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G R A P H I C A L A B S T R A C T

H I G H L I G H T S

VOX-STORM combines voxel structure and alpha-shape meshing.
Generates 1000 objects in <20 s with full morphological control.
Validated with 3D prints and 40,000 synthetic objects.
Estimates 3D properties from 2D image measurements.
Predictions validated with latex aggregate measurements.
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A B S T R A C T

Measuring the 3D morphological properties of granular objects such as aggregates is a critical issue in many
fields of science and industry, especially when the objects are fragile or hard to sample. For these reasons, non-
invasive techniques based on image analysis are being developed. However, most image analysis techniques
can only measure 2D properties. This paper presents a new approach based on both image analysis and a 3D
stochastic geometric model called VOX-STORM (VOXel-based STOchastic geometRical Model) to estimate 3D
morphological properties. By adjusting the parameters of the model, the latter is able to generate populations
of objects whose 2D property distributions match those measured by image analysis, and to predict 3D
morphological property distributions. The model is based on a dual architecture combining voxelized structure
and alpha-shape meshing of the external surface, which makes object generation extremely fast (about 1000
objects in 20 s), while allowing rapid computation of 3D characteristics. The method is validated twice,
first on 3D printed aggregates and then on a population of 40,000 synthetic aggregates, with mean errors
of less than 2.5% in all cases and less than 1% for 2D properties. It is then applied to two sets of images
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of latex aggregates captured by a morphogranulometer. The morphological property distributions and fractal
dimensions are compared to ground truth in the 2D case and to laser diffraction measurements in the 3D
case. The results are also compared with two other recent stochastic geometric models, and the VOX-STORM
model outperforms them in all scenarios, as well as in speed of execution, while agreeing with experimental
measurements. Finally, directions for future work are suggested.
1. Introduction

The morphological characterization of aggregates, agglomerates and
granular objects in general is a field of study with numerous ap-
plications in a wide range of scientific fields, from medicine [1] to
the chemical [2], food [3,4] and civil engineering [5] industries. In
fact, the morphological characteristics of these highly diverse objects
- i.e., their size, shape, and texture - can have a significant impact on
the physicochemical properties [6] of the materials they compose, and
consequently on their structure [7], strength [8,9], taste, hazard [6],
and environmental impact.

For example, Guérin et al. [10] discuss the importance of character-
izing aggregate morphology when monitoring separation processes in
water production or wastewater treatment. In fact, the size, shape and
density of flocs formed during treatment stages affect sedimentation
rates and overall process efficiency. Bower et al. [11] reports that
studying the fractal characteristics of aggregates helps to analyze the
behavior and properties of building materials, particularly in terms of
particle interactions, settlement efficiency, and overall performance.
Furthermore, according to Tang et al. [12], who is interested in the
fractality of structures formed by aggregates of latex nanoparticles
using image analysis, characterizing the morphology of these irregular
structures provides a better understanding of the links between their
structural properties and the phenomena that lead to their formation, as
well as the impact of their morphology on various industrial processes
and applications, such as solid–liquid separation processes.

For all these reasons, many techniques have been developed to
analyze and understand the morphology and complex structure of
aggregated objects. Discrete Element Method (DEM) models are partic-
ularly well suited to modeling fine multiphysics interactions between
elementary particles, although they can be quite complex to implement
and demanding in terms of computational power [8,9,13–15]. Popula-
tion balance models are relatively efficient and easy to implement, and
can quickly provide size and sometimes shape distributions [16,17].
However, they do not provide complete knowledge of the structure and
morphology of objects, especially the more subtle features of angularity
and texture. Thus, thanks to the increasing power of computers, tech-
niques based mainly on image analysis have experienced rapid growth
in recent years [18].

In particular, image analysis techniques based on machine learning
models such as CNN (Convolutional Neural Network) or Mask R-CNN
have been used in pharmaceutical applications for in-line recognition of
agglomerated pellets [19] or for automatic segmentation of aggregates
of titanium dioxide particles from SEM or TEM images [6,20], an
application for which GANs (Generative Adversarial Networks) were
also developed [21]. While these techniques are very powerful, they
have a number of limitations. In fact, they require training data, which
implies the ability to generate images representative of real data, often
using a model that can be complex to implement if realistic rendering is
required, or the ability to acquire images by SEM, TEM, or tomography
in the case of 3D characterization, which is a costly and complex pro-
cess [22]. In addition, the information obtained by image analysis is the
result of segmentation performed on 2D images and does not capture
the complex three-dimensional structure of objects [23]. Therefore,
hybrid methods based on the use of models are being developed to
extract 3D information from projected 2D images [24].

The main idea behind these hybrid methods, which will be explored
2

in this paper, is based on the principles of stochastic geometry, where a
model is used to generate a 3D population representative of reality by
adjusting the model parameters. In the context of this work, informa-
tion collected from 2D images is used to adjust the model parameters.
Since the object population generated by the model is representative
of real data, its 3D morphological characteristics can be measured and
predictions can be made.

Many models have been developed to study aggregates. For exam-
ple, Liu et al. [8] uses X-ray tomography and finite element simulation
to study the influence of aggregate morphology on the mechanical be-
havior of bituminous mixtures. Moreaud et al. [25] proposes a stochas-
tic model based on Boolean multiscale models for analyzing 3D images
of complex materials. Another geometrical stochastic model proposed
by Moreaud et al. [26] allows the fractal dimension of objects com-
posed of large aggregate particle systems to be adjusted as a function of
model parameters, as does another model proposed by Tomchuk et al.
[27], where the fractal dimension is also adjustable, and which aims
to characterize the structure of aggregates through spatial correlation
in direct and reciprocal space, and the effect of the structure factor in
small-angle scattering.

In general, there are many models for modeling aggregates that
allow to adjust one (very often the fractal dimension) or more morpho-
logical features as a function of the model parameters. However, they
do not allow efficient generation of object populations with the goal
of matching projected 2D morphological feature distributions (area,
perimeter, etc.) to target distributions, e.g. measured by image analysis.
This paper develops a new model specifically for this purpose. Previous
attempts had already led to the development of a model based on hard
sphere packing on the one hand (GRAPE: Théodon et al. [28]), and
another model based on deforming the mesh of an ellipsoid of random
Gaussian fields on the other hand (SPHERE: Théodon et al. [29]).
Both approaches have limitations, including performance problems
with hard sphere stacking and a priori estimation of object volume,
which limits the range of applications, and the inability to generate
low-convex and high-angle structures for the latter, as well as complete
ignorance of the internal structure of objects, since only the mesh of the
outer surface is generated.

Therefore, the model proposed in this paper, called VOX-STORM
(VOXel-based STOchastic geometRical Model), is based on a dual archi-
tecture. First, a voxelized structure is rapidly generated by successive
convolutions, and then a mesh of the object is obtained by computing
the surface of an alpha shape, a generalization of the concept of convex
hull, sometimes called concave hull [30]. This combination of tech-
niques not only allows extremely fast generation of objects (in contrast
to techniques based on primary particle stacking or random mesh
generation) and information about the internal structure of the object,
such as porosity, but also provides detailed information about the
surface of the object, allowing finer grained knowledge of texture and
angularity. For additional flexibility, two 3D random Gaussian fields
are used to modulate the activation probabilities of boundary voxels
during their generation. This makes it possible to generate complex,
possibly highly porous structures with an angularity and texture that
could not be achieved with approaches based on hard sphere stacking
or mesh deformation.

