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Abstract.
To enhance control and monitoring of industrial crystallization processes, we propose an innovative non-destructive

imaging method utilizing in-situ 2D vision sensors. This approach enables the acquisition of 2D videos depicting
crystal aggregates throughout the batch crystallization process. Our approach is built upon experimental observations,
specifically regarding the process dynamics and sensor fouling. It involves dynamic segmentation of observed ag-
gregates, from which quantitative analyses are derived. Notably, our method allows for tracking the evolution of the
particle size distribution (PSD) of crystal aggregates over time and the determination of the growth kinetics of crystals
that agglomerate at the sensor air gap. This enables the detection of key stages in the crystallization process and the
geometric characterization of crystal aggregate production.

Keywords: Batch crystallization process, Crystal growth kinetics, Dynamic video segmentation, in-situ 2D vision
sensors, Industrial crystallizers, Particle size distribution..
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1 Introduction

This paper is devoted to develop an image analysis method for the monitoring of industrial crys-

tallisation process. It is a part of a global framework with the goal of revolutionizing the operation

and maintenance of both batch and continuous industrial crystallizers through digital technology

and innovative sensor technologies. The project employs various on-line sensors, including acous-

tic emission1, 2 and imaging, placed within the reactor to provide real-time quantitative data on

crystallization. This data is used for monitoring the characteristics of the crystalline population,

including crystallization kinetics, crystal morphology, and quantity.3, 4

This online multi-sensor monitoring system facilitates the precise adjustment of operational

parameters for optimizing output and better control over crystal production. Ultimately, these dig-

ital tools hold promise for addressing a range of industrial challenges, such as quality control and
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incident prevention (e.g., pipe blockages).5

1.1 Motivation

Real-time video imaging facilitates the direct observation of crystallization processes within the

reactor, offering numerous advantages. It enables in-situ process monitoring while providing rich

information about crystal morphology through 2D projections of crystal aggregates. Regarding the

monitoring of crystallization processes, the expectations for analysing videos from an in-situ probe

are diverse. The primary objective is to obtain quantitative information regarding the number, size,

and shape of crystals/aggregates in the reactor (particle size distribution) at each time.6 In fact,

there are few in-situ alternatives to image analysis for obtaining such information.

However, several constraints arise in the analysis of these images. The tools implemented must

be sufficiently robust and generic to handle various types of crystals with highly variable morpholo-

gies. Furthermore, these tools must be capable of processing images with varying crystal densities,

including the rather problematic case of high density due to probe fouling (see below). Actually,

analysing such images can be exceptionally challenging, especially when crystal density is high.

The variability in crystal morphology, with crystals often appearing superimposed, agglomerated,

shiny, or transparent, complicates identification. This complexity has prompted extensive research

and the development of various specialized image analysis techniques.
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1.2 Related works

From an image analysis perspective, characterizing crystals presents several intricate challenges.

These include addressing issues related to characterizing a population of overlapping particles,

dealing with the segmentation of complex images, and exploring aspects of projective stereol-

ogy (characterizing 3D objects through their projections).7, 8 To characterize crystals, various

approaches are employed, ranging from techniques that provide a more or less detailed charac-

terization of aggregates (groups of crystals) to individual crystals.

However, there is a notable absence of a sufficiently robust method for characterizing crystals

comprehensively in a generic framework, especially when dealing with different crystal types and

variable densities. To address this gap, numerous techniques tailored to specific types of crystals

and experimental situations have been developed. For instance, there are specific methods for L-

glutamic acid,9, 10 for ammonium oxalate crystals,11, 12 or for citric acid.13, 14

It should be noted that there are more generic techniques that enable coarse indirect charac-

terization of object populations, such as morpho-granulometric analysis.15, 16 This tool serves as

a robust means for the rough characterization of a population of crystals. Nevertheless, it falls

short when it comes to providing a detailed description. Hence, we turn to specific pattern recog-

nition methods. These methods typically involve making assumptions about the morphology of

the objects and/or the overlap of the crystals. For instance, there are specific methods for overlap-

ping polygonal-shaped crystals,17 for crystal morphology identification of L-glutamic acid,9, 18, 19

or for convex crystals assuming some knowledge about the intensity of the overlap.20 Further-
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more, the techniques employed often face limitations when dealing with particularly high crystal

densities. However, it’s worth noting the existence of methods tailored to high crystal densities of

L-glutamic acid.21, 22 Some stereological approaches (inferring the 3D geometry of objects from

their 2D projection) aimed at characterizing the 3D geometry of crystals have been developed;7, 23

nevertheless, they remain highly constrained in practice concerning the morphology of crystals.

