) 0 46.68 0.90 35.41 0.74
CO (V), CATA (V), MOX (V), H2 (V) 1 41.51 0.92 25.36 0.87
CO (V), CATA (V), MOX (V), H2 (V) 2 40.67 0.92 29.61 0.82
CO (V), CATA (V), MOX (V), H2 (V) 3 40.42 0.92 25.85 0.86
CO (V), CATA (V), MOX (V), H2 (V) 4 40.43 0.92 26.54 0.85

CO 2 (V) 0 124.69 0.28 67.96 0.04
CO 2 (V) 1 124.76 0.28 67.75 0.05
CO 2 (V) 2 124.00 0.29 67.53 0.05
CO 2 (V) 3 124.05 0.29 67.54 0.05
CO 2 (V) 4 124.92 0.28 68.17 0.04

CO 2 (V), CATA 2 (V) 0 111.85 0.42 69.25 0.01
CO 2 (V), CATA 2 (V) 1 108.15 0.46 65.93 0.10
CO 2 (V), CATA 2 (V) 2 104.75 0.49 61.24 0.22
CO 2 (V), CATA 2 (V) 3 101.51 0.53 50.95 0.46
CO 2 (V), CATA 2 (V) 4 99.49 0.54 48.70 0.51

CO 2 (V), CATA 2 (V), MOX 2 (V), H2 2 (V) 0 66.60 0.80 49.14 0.50
CO 2 (V), CATA 2 (V), MOX 2 (V), H2 2 (V) 1 62.62 0.82 50.30 0.48
CO 2 (V), CATA 2 (V), MOX 2 (V), H2 2 (V) 2 50.91 0.88 30.69 0.80
CO 2 (V), CATA 2 (V), MOX 2 (V), H2 2 (V) 3 54.04 0.87 28.44 0.83
CO 2 (V), CATA 2 (V), MOX 2 (V), H2 2 (V) 4 64.00 0.81 38.77 0.69

CO (V), CO 2 (V) 0 87.78 0.65 61.68 0.21
CO (V), CO 2 (V) 1 85.00 0.67 59.32 0.27
CO (V), CO 2 (V) 2 80.29 0.70 57.08 0.32
CO (V), CO 2 (V) 3 80.35 0.70 57.63 0.31
CO (V), CO 2 (V) 4 80.27 0.70 56.95 0.33

CO (V), CATA (V), CO 2 (V), CATA 2 (V) 0 79.55 0.71 44.80 0.58
CO (V), CATA (V), CO 2 (V), CATA 2 (V) 1 77.22 0.73 43.11 0.61
CO (V), CATA (V), CO 2 (V), CATA 2 (V) 2 72.58 0.76 45.15 0.58
CO (V), CATA (V), CO 2 (V), CATA 2 (V) 3 70.14 0.77 49.03 0.50
CO (V), CATA (V), CO 2 (V), CATA 2 (V) 4 72.33 0.76 45.31 0.57

CO (V), CATA (V), MOX (V), H2 (V), CO 2 (V), CATA 2 (V), MOX 2 (V), H2 2 (V) 0 38.63 0.93 24.08 0.88
CO (V), CATA (V), MOX (V), H2 (V), CO 2 (V), CATA 2 (V), MOX 2 (V), H2 2 (V) 1 37.44 0.94 21.94 0.90
CO (V), CATA (V), MOX (V), H2 (V), CO 2 (V), CATA 2 (V), MOX 2 (V), H2 2 (V) 2 36.82 0.94 20.89 0.91
CO (V), CATA (V), MOX (V), H2 (V), CO 2 (V), CATA 2 (V), MOX 2 (V), H2 2 (V) 3 34.67 0.94 21.60 0.90
CO (V), CATA (V), MOX (V), H2 (V), CO 2 (V), CATA 2 (V), MOX 2 (V), H2 2 (V) 4 34.38 0.95 19.27 0.92

As for CO mole fraction prediction, we can generally see that increasing the com-
plexity of the neural network architecture lowers both the training and validation RMSE,
which indicates that overfitting is not a significant issue.