The following section explains how images of latex nanoparticle ag-
gregates, on which morphological feature distributions were measured
to provide ground truth, were acquired. The various morphological
features used and measured in this article are then defined, and the
theoretical basis for generating random Gaussian fields and calculating
alpha shapes is presented. The VOX-STORM model is then defined
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and examples of its implementation are presented. The influence of
the model parameters on the morphological properties of objects is
examined and discussed. The method for predicting the 3D feature
distributions of object populations from projected 2D images is then
presented. The process of fitting the model parameters by minimizing
a cost function is described, and the method is then validated using
images of 3D printed aggregates acquired by a morphogranulometer,
as well as numerically on a population of 40,000 objects generated
by the model. The method is then applied to two sets of 3500 images
of latex aggregates captured by a morphogranulometer and obtained
under different experimental conditions. The results and predictions
of the model are presented and compared with those of two other
stochastic geometrical models developed previously [28,29]. The object
size and mass fractal dimension are compared with experimental laser
diffraction measurements. Finally, the performance of the model is
discussed, as well as its limitations, and avenues for future work are
presented.

2. Methodology

2.1. Data acquisition

The experimental data used in this article are extracted from a
series of experiments carried out by Hamieh et al. [31] with the
aim of analyzing the morphology of Methacrylate Butadiene Styrene
(MBS) latex aggregates according to different experimental protocols.
The experiments were carried out in a 1 L jacketed cylindrical batch
reactor using a procedure derived from a coagulation process described
in an ARKEMA patent [32], which is of great interest for industrial
applications. At the end of the aggregation process, images are taken
using a morphogranulometer (Morphologi G3 – Malvern Panalytical),
which combines an optical microscope with a CCD camera and image
processing software. Two sets of 3500 images each are thus acquired
for two different experimental protocols, which are described in detail
in the Section 5.1.

2.2. Morphological characterization

All 2D morphological features measured on images captured by the
morphogranulometer, as well as 2D and 3D morphological features
measured on objects generated by the model, are listed in Table 1.
The size characteristics ECD and ESD are calculated from the projected
area 𝐴 and volume 𝑉 of the objects, respectively, and can be measured
xperimentally by laser diffraction (Mastersizer 3000) in the case of the
SD to provide an additional reference point.

Shape and angularity properties such as the circularity C, which
xpresses the similarity of a shape to a circle, where 1 is a perfect
ircle and 0 is a flattened object, are often used when studying latex
ggregates [10,31,34] because they allow the size (area) of objects
o be related to their texture (perimeter). Thus, the circularity mea-
ure gives an indication of the compactness of an object. However,
ecause perimeter measurements are highly dependent on definition,
mage resolution, and noise, they are sometimes difficult to calculate
ccurately [35,36]. For this reason, the convexity Co, which is based
olely on area measurements, may prove to be more robust and a
ubstitute angularity measure for the circularity, although they are not
nterchangeable.

Regarding fractal dimensions, several definitions have been adopted.
he Minkowski-Bouligand [33] or Box-Counting dimension can be
stimated on 2D or 3D discretized objects by successively dividing the
pace into boxes of side 𝜖, and the quantity 𝑁(𝜖) indicates the number

of boxes needed to cover the boundary of the object. It is then defined
as follows

𝐷𝐵𝐶 = lim
log𝑁(𝜖) (1)
3

2,3 𝜖→0 1∕𝜖 a
Table 1
List of morphological characteristics used in this paper. The perimeter and surface area
include those of any interior voids.

Parameters Symbol Definition and equation

2D & 3D Parameters
Feret Diameter max. 𝐹max Longest caliper (Feret) length
Feret Diameter min. 𝐹min Smallest caliper (Feret) length
2D Parameters

Projected Area 𝐴 Area of the object
Convex Area 𝐴𝑐 Area of the convex hull
Perimeter 𝑃 Length of the object outline
Equivalent Circle Diameter ECD 2 ×

√

𝐴∕𝜋
Aspect Ratio AR 𝐹min∕𝐹max
Convexity Co 𝐴∕𝐴𝑐
Circularity C 4𝜋 × 𝐴∕𝑃 2

3D Parameters

Volume 𝑉 Volume of the object
Convex Volume 𝑉𝑐 Volume of the convex hull
Volume 𝑉𝑝 Volume of the closed pores
Surface Area 𝑆 Area of the object surface
Equivalent Sphere Diameter ESD 2 × 3

√

3 × 𝑉 ∕(4𝜋)
Solidity SLD 𝑉 ∕𝑉𝑐

Sphericity 𝛷𝑆 6𝜋2 × 𝑉 ∕(
√

𝜋𝑆)3

Porosity 𝜀𝑐𝑝 1 − 𝑉𝑝∕(𝑉 + 𝑉𝑝)
Fractal Dimensions

Power Law 𝐷𝑃𝐿
2 𝐴 ∝ 𝐹𝐷𝑃𝐿

2
max

Box-Counting 𝐷𝐵𝐶
2,3 see Falconer [33]

Laser scattering 𝐷𝐿𝑆
3 Experimental Data [31]

Another 2D fractal dimension can be calculated according to a
power law that relates the area of objects to one of their characteristic
lengths. It is defined by Florio et al. [37] as

𝐴 ∝ 𝑙
𝐷𝑃𝐿
2

𝑐 (2)

where 𝑙𝑐 is the characteristic length of the objects. In the context of
this article, the characteristic length is defined as the maximum Feret
diameter 𝐹max, which gives the definition shown in Table 1.

The last fractal dimension used is the mass fractal dimension. It is
obtained by laser scattering described by Soos et al. [38] and Sorensen
[39] and is a function of the scattering intensity 𝐼(𝑘), where 𝑘 is the

ave vector. It is defined in the fractal regime (i.e. for 𝑅−1
𝑔 ≪ 𝑘 ≪ 𝑟−10

ith 𝑅𝑔 the radius of gyration of the object and 𝑟0 the radius of the
rimary particles) as follows

(𝑘) ∝ 𝑘−𝐷
𝐿𝑆
3 (3)

In the next section, the VOX-STORM model is presented, along with
he theoretical concepts required for its implementation.

. The proposed model: VOX-STORM

The proposed model introduces an original approach to generate
D objects by assembling voxels, followed by the generation of a mesh
sing alpha shapes. The core of the method is the voxelization process,
here an object is constructed by selectively activating voxels within
predefined grid. The idea is to draw inspiration from the way aggre-

ates form, with primary particles gradually adhering to the object’s
oundary in numbers that depend not only on their concentration in the
edium, but also on numerous other environmental and operational
arameters.

The algorithm begins by setting a central voxel as the initial active
oint in a three-dimensional grid. It then proceeds iteratively, using
convolution kernel to evaluate the surrounding space for candidate

oxel for activation. This kernel, which is designed to reflect the geo-
etrical properties and spatial distribution desired in the final object,

uides the growth of the structure by determining candidate voxels for

ctivation at each iteration.
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Fig. 1. 3D Gaussian random fields generated on a 643 voxel grid, showing the effect of different correlation lengths 𝓁. The covariance function used is defined by Eq. (4). The
color gradient from dark blue (value = 0) to bright white (value = 1) indicates the field intensity.
Fig. 2. Displaying the contours of the alpha shape of a point cloud from 𝛼 = 0, giving the point set, to 𝛼 = ∞, giving the convex hull.
The likelihood of activation of a voxel is influenced by two random
Gaussian fields that simulate environmental factors or material prop-
erties that affect the growth of the object for greater control over its
angularity and texture, as well as its potential porosity.

Because of its high degree of flexibility, the model can generate
complex and varied structures that closely mimic natural processes.
After voxelization, the model uses alpha shapes to extract a precise,
continuous boundary from the voxelized object. This boundary is then
used to generate a mesh. The use of alpha shapes allows the resolution
and detail of the mesh to be adjusted, providing flexibility in modeling
the morphological features of the object.

In this section, the theoretical tools needed to build the model
(random Gaussian fields, alpha-shape) are presented. The algorithm
that allows the model to generate random objects is then detailed, and
examples of generated objects are shown. Finally, the influence of the
model parameters on the morphological properties of the objects is
analyzed and discussed.

3.1. Random Gaussian fields

The generation of a 3D Gaussian random field efficiently utilizes the
approach of Adler et al. [40] and Liang et al. [41], who defined the
field by convolution of uncorrelated Gaussian noise with a symmetric,
normalized weight function. According to Lang and Potthoff [42],
using the Fourier space for this convolution significantly increases
computational speed with minimal error. This method has already been
used to generate random Gaussian fields to control the morphological
properties of granular objects [29].