Furthermore, we should highlight innovative and highly promising stochastic geometry model-

based methods.24–27 These approaches propose addressing the disordered and unpredictable nature

of crystal populations as a random phenomenon. Nevertheless, the current state of knowledge on

the subject imposes heavy assumptions that restrict our ability to grasp the complexity of our data.

It’s worth noting the presence of artificial intelligence-based methods to tackle similar prob-

lems. For instance, the Mask R-CNN28 is widely used for object detection and semantic seg-

mentation in images, providing precise delineation of object boundaries. Similarly, the StarDist

method29, 30 has proven effectiveness in tasks such as segmentation of overlapping nuclei in mi-

croscopy images. While deep learning approaches are highly efficient and particularly suited for

such problems, a major constraint remains: the demand for a substantial and representative ground-

truth database during the training phase. Unfortunately, building such a ground truth database is

not realistic in our case. Due to the complexity and diversity of the considered situations, it would

require experts to manually segment thousands of images across various experimental configura-

tions. This represents one of the main difficulties in our problem: the absence of a comprehensive

ground-truth database. Consequently, we are unable to quantitatively evaluate the performance of

our segmentations and characterizations, relying instead on visual inspection.
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1.3 Outline of the paper

Given the unique challenges encountered in our industrial context, such as the morphological di-

versity of different types of crystals, probe fouling, high crystal density, and the lack of ground

truth, it appears that methods from the literature may not be suitable for addressing our problem.

Indeed, a review of the literature reveals, on one hand, the existence of coarse, generic but indi-

rect and imprecise characterization methods, and on the other hand, the existence of fine-grained

characterization methods that are highly specific to given situations. With the exception of deep

learning techniques, which are not applicable due to the lack of ground truth, no method seems to

exist that is sufficiently precise and general to address our issue.

In light of this, we have implemented an aggregate-scale characterization method, specific to

our video acquisition system and tailored to the encountered fouling issues, while still being suffi-

ciently generic to adapt to any type of crystal. The significance of this method lies in its versatility

and its adaptation to the phenomena observed with our experimental setup.

Initially, we will introduce the specifics of our experimental setup, followed by a discussion of

the nature and peculiarities of our acquisitions. Then, we will proceed to present the dynamic video

segmentation method we have developed. Finally, this dynamic segmentation will be leveraged

to obtain quantitative information on crystallization over time (particle size distribution, crystal

growth kinetics).

To enhance the readability of the paper, the image analysis method proposed will be illustrated
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using its segmentation results on a video of an Adipic Acid crystallization experiment at each step

of the method. Nevertheless, the results on the Adipic Acid crystallization video are presented

solely to illustrate the image analysis method. Therefore, we do not provide any physico-chemical

interpretation of the results; instead, we discuss them from an image analysis perspective.

2 Material and methods

2.1 Experimental device

Fig 1 Diagram of the experimental device (right) and representation of the EZ probe sensor (left).

Batch crystallization experiments were conducted in a reactor equipped with a stirrer. In-

situ sensors, including an acoustic emission sensor and an image sensor known as the EZ probe,

were deployed. The EZ probe was developed by a university laboratory, the LAGEPP (Labora-

toire d’Automatique, de Génie des Procédés et de Génie Pharmaceutique, UCBL Lyon1 – CNRS)

specifically for the monitoring of crystallization processes, more details can be found in.31 The EZ

probe has a diameter of 25mm and a length of approximately 300mm, it comprises a fiber-optic

bundle-supported light source that illuminates a CCD camera using transmitted light. The camera
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captures 25 images per second with a spatial resolution of 4µm2 per square pixel. This probe

records real-time footage of a small volume (1.3mm × 1mm × 1mm) of the suspension. The

analysed field covers 1.3mm× 1mm for 640× 480 pixel images, with a 1mm air gap within the

probe.