When it comes to the prediction of CH4 mole fraction, we can see that the training
RMSE sometimes increases as the number of hidden neurons or regressors is increased.
Since the convergence of RMSEt was visually verified, this can only stem from the fact
that the optimization method became stuck in local minima, as the global minima must
be either increasingly better or at least as good as those of the simpler models which are
specific cases of the more complex models.
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Table A3. Model performance (CH4, training—one validation file).

Regressors hnn rmset r2t rmsev r2v

MOX (V) 0 2017.52 0.03 1929.53 0.01
MOX (V) 1 2012.91 0.04 1907.28 0.03
MOX (V) 2 2013.47 0.04 1908.39 0.03
MOX (V) 3 2012.85 0.04 1907.44 0.03
MOX (V) 4 2012.65 0.04 1906.95 0.03

H2 (V), CATA (V), MOX (V), CO (V) 0 2064.63 −0.01 2034.40 −0.11
H2 (V), CATA (V), MOX (V), CO (V) 1 2013.41 0.04 1904.95 0.03
H2 (V), CATA (V), MOX (V), CO (V) 2 2019.50 0.03 1912.46 0.02
H2 (V), CATA (V), MOX (V), CO (V) 3 2002.79 0.05 1888.72 0.05
H2 (V), CATA (V), MOX (V), CO (V) 4 1993.49 0.05 1885.03 0.05

MOX 2 (V) 0 2109.53 −0.06 2072.43 −0.15
MOX 2 (V) 1 1041.14 0.74 951.45 0.76
MOX 2 (V) 2 1053.46 0.74 946.47 0.76
MOX 2 (V) 3 1309.52 0.59 1000.08 0.73
MOX 2 (V) 4 1343.30 0.57 1027.83 0.72

H2 2 (V), CATA 2 (V), MOX 2 (V), CO 2 (V) 0 634.05 0.90 504.01 0.93
H2 2 (V), CATA 2 (V), MOX 2 (V), CO 2 (V) 1 2033.96 0.02 1924.30 0.01
H2 2 (V), CATA 2 (V), MOX 2 (V), CO 2 (V) 2 775.57 0.86 613.21 0.90
H2 2 (V), CATA 2 (V), MOX 2 (V), CO 2 (V) 3 956.25 0.78 687.63 0.87
H2 2 (V), CATA 2 (V), MOX 2 (V), CO 2 (V) 4 814.85 0.84 675.74 0.88

MOX (V), MOX 2 (V) 0 656.50 0.90 536.24 0.92
MOX (V), MOX 2 (V) 1 2003.38 0.05 1892.26 0.04
MOX (V), MOX 2 (V) 2 803.81 0.85 549.04 0.92
MOX (V), MOX 2 (V) 3 1033.47 0.75 718.90 0.86
MOX (V), MOX 2 (V) 4 1045.05 0.74 758.92 0.85

H2 (V), CATA (V), MOX (V), CO (V), H2 2 (V), CATA 2 (V), MOX 2 (V), CO 2 (V) 0 613.07 0.91 511.26 0.93
H2 (V), CATA (V), MOX (V), CO (V), H2 2 (V), CATA 2 (V), MOX 2 (V), CO 2 (V) 1 670.82 0.89 497.27 0.93
H2 (V), CATA (V), MOX (V), CO (V), H2 2 (V), CATA 2 (V), MOX 2 (V), CO 2 (V) 2 751.48 0.87 725.78 0.86
H2 (V), CATA (V), MOX (V), CO (V), H2 2 (V), CATA 2 (V), MOX 2 (V), CO 2 (V) 3 659.12 0.90 596.29 0.91
H2 (V), CATA (V), MOX (V), CO (V), H2 2 (V), CATA 2 (V), MOX 2 (V), CO 2 (V) 4 781.68 0.85 724.44 0.86
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