The FFT-based generation process is outlined as follows:

1. Definition of the covariance function Cov(𝑟) with an exponential-
quadratic kernel or RBF kernel:

Cov(𝑟) = exp
(

−‖𝑟‖2

2𝓁2

)

, (4)

where 𝑟 = (𝑥, 𝑦, 𝑧) ∈ R3 and 𝓁 denotes the correlation length.
2. Obtain the spectral power function Ĉov(𝑘⃗) as the Fourier trans-

form of Cov(𝑟):

Ĉov(𝑘⃗) = 𝐹𝐹𝑇
(

Cov(𝑟)
)

. (5)
4

3. Generate the Gaussian random field 𝐺(𝑟) as follows:

𝐺(𝑟) = 𝐹𝐹𝑇 −1
[√

Ĉov(𝑘⃗) ⋅ ̂ (𝑘⃗)
]

(6)

where  (𝑟) is an uncorrelated Gaussian noise of mean zero and
variance one.

This FFT-based method enables fast 3D Gaussian random field gen-
eration. On modern computer hardware, such as an Intel(R) Core(TM)
i9-12900KF with 64 GB RAM and MATLAB® (2023b), a 1283 voxel field
can be generated in about 10−1 s. Fig. 1 shows how the correlation
length 𝓁 affects the structure of a random Gaussian field.

3.2. Alpha shapes

Alpha shapes are a generalization of the convex hull concept. They
allow a more detailed description of the contour of a point cloud. The
concept, introduced by Edelsbrunner et al. [30], relies on a parameter
𝛼 to balance the granularity of the shape and its approximation to the
convex hull of the point set.

The procedure for generating an alpha shape can be summarized in
three steps:

1. Compute the Delaunay triangulation for the given set of points.
2. For a given 𝛼, identify all simplices (vertices, edges, triangles,

etc.) in the triangulation that satisfy the 𝛼 radius condition. A
simplex is included if its circumcircle (in 2D) or circumsphere
(in 3D) has a radius less than or equal to 𝛼.

3. The alpha shape is formed by the union of these selected sim-
plices. As 𝛼 varies from 0 to ∞, the alpha shape transitions from
the point set itself to its convex hull.

The choice of 𝛼 allows for flexibility in modeling the complexity
of the boundary. Therefore, in the context of this work, considering a
mesh drawn from the alpha shape rather than the voxellized shape of
the object allows better control over its morphological properties. Fig. 2
illustrates the effect of the 𝛼 parameter on the alpha shape contour of
a point cloud.
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Fig. 3. 2D visualization of Algorithm 1 applied to a 7 × 7 grid, with parameters 𝜆 = 0.3 and 𝑤 = 2. (a) shows the initialization phase; (b) illustrates the calculation of activation
probabilities at the boundary, with lighter shades indicating higher probabilities; (c) shows the random selection of pixels for activation. The following figures (d-k) show the
growth of the 2D shape. Legends show number of iterations and corresponding lines in Algorithm 1.
Fig. 4. Illustration of object construction by the model on a 493-voxel grid with 𝜆 = 0.15. The state of the grid is shown for iterations 1 to 5, and then for iterations 10, 20, 30,
and 40, from left to right. The final object, including the mesh derived from the surface of an alpha shape (with 𝛼 = 5), is shown on the far right. The color gradient on the
voxelized structures indicates the intensity of the random Gaussian field product, going from darker (value = 0) to lighter (value = 1).
Fig. 5. Examples of objects generated by the VOX-STORM model with different parameter sets, showing meshes calculated with two different 𝛼 values to illustrate the effect of
the parameter on the object texture.
Algorithm 1 Voxel-based random structure generation
1: Initialize 𝑊 to size 𝑛𝑔 × 𝑛𝑔 × 𝑛𝑔 and value 0
2: Set the central voxel of 𝑊 to 1 (activation)
3: Define the convolution kernel on a 3 × 3 × 3 volume

𝐾𝑤(𝑥, 𝑦, 𝑧) = 𝑐 × exp
(

−1
2

(

𝑥2

𝑤2
+ 𝑦2 + 𝑧2

))

where 𝑐 is a normalization constant.
4: Compute the random Gaussian fields 𝐺𝐴 and 𝐺𝑇
5: 𝐺 ← 𝐺𝑐𝐴

𝐴 ⋅ 𝐺𝑐𝑇
𝑇

6: for 𝑘 = 1 to 𝑛𝑖 do
7: 𝐵 ← convolve(𝑊 , 𝐾𝑤)
8: 𝐵 ← 𝐵 ⋅

(

1 −𝑊filled
)

9: For each voxel 𝑣 in 𝐵, calculate the activation probability 𝑃act(𝑣)
as:

𝑃act(𝑣) =
𝐵(𝑣) × 𝐺(𝑣)

∑

𝑥 𝐵(𝑥) × 𝐺(𝑥)

10: Compute the number 𝑛𝑎 of pixels to activate with

𝑛𝑎 = Poisson (⌈𝜆 × card(𝐵)⌉) .

11: Draw without replacement from 𝑃act and activate 𝑛𝑎 voxels
in 𝑊 .

12: end for

3.3. Model description

The procedure for generating a 3D object using the VOX-STORM
model includes two main steps: generating the voxel-based structure
using a stochastic process and generating the mesh using alpha shapes.
The method for generating the voxel-based structure of the object is
5

described in Algorithm 1. It is an iterative process in which the number
of voxels is increased by successive activation at the boundary. The
main points are as follows:

1. An empty 𝑊 grid of size 𝑛3𝑔 is initialized to 0 and the central
voxel is activated (set to 1).

2. A Gaussian kernel 𝐾𝑤 is defined, with the 𝑤 parameter control-
ling the elongation of the object.

3. Two random Gaussian fields 𝐺𝐴 and 𝐺𝑇 with respective cor-
relation lengths 𝓁𝐴 and 𝓁𝑇 are generated. They are raised to
the power of 𝑐𝐴 and 𝑐𝑇 , respectively, to modify their intensity.
In particular, they are used to control the angularity (𝐺𝐴) and
texture (𝐺𝑇 ) of the object.

4. Each iteration repeats the following steps.

∙ The extended boundary 𝐵 of 𝑊 is computed using the
convolution kernel 𝐾𝑤.

∙ (Optional) The grid 𝑊𝚏𝚒𝚕𝚕𝚎𝚍 is calculated by performing a
morphological hole-filling operation [43] on the grid 𝑊 to
account for porosity.

∙ The elements of 𝑊𝚏𝚒𝚕𝚕𝚎𝚍 (or 𝑊 ) are removed from the
extended boundary 𝐵.

∙ The activation probability density function 𝑃act is calcu-
lated and modulated by the random Gaussian fields.

∙ A number 𝑛𝑎 of voxels are activated according to the distri-
bution 𝑃act. This number depends on a Poisson distribution
whose intensity is proportional to the cardinality of 𝐵 and
a parameter 𝜆.

5. The alpha shape 𝑆𝛼 of the voxelized structure contained in 𝑊 is
computed and the mesh of the object is defined as the boundary
of 𝑆𝛼 .
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Fig. 6. Influence of the model parameters on the 2D morphological characteristics of the generated objects. Each observation represents an average measured over a sample of
00 objects, and standard deviations are displayed.
Fig. 7. Influence of the model parameters on the 3D morphological characteristics of the generated objects. Each observation represents an average measured over a sample of
00 objects, and standard deviations are displayed.
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Table 2
List of the 8 base parameters of the proposed model.