2.2 Observation of the data

In order to address the issue, crystallization experiments were conducted for various types of prod-

ucts under different experimental conditions. Images acquired during these experiments are de-

picted in Figure 2, where we can observe a wide diversity in crystal morphology. Indeed, various

crystal shapes emerge, including needles, blocks, and polyhedra. However, apart from the convex-

ity of the crystals, it appears challenging to establish a general morphological model independent

of the product and experimental conditions. Moreover, crystal segmentation for such images seems

quite complex for various reasons: blurry particles, overlaping particles, and sometimes shiny or

transparent crystals.

Fig 2 EZ probe acquisitions of different types of crystals (from left to right): Ammonium Oxalate, Citric Acid and
Adipic Acid.

Observation of the videos reveals that the probe becomes clogged during the crystallization
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process, as shown in Figure 3. Throughout the video, as it passes through the air gap, crystals occa-

sionally agglomerate within the gap and with each other. These aggregates then persist throughout

the rest of the video, with some aggregates detaching at times. Consequently, the probe’s air gap

gradually clogs until it is completely obstructed. At this stage, no crystals are visible, and only a

large mass of crystals adhered to the air gap remains visible. While favorable experimental con-

ditions, such as strong agitation, may delay this phenomenon, it ultimately occurs. Nevertheless,

from the beginning of crystallization until a certain level of air gap clogging is reached, the video

allows us to visualize a portion of the crystals present in the reactor in-situ.

Fig 3 Images of the air gap clogging at various time points from a 45-minute video of the crystallization of Adipic
Acid. Out of the 45-minute video, only the first 16 minutes are usable, as the air gap becomes excessively clogged
beyond that point.

In order to control and monitor the crystallisation process, there are several compelling reasons

to analyse the videos captured by the EZ Probe. The main objective is to acquire quantitative data
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concerning the number, dimensions and morphology of the crystals/aggregates in the reactor (par-

ticle size distribution) at each time. Indeed, there are few in-situ alternatives to image analysis for

obtaining such information.8, 17 Additionally, there are specific challenges associated with image

analysis. The employed tools must exhibit both robustness and versatility to handle diverse crystal

types with varying morphologies. Furthermore, these tools must be capable of handling images

with fluctuating crystal densities, particularly in scenarios of high density due to probe fouling.

3 Dynamic segmentation of crystals aggregate

Below, we introduce the method developed for segmenting crystallization videos captured by the

EZ Probe. To begin, we’ll explain the preprocessing steps applied to the images to achieve an

initial image binarization. Subsequently, we’ll use the dynamic phenomena observed in the videos

to refine the image binarization process and to differentiate between crystals adhering to the gap

and those passing through the probe.

3.1 First detection of the cristals phase

Firstly, our method consists of a simple binarisation of each frame of the video. To do this, we

tested several existing methods for different types of crystal. It appeared that the application of

global thresholding using Otsu’s method, after a few adjustments to the contrast and background

effect, gave the best results.

Let I(t) be the frame at time index t (To streamline notations, indices will be omitted when no

confusion arises). Each image is then considered as a matrix with dimensions of 576 × 720 with

values in the range [0, 1]. Some preprocessing operations are performed before binarization; the
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black border edge of the image is cropped, then an adjustment to the background is applied and

finally the contrast is adjusted.

The first step is straightforward, with the user specifying the cropping window of interest. For

our examples, this window is [10, 6, 700, 557], which results in an image of size 558×701 as shown

in the illustrations.

During the initial minutes of the process, no crystals have formed in the reactor, though im-

purities from the reactor or air gap may be visible in the images. These initial images essentially

represent the background and will be used for background image extraction. Particles appear on

the screen as darkened areas, allowing us to treat the background as the image with the highest gray

levels (per pixel) across the video frames. We achieve this by computing the background image as

the maximum gray levels over a specific time period and applying Gaussian filtering. Specifically,

we execute the following operation:

∀ij, Fij = max{I(t)ij , 0 ≤ t ≤ T}

F ← imgaussfilt(F, ....),

Where T denotes the number of frames used for background calculation. While all video

frames can be employed, the initial one thousand frames yield satisfactory results. Subsequently,

a Gaussian filter is applied to smooth the background and enhance calculation robustness, reduc-

ing sensitivity to the Max operator. The results of these background calculations for Adipic Acid

crystals are presented in Figure 4.
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Fig 4 An original image from a video of Adipic Acid crystalization and the background calculated from the first
thousand frames.