Parameter Interval Definition

𝑛𝑖 [0; +∞[ Number of iterations
𝜆 ]0; 1] Proportion of voxels to activate in 𝐵
𝑤 [0; +∞[ Weight for the convolution kernel 𝐾𝑤

𝛼 [
√

2; +∞[ Smoothing of the alpha shape
𝓁𝐴 [0; +∞[ Correlation length of the random field 𝐺𝐴
𝓁𝑇 [0; +∞[ Correlation length of the random field 𝐺𝑇
𝑐𝐴 [0; +∞[ Intensity factor of 𝐺𝐴
𝑐𝑇 [0; +∞[ Intensity factor of 𝐺𝑇

In this form, the model depends on 8 parameters, which are listed
n Table 2 and whose influence on the morphological properties of the
bjects will be discussed in the following section. There is only one
eta parameter, namely the size 𝑛𝑔 of the 𝑊 grid, which also defines

the size of the 3D domains on which the random Gaussian fields are
defined. Fig. 3 illustrates the process of creating a 2D object in the case
of a 7 × 7 grid, with the formation of a closed pore (Fig. 3(k)) after 4
iterations and Fig. 4 shows the evolution of the voxelized 3D structure
at each iteration, as well as the final result obtained by computing the
alpha shape contour.

Fig. 5 shows several examples of objects generated by the VOX-
STORM model based on different parameter sets. Each object is shown
with two different 𝛼 values to illustrate qualitatively the effect of
this parameter on the surface texture without changing the overall
shape of the object. In particular, the flexibility of the model allows
it to generate objects that are concave (Figs. 5(a) and 5(b)), compact
(Fig. 5(f)), or rather porous (Fig. 5(g)).

3.4. Impact of the parameters

In this section, the influence of the model parameters on the 2D and
3D morphological features of the objects is studied. Understanding how
each parameter affects object shape and structure is key to simplifying
6
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Table 3
Main influence of model parameters on the morphological properties of the objects.

Parameter Impact Properties

𝑛𝑖 Size ECD, ESD, . . .
𝑤 Shape AR, C, Phi
𝓁𝐴, 𝑐𝐴 Shape and Angularity AR, C, Co, SLD, 𝛷
𝓁𝑇 , 𝑐𝑇 Angularity and Texture C, Co, SLD, 𝛷
𝛼 Angularity and Texture C, Co, SLD, 𝛷
𝜆 All Properties –

the optimization process. This allows to determine which settings best
achieve the desired morphological distributions. Table 3 summarizes
the impact of each model parameter on the morphological properties of
the generated objects, while Figs. 6 and 7 provide quantitative insights
into how these aspects vary with parameter settings.

Number of iterations – 𝑛𝑖
For a fixed intensity 𝜆, the number of iterations 𝑛𝑖 is strongly

correlated with the size of the object, with a linear relationship with
the ECD (Fig. 6(a)) and the ESD (Fig. 7(a)). This property is easily
understandable in 3D for the ESD due to the object generation process,
where the volume grows on average in proportion to the surface area
and 𝜆 at each iteration 𝑛𝑖, but less so in 2D for the ECD. In reality,
this linear relationship between the ECD and 𝑛𝑖 is only really visible

hen the 2D projection of the object is viewed in a direction orthogonal
o the maximum Feret diameter, as is the case for the results shown
n Fig. 6(a). To obtain these results, 500 objects were generated per
bservation. The remaining parameters were chosen randomly using
niform laws.

In terms of optimization, the fact that object size is linearly corre-
ated with the number of iterations means that the ECD measurements
aken on 2D projection images can be used as input to the model with

espect to 𝑛𝑖.
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Weight for the convolution kernel – 𝑤
The only purpose of the weight 𝑤 associated with the convolution

kernel 𝐾𝑤 is to slightly adjust the aspect ratio (AR) of the object.
Fig. 6(b) shows that this parameter has a small effect on the final
shape of the object (on the order of 5% to 10%), but is still significant.
These data were obtained with a constant 𝛼 parameter and with random
Gaussian fields disabled.

Furthermore, in the case where 𝑤 = 1, it can be seen that the
intensity parameter 𝜆 has a strong influence on AR. It can also be seen
that lower intensities 𝜆 and fewer iterations 𝑛𝑖 result in more elongated
objects on average, while higher intensities and more iterations result
in larger and rounder objects.

Random Gaussian fields – 𝐺𝐴&𝐺𝑇
The Gaussian random fields 𝐺𝐴 and 𝐺𝑇 are mainly used to modify

the angularity and texture of the objects, although 𝐺𝐴 also has a non-
negligible effect on their shape (AR) for high intensities 𝑐𝐴. Fig. 6(c)
shows the effect of a single random field (𝐺𝐴) on the circularity and
convexity as a function of the intensity 𝑐𝐴, with the second random
field disabled, for 𝑤 = 1 and the parameter 𝛼 held constant. The effect
on the 3D counterpart of these morphological features is illustrated in
Fig. 7(b) for the solidity and Fig. 7(c) for the sphericity.

In general, a combination of two Gaussian random fields with
different correlation lengths 𝓁𝐴 > 𝓁𝑇 and different intensities 𝑐𝐴 and
𝑐𝑇 allows fine control over the 3D morphological properties of the
generated objects. For example, the concave object in Fig. 5(a) is
generated with a random field 𝐺𝐴 of high intensity 𝑐𝐴, as is the porous
structure of the object in Fig. 5(g). The bumpy texture of Fig. 5(e), on
the other hand, is only possible with the correct parameterization of
the random field 𝐺𝑇 .

Smoothing factor – 𝛼
The parameter 𝛼 is directly related to the alpha shape from which

the mesh of the object is extracted. Thus, its influence on the texture
and angularity of the object is considerable, while its influence on the
size and shape of the object is minimal (see Fig. 5). Its effect on the
morphological properties of angularity and texture in 2D (C and Co)
and 3D (𝛷 and SLD) is illustrated in Figs. 6(d) and 7(d), respectively.

Intensity – 𝜆
The intensity factor 𝜆 affects all the size, shape, angularity, and tex-

ture properties of the object generated by the model, as shown in Figs. 6
and 7. This phenomenon is similar to that observed in the agglomera-
tion process of latex nanoparticles under hydrodynamic constraints, for
example, where the morphology of the aggregates strongly depends on
the concentration of elementary particles in the medium [31], although
no direct relationship can be established between the parameters of the
geometrical model VOX-STORM and the operational parameters.

An important point to note is that there is a strong correlation
between the quantity 𝑛𝑖×𝜆2∕3 and the ECD – when objects are observed
in a direction orthogonal to the maximum Feret diameter – on the
one hand, and the ESD on the other hand, as shown in Figs. 8(a) and
8(b), respectively. Indeed, the linear regression models below can be
established:

ÊCD = 1.38𝑛𝑖 × 𝜆2∕3 + 2.75 (7)

and

ÊSD = 2.56𝑛𝑖 × 𝜆2∕3 + 0.78 (8)

where ÊCD and ÊSD are the estimators of ECD and ESD, respectively,
and the adjusted coefficients of determination 𝑅̄2 given by the exact
Olkin-Pratt estimator [44] and shown in Fig. 8 are 𝑅̄2 = 0.988 for the
ECD and 𝑅̄2 = 0.989 for the ESD.

Thus, as mentioned above, this strong correlation between 𝑛𝑖, 𝜆 and
the ECD or the ESD not only allows the direct use of data obtained by
image analysis to simplify the optimization process, but also provides
precise knowledge of particle size distributions (PSD) in number and
volume in relation to the model parameters.
7

Fig. 8. Correlation of the product 𝑛𝑖 × 𝜆2∕3 with the ECD (a) and the ESD (b).

3.5. Discussion

From its speed and flexibility to the high degree of control provided
by the various parameters, the proposed model is unique in many
respects.

∙ Speed: The model is capable of generating 1,000 objects similar
to those shown in Fig. 5 in about 20 seconds. This is of the same
order of magnitude as other methods that propose to generate the
mesh of granular objects from random Gaussian fields [29,45],
although limited to star-shaped objects, and superior to other
methods based on surface subdivisions [46]. Other methods with
similar speeds exist [47,48], but do not allow fine control of
object angularity or texture. However, these methods only gener-
ate a mesh without providing any information about the internal
structure of the objects. In addition, the shapes are typically
not very complex, and control over angularity, texture, porosity,
or concavity is limited or nonexistent. Other methods based on
stacks of hard spheres exist, but are generally at least an order
of magnitude slower [28], or less suitable for generating granular
and/or compact objects [49,50], or both.

∙ Morphological Control & Flexibility : With a relatively small number
of parameters, the model is capable of generating objects with
widely varying morphological characteristics while maintaining
a high degree of control. Alpha shapes allow the modulation of
angularity and texture in objects, with subtle changes in shape
and minimal changes in size, even though these changes are
measurable. The duality between mesh and voxel structure allows
fine measurement of properties such as surface area or perimeter
(and thus circularity and sphericity), which are usually difficult
to calculate on discretized objects [35], while providing accurate
knowledge of the internal structure of objects, particularly poros-
ity. Meanwhile, equivalent methods based on mesh generation
generally offer much less control or flexibility over object angu-
larity and texture [46–48,51], or depend on a very large number
of parameters [52]. Moreover, although the objects studied in
this article are rather isotropic, it is quite possible to generate
non-isotropic aggregates by adjusting the shape parameter 𝑤,
choosing a completely different and anisotropic convolution ker-
nel, or even considering the use of non-isotropic random fields
for 𝐺𝐴 and 𝐺𝑇 . The convolution kernel was chosen empirically
because of its ease of implementation and the fact that it is some-
times possible to establish relationships between its parameters
and the properties of the objects generated by the model [53].
However, several other types of kernels have been tested, and this
choice can have a significant impact on the overall morphology,
especially at low iteration counts.

∙ PSD Integration: Due to the linear dependency between object size
and number of iterations 𝑛𝑖, a size density (2D or 3D) can be
entered directly into the model, allowing for easy generation of
calibrated object populations. As a result, the number of param-
eters to adjust is reduced and the optimization process can focus
on the morphological features of shape, angularity, and texture.
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Fig. 9. Comparison between an in-situ image of latex nanoparticle agglomeration
in a stirred tank (a) and a 3D rendering using the VOX-STORM model (b). The
model independently generated aggregates that were randomly placed in a uniform
distribution to create a pseudo-3D effect.

∙ Rendering Capability : An auxiliary benefit of the model is its abil-
ity to rapidly generate photorealistically rendered objects with
full knowledge of their 2D and 3D morphological features and
internal structure (Fig. 9). This can be extremely useful when de-
signing training databases for machine learning or deep learning
applications.

Overall, the VOX-STORM model allows for extremely fast genera-
tion of granular objects with great control over morphological proper-
ties such as size, shape, angularity, and texture. A key feature is the use
of alpha shape in addition to voxel structure. The objects are generated
at least as fast as with mesh deformation models, but with much more
flexibility.

The main limitation of the model is that, as with any iterative
process, the computation time increases with the size of the object to
be generated. Nevertheless, Fig. 5 shows that it is possible to generate
sufficiently detailed high-resolution objects quite efficiently.

4. Optimization & validation

This section describes how to adjust the parameters of the model
to generate objects whose 2D morphological features match those
obtained by image analysis. The key concept is that distributions of 2D
morphological features (such as ECD, circularity, and convexity) can
be accurately measured using image analysis techniques on sufficiently
large datasets to be representative. The datasets examined in this article
consist of 3500 images each, with a range of 5000 to 15,000 objects per
dataset. After obtaining these distributions, a cost function is defined
to measure the discrepancy between the feature distributions of the
model-generated objects and those derived from image analysis. The
optimal parameterization of the model is then achieved by minimizing
this cost function.

4.1. Optimization process

Given two morphological feature distributions, a quick and easy
way to compare them is to use the method of moments. Although
there are other techniques for comparing two distributions or two
samples [54], the method of moments offers the advantage of being
easy to implement, particularly fast in terms of computational time –
an important point in the context of an optimization process – and has
proven to be quite effective in the case of this work.

Given a set of parameters 𝛺, a cost function 𝐹cost(𝛺) is defined
based on the Mean Relative Error (MRE) over the moments of four
distributions: Equivalent Circular Diameter (ECD), Aspect Ratio (AR),
Circularity (C), and Convexity (Co). The cost function aggregates the
MRE of the first two moments of these distributions, each weighted
8

appropriately to reflect their relative importance in the performance of
the model.

𝐹cost(𝛺) =
2
∑

𝑖=1
( 𝜈ECD

𝑖 ⋅ 𝛿ECD
𝑖 (𝛺) + 𝜈AR

𝑖 ⋅ 𝛿AR
𝑖 (𝛺) (9)

+𝜈C
𝑖 ⋅ 𝛿C

𝑖 (𝛺) + 𝜈Co
𝑖 (𝛺) ⋅ 𝛿Co

𝑖
)

Where:

∙ 𝜈ECD
𝑖 , 𝜈AR

𝑖 , 𝜈C
𝑖 , and 𝜈Co

𝑖 are the weights assigned empirically to the
first and second moments of the ECD, AR, C, and Co distributions,
respectively.

∙ 𝛿ECD
𝑖 (𝛺), 𝛿AR

𝑖 (𝛺), 𝛿C
𝑖 (𝛺), and 𝛿Co

𝑖 (𝛺) denote the MRE of the first
and second moments for the respective distributions measured
by image analysis on the one hand, and those of the objects
generated by the model using the parameter set 𝛺 on the other
hand.

The cost function is then optimized using Particle Swarm Opti-
mization (PSO) [55], an algorithm well suited to stochastic processes
and proven effective in similar applications [29,56], to determine the
optimal parameter set. Regarding the choice of weights, a heuristic has
emerged suggesting that decreasing weights according to the granular-
ity of the morphological feature description – size, shape, angularity,
texture – tends to perform well. For example, weights such as 8 for the
means of Equivalent Circular Diameter (ECD), 4 for Aspect Ratio (AR),
and 2 for Circularity (C) and Convexity (Co), with a similar distribution
of standard deviations (4, 2, 1, and 1, respectively), have been used.

4.2. Validation

4.2.1. On 3D printed aggregates
To ensure that the model parameters derived from the optimization

process can be adjusted to produce objects that are representative
of the real data, synthetic aggregates are created using additive 3D
printing and then imaged using a morphogranulometer (Morphologi
G3 – Malvern Panalytical). The approach is to use 2D measurements
from these images to adjust the parameters of the model. This allows
the predictions of VOX-STORM at both the 2D and 3D levels to be
compared to the ground truth known from the reference STL file
containing the mesh used in the 3D printing process.

The following method is used:

1. Approximately one thousand aggregates, each about 2 mm long,
are 3D printed from a reference STL file representing a black-
berry (Fig. 10(a)).

2. A set of 1,000 images of 3D printed objects are captured using a
morphogranulometer (Fig. 10(b)) and then binarized (Fig. 10(c)).
It is assumed that the objects are observed in a direction orthog-
onal to the maximum Feret diameter, with the objects naturally
orienting themselves in a preferred direction under the effect of
gravity.

3. Measurements of 2D morphological features are performed on
the binary images to construct the cost function 𝐹cost as shown in
Eq. (9). In this specific context, second moments (standard devia-
tion) are not considered because the objects are almost identical
in all instances, with variations in morphological characteristics
due to the manufacturing process measuring at most 2.5% on
average.

4. The cost function 𝐹cost, based on average values from 512 ag-
gregates, is minimized by Particle Swarm Optimization with a
runtime of approximately 1 h and an optimal parameter set 𝛺0
is found.