The background F is non-uniform, and it seems that the gray level of a crystal varies with

its position. Therefore, it is necessary to remove this background effect before binarization. To

achieve this, we chose a multiplicative transformation, which aligns better with the optical proper-

ties of crystals than a simple subtraction. Specifically, we apply the following transformation:

Iij ← (Fij)
−1Iij. (1)

Following this transformation, a non-linear contrast adjustment (gamma correction) is per-

formed, the results of these transformations are presented in Figure 5.

Fig 5 Original image on the left, background-adjusted image in the center, and contrast-adjusted image on the right.

These pre-processing steps effectively enhance crystal detection through binarization, creating
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ample contrast between crystal edges and the new background for easier identification. Binariza-

tion is performed using the Otsu method, as shown in Figure 6. While it accurately detects crystal

edges, distinguishing the interiors of crystals remains challenging. While it’s possible to perform

filling operations on the interiors of connected components, distinguishing holes in aggregates

from the interiors of crystals is a complex task. Therefore, it’s more sensible to use video dynam-

ics to differentiate beforehand between aggregates adhering to the air gap and moving aggregates.

Fig 6 Images of Adipic Acid crystals and their binarizations.

3.2 Splitting of the glued and moving aggregate

Upon reviewing the videos, we observe the presence of two distinct dynamics. On one hand,

there are aggregates that adhere to the air gap and move slowly in comparison to the probe’s

sampling frequency. On the other hand, there are mobile aggregates that move much more rapidly,

as depicted in Figure 7. This phenomenon will enable us to differentiate between aggregates fixed
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to the air gap and those in motion Let’s note, B(t) the binarisation of I(t) at time t and C(t) the

Fig 7 Two image sequences extracted from a video of Adipic Acid crystallization. These sequences are centered at a
time t0 = 9min and have respective increments of 2 s and 0.04 s seconds (the camera’s sampling frequency is 0.04 s).
It is noteworthy that the portion of aggregates adhering to the air gap (highlighted in blue) evolves at a much slower
rate compared to the rest of the aggregates.

binary image corresponding to the glued part (aggregates glued to the air gap) (the superscript

...(t) will be omitted when there is no ambiguity). So, by analysing the binary video and using a

temporal filter, it is possible to distinguish the glued part C(t). If we consider a time interval centred

at t, the clipped part C(t) corresponds to the intersection of the images in the interval. To be precise,

for an instant t0 the 2n + 1 binary images of the discrete interval {t0 − n∆t, · · · t0, · · · t0 − n∆t}

are considered, a pixel will then belong to the image C(t0) if it belongs to at least α% of the images

in the interval. This temporal filter provides a robust estimate of the intersection of the 2n + 1

binary images. In practice, we have chosen: n = 10, α = 0.8 and an increment ∆t = 0.04 s

corresponding to the sampling frequency of our videos. Esspecialy we have:

[C(t0)]ij := [(

t0+n∑
t0−n

B(t)) > α(2n+ 1)]ij, ∀ij (2)

The binary image C(t) corresponding to the aggregates glued to the air gap, is subsequently
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improved through a ”cleaning” procedure. This procedure employs standard morphological oper-

ations (opening, closing using a ball), as well as a hole-filling operation for connected components.

Next, the remaining aggregates, denoted as R(t) = B(t) \ C(t), also undergo the same clean-

ing procedure. Finally, the binary image corresponding to all aggregates in B(t) (regardless of

whether they are adhered to the air gap) is obtained by simple uniting B(t) ← R(t) ∪ C(t). This

approach, involving a multi-stage segmentation refinement process (cleaning C(t), then R(t), and

finally uniting them), prevents the filling of holes that do not correspond to the interiors of crystals,

which could otherwise result from the overlap of moving aggregates with those glued to the air gap.