5. A set of 512 synthetic objects is generated by the VOX-STORM
model (Fig. 10(e)) with the optimal parameter set 𝛺0, and
morphological feature measurements are performed on 2D pro-
jections (Fig. 10(d)) made in a direction orthogonal to the max-
imum Feret diameter. The results are presented in Table 4.
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Fig. 10. Illustration of the process of generating real data from calibrated 3D printed aggregates by generating images using a morphogranulometer, and comparison with a
synthetic aggregate generated by VOX-STORM.
Table 4
Comparison between 2D and 3D characteristics of 3D printed aggregates (ground truth) and synthetic aggregates generated by the proposed model with the optimal set of
parameters. The values shown for synthetic aggregates are averages calculated from a set of 512 aggregates. Values are rounded to the nearest two decimal places.

2D 3D

Characteristics 𝐴 (mm2) 𝐴𝑐 (mm2) 𝑃 (mm) AR Co C 𝑉 (mm3) 𝑉𝑐 (mm3) 𝑆 (mm2) ESD (mm) SLD 𝛷𝑆

Ground Truth 2.73 2.86 6.75 0.71 0.95 0.75 2.34 2.76 11.25 1.65 0.84 0.66
VOX-STORM 2.71 2.85 6.77 0.72 0.95 0.74 2.35 2.80 11.09 1.65 0.84 0.68
Relative Error (%) 0.58% 0.51% 0.25% 0.62% 0.40% 0.69% 0.43% 1.50% 1.41% 0.03% 0.13% 2.5%
Table 5
Specification of the parameter set 𝛺𝑠, utilized for generating a population of 40,000
synthetic aggregates, alongside the estimated parameter set 𝛺𝑠, derived from the
optimization process aimed at minimizing the cost function 𝐹cost.

Parameters 𝑛𝑖 𝑤 𝓁𝐴 𝑐𝐴 𝓁𝑇 𝑐𝑇 𝛼 𝜆

𝛺𝑠 From Eq. (10) 5 10 5 0.5 1.5 3 0.050
𝛺𝑠 From Eq. (7) 5.2 9.68 4.77 0.56 1.61 3.02 0.052

The results for relative errors of 2D and 3D feature averages are very
good, with relative errors all below 1% for 2D features and below 2.5%
for 3D features. In particular, these results validate the ability of the
model to correctly predict object morphological features from projected
2D images in the case where the observed object is rather convex, has
some cylindrical symmetry, and the projection is made in a direction
orthogonal to the maximum Feret diameter.

However, models that use either hard sphere stacking [28] or mesh
deformation [29] give comparable results. The first approach tends to
take a little more time, while the second proves to be a slightly faster.
Therefore, in order to facilitate a direct comparison of VOX-STORM
with other state-of-the-art models, the following section will apply this
method to two different populations of latex aggregates.

In addition, it is important to note that while the stochastic geom-
etry approach may yield favorable results in terms of average mor-
phological measurements, it is not well suited for accurate one-to-one
reconstruction of 3D objects. The approach really excels at generating
populations of objects that are representative of the diversity observed
in real-world scenarios.

4.2.2. On a population of synthetic objects
In the previous section, the optimization process was validated

on a population of quasi-identical 3D printed objects. Thus, in this
section, a population of 40,000 aggregates is generated by the VOX-
STORM model from a set of parameters 𝛺𝑠 detailed in Table 5. In
order to generate objects of different size and morphology, the number
of iterations 𝑛𝑖, which is directly related to the size of the aggregates
(Eqs. (7) and (8)), is a random variable depending on a beta law as
follows:

𝑛𝑖 ∼ 5 + ⌈150 × Beta(𝑎, 𝑏)⌉, 𝑎 = 3 and 𝑏 = 25. (10)

To simulate the conditions under which images are captured by
a morphogranulometer, 2D projected images are generated in a di-
rection orthogonal to the maximum Feret diameter. Subsequently, 2D
9

morphological features related to size, shape, and texture are mea-
sured (Fig. 11). The moments of the obtained distributions are used
to construct a cost function (Eq. (9)), applied to populations of 2048
aggregates, which is then minimized by Particle Swarm Optimization
(PSO) with a runtime of approximately 4 h to derive an estimator for
the optimal parameterization, 𝛺𝑠.

Table 5 shows that the differences between the parameter set 𝛺𝑠
and its estimator 𝛺𝑠 are minimal, and the 2D and 3D morphological
feature distributions obtained from the optimization process are very
close to the ground truth (Fig. 11). Furthermore, it should be noted that
the estimated number of iterations, 𝑛𝑖, is derived as a random variable
from the distribution of the ECD measured on the projected 2D images
by inverting the linear relationship outlined in Eq. (7).

Finally, Table 6 shows the statistical distance [57] - or Total Vari-
ation Distance - between the morphological feature distributions of
the objects generated by the set of parameters 𝛺𝑠 and their estimates.
The Total Variation Distance is a simple quantitative measure for
quantifying the distance between two distributions, ranging from 0
(identical distributions) to 1 (completely different distributions), and
is defined as follows

𝑇𝑉 (𝑝, 𝑞) = 1
2 ∫

+∞

−∞
|𝑝(𝑥) − 𝑞(𝑥)|𝑑𝑥 (11)

where 𝑝 and 𝑞 are two probability density functions.
The low Total Variation Distance values presented in Table 5 fur-

ther confirm the validity of the method to estimate the morphologi-
cal characteristics of an object population by analyzing 2D projected
images and minimizing the cost function defined by Eq. (9). There-
fore, in the following section, the proposed method is used to es-
timate the 2D and 3D morphological characteristics of two popula-
tions of latex nanoparticle aggregates whose images are captured by
a morphogranulometer.

5. Application

5.1. Method description

This section examines images taken from two different series of
aggregation experiments performed by Hamieh et al. [31] to study the
morphological evolution of MBS latex particles under varying physic-
ochemical conditions. The first series (Exp. 1) used a stirring speed of
200 rpm with a coagulant concentration of 4.16 mmol/L at destabiliza-
tion temperatures of 30 ◦C, resulting in the formation of smaller, less
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Fig. 11. Comparison of the 2D and 3D morphological characteristics between two populations generated by the VOX-STORM model: one consisting of 40,000 objects using the
set of parameters 𝛺𝑠 (ground truth, represented by histograms) and the other comprising 20,000 objects generated with the set of parameters 𝛺𝑠, as estimated by the optimization
process (depicted with solid lines).
Table 6
Total Variation Distance between the morphological feature distributions (Fig. 11) of the population of objects generated from
the parameter set 𝛺𝑠 and the population generated from the estimated parameter set 𝛺𝑠.
Characteristics 2D 3D

ECD AR Co C ESD SLD 𝛷 𝜀𝑐𝑝
Total Variation Distance 0.032 0.018 0.016 0.022 0.033 0.030 0.037 0.040
Fig. 12. Example of images captured by the morphogranulometer for experiments
Exp. 1 and Exp. 2. The width of each image is 2.8 mm for 2584 px.

compact aggregates. The second series (Exp. 2) uses the same stirring
speed of 200 rpm and a coagulant concentration of 2.08 mmol/L,
with a higher destabilization temperature of 42 ◦C, resulting in larger,
more densely packed aggregates. Fig. 12 shows examples of the images
obtained by the granulometer at the end of each of these experiments,
i.e. after heating the solution to a temperature of 95 ◦C in both cases.
The aggregates from Exp. 1 appear smaller in size and lower in density,
properties that can be explained by the higher acid concentration and
lower destabilization temperature.

The main objective of this section is to apply the previously de-
scribed and validated method to the two sets of 3500 images from
each of the two experiments. This means that the parameters of the
VOX-STORM model will be optimized in order to find two optimal pa-
rameterizations that match the 2D morphological feature distributions
10
of the objects generated by the model with the distributions measured
on the images captured by the morphogranulometer. In addition, once
the model parameters have been adjusted, it should also be able to pre-
dict the 3D morphological feature distributions of the observed objects.
Since the ground truth in terms of 3D morphological feature distribu-
tions is unknown, the predictions of the model are compared with those
of two other different recently published stochastic geometrical models.

∙ SPHERE [29]: a 3D stochastic model based on the deformation
of an ellipsoid mesh according to multiple 3D random Gaussian
fields, which allows fine modeling of details or textures, but is
limited to star-shaped objects.

∙ GRAPE [28]: a 3D stochastic model based on hard sphere packing
that uses objective functions to approximate as closely as possible
the 2D morphological feature distributions that are targeted. Its
main drawback, in the context of this study, is that the optimiza-
tion of the parameters is subject to an a priori estimation of the
object volumes, based on the assumption of cylindrical symmetry.

The optimal parameters of the three models are found by mini-
mizing their respective cost functions using the PSO algorithm. The
resulting 2D and 3D morphological feature distributions are shown in
Figs. 13 and 14 for Exp. 1 and Exp. 2, respectively, and compared with
the ground truth measured on the images in the case of 2D features.

5.2. 2D morphological characteristics

Visually, the VOX-STORM model appears to provide more consistent
predictions than the other models in terms of 2D features, although the
differences are minimal. The Total Variation Distance between each of
the predictions and the ground truth, when known, is calculated and
shown in Table 7, and VOX-STORM achieves better results in 75% of
the cases. Overall, all three models are very successful in predicting the
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Fig. 13. Comparison of the predictions of 2D and 3D morphological features distributions of two stochastic geometrical models with those of the VOX-STORM model for Exp. 1.
The distributions and histogram are expressed in terms of number density and are normalized.
Fig. 14. Comparison of the predictions of 2D and 3D morphological features distributions of two stochastic geometrical models with those of the VOX-STORM model for Exp. 2.
The distributions and histogram are expressed in terms of number density and are normalized.
2D morphological features of size and shape of the objects, i.e. the ECD
and the AR.

The 2D characteristics of angularity and texture, namely the cir-
cularity and convexity, are predicted fairly well by all three models
for Exp. 2, with a clear advantage for VOX-STORM for circularity.
In contrast, the predictions for circularity and convexity in Exp. 1
are slightly less good, with the VOX-STORM model showing a small
advantage for the convexity.

This difficulty in fitting all three models to the circularity and
convexity distributions for Exp. 1, as opposed to Exp. 2, may be due
to the fact that the object population in the images from Experiment 1
is more diverse, with many very compact and circular objects, as
suggested by the two peaks close to 1 observed in Fig. 13 for circularity
and convexity, and other much less compact objects, as suggested
by both distributions and direct observations on images taken by the
11
morphogranulometer. In contrast, the population of objects from Exp. 2
would be more homogeneous and therefore easier for the models to
simulate.

5.3. 3D morphological characteristics

Several observations can be made regarding the 3D morphological
properties:

∙ In terms of size distributions, the VOX-STORM model performs
much better than the other two models, as shown in Table 8,
which compares the median ESD values predicted by the different
models with a value measured by laser diffraction. Furthermore,
the value obtained for Experiment 2 is identical to the value
measured experimentally by Hamieh et al. [31].
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Table 7
Total Variation Distance between the distributions of 2D morphological features
predicted by the three models considered (Fig. 13 and Fig. 14) and the ground truth
obtained by analyzing the images acquired at the end of Exp. 1 and Exp. 2, respectively

Total Variation Distance – Exp. 1

Models ECD AR C Co

VOX-STORM 0.050 0.055 0.112 0.108
SPHERE 0.055 0.064 0.129 0.119
GRAPE 0.087 0.076 0.121 0.198

Total Variation Distance – Exp. 2

Models ECD AR C Co

VOX-STORM 0.052 0.036 0.132 0.221
SPHERE 0.032 0.072 0.203 0.162
GRAPE 0.076 0.270 0.211 0.158

∙ The fact that the SPHERE and VOX-STORM models often agree
is a good sign. Since the GRAPE model relies on a priori volume
estimation to predict 3D morphological features, its predictions
should be treated with caution. In addition, the VOX-STORM
model tends to generate objects of lower solidity. Beyond the
predictive aspect, this is also a technical limitation of the other
two models, which are not designed to generate objects with
excessive concavity.

∙ Finally, the VOX-STORM model predicts a lower porosity for the
objects in Exp. 2 (0.4% on average) than for those in Exp. 1
(1.3% on average). This is in agreement with experimental obser-
vations, where the objects in Exp. 2 are larger and more compact,
probably due to the higher destabilization temperature, while
the GRAPE model predicts the opposite, with the porosity of the
objects in Exp. 2 (1.19% on average) almost identical to that in
Exp. 1 (1.21% on average). The SHPERE model, on the other
hand, only generates mesh and is not capable of predicting the
porosity.

This makes it difficult to estimate the performance of different
odels in predicting 3D features. Nevertheless, VOX-STORM seems to

btain the most convincing results, with size statistics (ESD) closer to
12

xperimental measurements, and a more realistic prediction of porosity. m
Table 8
Median value for ESD distributions predicted by the three models compared with a
laser scattering measurement.

ESD Median (μm)

Laser scattering VOX-STORM SPHERE GRAPE

Exp. 1 165 196 223 248
Exp. 2 262 262 277 323

5.4. Fractal dimensions comparison

The lack of ground truth to measure model quality means that other
methods and indicators must be used. For this reason, the calculation
of 2D and 3D fractal dimensions can be an additional indicator of the
predictive ability of the models. Therefore, the box-counting fractal
dimensions (𝐷𝐵𝐶

2 and 𝐷𝐵𝐶
3 ), the fractal dimension defined by a power

aw relating the area of objects and a characteristic dimension (𝐷𝑃𝐿
2 ),

nd the mass fractal dimension (𝐷𝐿𝑆
3 ) – measured experimentally by

aser scattering and by computer simulation for the model simulations
are calculated.

Fig. 15 and the results shown in Table 9 clearly show that the pro-
osed model is much closer to the ground truth than the other two, with
D fractal dimensions very close to those measured on images from
he morphogranulometer, and 3D fractal dimensions obtained by laser
iffraction simulation in agreement with experimental measurements,
or both experiments. In contrast, the other two models obtained lower
ass fractal dimensions for Exp. 2 than those predicted for Exp. 1,
hich contradicts the experimental measurements.

The mass fractal dimension 𝐷𝐿𝑆
3 is measured experimentally using

Mastersizer 3000 for the ground truth and simulated on the com-
uter from voxelized object representations for synthetic objects. The
cattering intensity 𝐼(𝑘) is given by the square modulus of the FFT3D
f the voxelized objects [39,58], and corrections based on Mie theory
re applied to account for absorption and refraction [59], where the
bsorption and refractive indices of latex are 0.1 and 1.528, respec-
ively. However, this is a simplified model based on assumptions that
ay not match the Mastersizer 3000 firmware in all respects. For this

eason, there may not be direct equivalence between experimentally
easured values of 𝐷𝐿𝑆
3 and those obtained by computer simulation.
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Table 9
Fractal dimensions (2D and 3D) predicted by the models and compared with the ground
truth obtained by experimental measurement or image analysis. The average values in
bold are the ones closest to the ground truth.

Fractal dimensions

𝐷𝐵𝐶
2 𝐷𝑃𝐿

2 𝐷𝐵𝐶
3 𝐷𝐿𝑆

3

Exp. 1 1.80 1.89 – 2.7
VOX-STORM 1.81 1.81 2.54 2.75
SPHERE 1.84 1.85 2.67 2.85
GRAPE 1.86 1.90 2.66 2.75

𝐷𝐵𝐶
2 𝐷𝑃𝐿

2 𝐷𝐵𝐶
3 𝐷𝐿𝑆

3

Exp. 2 1.93 1.55 – 2.9
VOX-STORM 1.94 1.62 2.76 2.90
SPHERE 1.83 1.72 2.62 2.81
GRAPE 1.78 1.70 2.52 2.64

Nevertheless, the qualitative interpretation of the results still makes
sense, and the tendency of the VOX-STORM model to suggest a higher
mass fractal dimension for Exp. 2 than for Exp. 1 is consistent with
experimental measurements, contrary to the results predicted by the
SPHERE model.

6. Discussion

The results obtained from experimental data and 3D printed ag-
gregates indicate that the proposed model performs slightly better
than the other two regarding 2D morphology. Similarly, in the case
of 3D morphological features, laser diffraction measurements of size
(ESD) and fractal dimension (𝐷𝐿𝑆

3 ) confirm that VOX-STORM still
outperforms the other two. It should be noted that all morphologi-
cal properties (except the various fractal dimensions) are computed
using built-in MATLAB® functions (alphaShape, convhull, con-
vhulln, regionprops3), which in particular provide a set of tools
for performing measurements directly on alpha shapes.

The advantages of the VOX-STORM model can be summarized as
follows

1. Better fitting and predictive performance for 2D and 3D morpho-
logical features than other stochastic geometrical models based
on hard sphere packing or mesh generation.

2. The ability to model non-compact (i.e., porous), non-convex,
non-star-shaped objects, and the ability to provide information
about object porosity.

3. Fast generation of large numbers of objects with complex geome-
tries, as well as fast calculation of their morphological properties
(Fig. 16).

4. A high degree of flexibility thanks to the large number of pa-
rameters that allow the model to generate objects with a wide
variety of morphological characteristics.

5. Voxel-mesh duality for realistic rendering, ideal for building
databases for machine learning and/or deep learning applica-
tions.

In terms of time to generate objects and time required to measure
morphological features on them, Fig. 16 shows a benchmark of the
three models used in the previous section. It can be seen that although
the VOX-STORM model is not as fast as a stochastic model based on
the deformation of an ellipsoid mesh, it still far outperforms all other
models in terms of computation time for measuring morphological
features. This is because morphological features are measured based
on the mesh defined by the alpha shape. Because of the way this mesh
is generated, it can be seen as an adaptive form of a mesh, where each
surface element does not have the same size, unlike the SPHERE model.
Because the cell size for an alpha shape is variable, the number of
13

vertices is reduced and computation time is minimized.
Fig. 16. Computational time required for each model to generate objects and perform
morphological measurements. The data correspond to a total of 20,000 objects, divided
into two sets of 10,000 elements for each of the parameterizations corresponding to
the two experiments. The letters V, S, and G correspond to the VOX-STORM, SPHERE,
and GRAPE models, respectively, and the suffix + M indicates that the time taken to
measure morphological features is added.

It is noteworthy that the variance of the generation and measure-
ment times for the SPHERE model, which is based on a single mesh,
is extremely small and does not depend at all on the size of the
objects modeled, unlike the other two approaches, where the number of
elementary particles (voxels or hard spheres) increases with the object
size and has a significant influence on the generation and measurement
times.

Finally, the GRAPE model, based on hard sphere packing, offers
the worst performance in terms of computational time, which varies
considerably with object size, as can be clearly seen from the large
variance visible in the box plot in Fig. 16. The time required for 3D
measurements is also much greater than for the other two approaches,
for which a mesh of the outer surface is provided directly as output.

However, the VOX-STORM model has the following limitations

1. The proposed model proved to be very effective in modeling the
population of Exp. 2, both at the 2D and 3D levels. Nevertheless,
the modeling of Exp. 1 is less satisfactory for angularity and
texture features, although size (ECD) and shape (AR, fractal
dimensions) features are quite well approximated. As mentioned
in the previous section, this may be due to the fact that the
population of latex aggregates present in Exp. 1 is more hetero-
geneous than in Exp. 2. One solution could be to use random
variables, possibly correlated, instead of fixed scalars in the
parameterization of the model, as is already the case for the
number of iterations.

2. As with any iterative model, the computation time increases with
the number of iterations and the size of the objects. However,
the time complexity is polynomial due to the convolution-based
3D voxel grid generation and the fact that the alpha shapes
are derived from a Delaunay triangulation whose worst-case
complexity is (𝑛 log 𝑛) [60], where 𝑛 is the number of voxels,
unlike hard sphere packing models whose complexity is much
higher and sometimes exponential [61].

3. The flexibility of VOX-STORM is partly due to its 8 parameters (7
for the optimization process). However, this means that finding
an optimal parameter set to fit a new population of objects from
2D images using an optimization process is much more time
consuming and difficult than for models with fewer parameters.
For comparison, the SPHERE model requires 5 parameters dur-
ing the optimization process, and the GRAPE model requires
only 2 (sphere size and overlap parameters), but with strong

assumptions about object geometry.
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Despite these limitations, the proposed model overall performed
better than other approaches for modeling two populations of aggre-
gates and predicting their 3D morphological properties from projected
2D images. Among the improvements mentioned are a finer parame-
terization of the convolution kernel and the use of random variables as
parameters, especially for the intensity, the correlation lengths of the
Gaussian fields, and the 𝛼 parameter, although these approaches would
ignificantly increase the already large number of parameters.

The direct continuation of this work will consist mainly in applying
he proposed method to in-situ images (such as the one shown in
ig. 9(a)), where no assumption about the orientation of the objects is
equired, which is a necessary condition for the implementation of the
ther two models tested and constitutes one of their main limitations.

Another prospect is to use the ability of the VOX-STORM model to
enerate photorealistic objects (Fig. 9(b)) to train deep learning models
o predict the 2D and 3D morphological feature distributions of objects
irectly from in-situ images, in an approach similar to that recently
eveloped by Dia et al. [62].

. Conclusion

This paper proposes a model and a method for predicting the 3D
orphological characteristics of latex aggregates from measurements

f 2D morphological characteristics made on projected images. The
roposed model, called VOX-STORM, is based on the use of a dual
aradigm: the rapid generation of a voxelized structure of the objects
y successive convolution, and the description of the surface of the
bjects in the form of a mesh obtained by computing an alpha shape.
he model is made flexible by parameterizing the convolution kernel
nd by using two random Gaussian fields to modify the probability of
ctivation of a boundary voxel at each iteration.

To match the morphological feature distributions of the objects
enerated by the model with those measured by image analysis, a cost
unction is defined and minimized by Particle Swarm Optimization. The
ethod is first validated by considering a population of 3D printed

ggregates imaged by a morphogranulometer. Relative errors on the
ean values of 2D and 3D features were all below 2.5%, and below
% for 2D features. A second numerical validation was performed on a
opulation of 40,000 synthetic objects generated by the VOX-STORM
odel itself, and the results were again conclusive, quantified by Total
ariation Distance calculations.

Then, the method is applied to two series of 3500 images taken by
morphogranulometer, each from two experiments designed to study

he formation of MBS latex aggregates under different conditions. Two
ther stochastic geometrical models, one based on hard sphere packing
nd the other on random mesh deformation, are also used to evaluate
he performance of the proposed model.

The results obtained are compared with those of the other models
nd with experimental laser diffraction measurements for the mass
ractal dimension and ESD. In virtually all scenarios, the proposed
odel outperforms the other two, both in terms of accuracy and speed,

nd is always in agreement with experimental observations. These
ncouraging results demonstrate the flexibility of the model and its
bility to rapidly generate a large number of objects with very different
orphological characteristics, which could find numerous applications

n chemical or materials engineering. Furthermore, although only im-
ges from a morphogranulometer were used in this study, the method
an be applied to any type of image, regardless of the size or shape
istribution of the objects, and at any scale.

Finally, in the last section, the advantages and limitations of the
roposed model are discussed and avenues for improvement are sug-
ested, as well as prospects for future work, including application of
he method to in-situ images and comparison with deep learning-based
echniques.
14
Additional resources

The MATLAB® (2023b) code for the VOX-STORM model is available
in a GitHub repository at: https://github.com/ltheodon/VOX-STORM.

The STL files used to design the 3D printed aggregates are available
for purchase on CGTrader at: https://www.cgtrader.com/3d-models/
food/fruit/blackberry-001.
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