In the end, each image is segmented into two parts: the binary image corresponding to all ag-

gregates, denoted as B(t), and the image C(t) representing the aggregates glued to the air gap. For

the analysis of moving aggregates, not all related components of B(t) can be considered. This is

because some related components intersect the image’s edge and/or the glued part C(t). Therefore,

for the study of moving aggregates, we can consider that we have a restricted spatial support that

evolves over time W\C(t) (where W designates the rectangular observation window). Thus, we

will construct the image D(t) corresponding to the completely detected moving aggregates as the

set of connected components of B(t) strictly included in W\C(t) (i.e., those which intersect neither

the edge of the image nor the glued part C(t)).

Finally, at each instant of the video, three binary images will be stored: B(t) corresponding to

all aggregates on the screen, C(t) corresponding to the aggregates glued to the air gap, and D(t)

representing the aggregates in full visible motion. These three binary images will then be saved in
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each of the channels of an RGB image. The outcome is an RGB video that segments the original

video.

3.3 Segmentation results and discussion

Fig 8 Images from a segmented video, depicting only parts C(t) and D(t). In blue, the glued aggregates, and in green,
the fully detected moving aggregates.

We have implemented and tested this method on various crystallization videos. Since we lacked

a segmentation reference, the assessment of segmentation quality relied on visual observation. The

results, as shown in Figure 8, are quite compelling. We’ve achieved a satisfactory differentiation

between the glued and mobile aggregates, and the number of detected moving aggregates is suffi-

ciently large for statistical representation.

However, the obstruction of the air gap imposes limitations on the study for several reasons.

Firstly, beyond a certain level of probe clogging, the segmentation of the glued part becomes less
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Fig 9 Critical cases with excessive air gap clogging result in poor segmentation of the glued part and a spatial support
too constrained for accurate moving aggregate detection.

effective, resulting in erroneous hole-filling in connected components. Secondly, the available

spatial support for detection, W\C(t), becomes too limited, resulting in a reduced number of de-

tections and the inability to detect large aggregates, as shown in Figure 9. Thirdly, the fouling of

the probe and the evolving nature of the spatial support introduce an observation bias. This is why

we will use a Bayesian bias corrector introduced later. In cases where fouling is particularly severe,

as illustrated in the critical scenarios presented in Figure 9, the spatial support for aggregate detec-

tion becomes too limited, rendering observation impossible. In practice, we apply a threshold on

the surface of the spatial support, limiting our analysis to periods when aggregates are detectable.

4 Quantitative analysis

The glued part C(t) and the detected part D(t) yield distinct insights into the crystallization process.

In the glued part, aggregates can be tracked across consecutive video frames, facilitating the ob-

servation and quantification of their growth. The analysis of C(t) provides the temporal evolution

of quantitative characteristics (e.g., area, diameter, equivalent diameter) for each air gap-adhered

aggregate, allowing us to infer their growth kinetics. It’s worth noting, however, that due to hydro-

dynamic factors, the kinetics of gap-adhered crystals may not necessarily reflect those within the

reactor.
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Analysis of the detected part D(t) provides abundant quantitative insights into the process.

The evolution of the number of detected aggregates (connected components) detected over time

highlights the key stages of crystallisation. Additionally, all geometric and morphological char-

acteristics of these aggregates are readily accessible at any moment, allowing for instantaneous

granulometric distributions. It’s important to note that the detection method employed with the

restricted spatial support W\C(t) introduces a bias. Larger aggregates have a lower probability of

being entirely visible (strictly within W\C(t)) compared to smaller ones. Furthermore, this bias in-

tensifies as the air gap gets clogged (with increasing C(t)). However, implementing bias correction

accounting for spatial support can be used.

4.1 Biais correction for the moving aggregates

The detection of moving aggregates D(t) is performed on a dynamic spatial support, W\C(t),

which evolves over time, gradually decreasing, introducing bias. However, employing Bayesian

bias correction under reasonable probabilistic assumptions is feasible.

Consider the original observation window W and assume an aggregate X is a random set wich

appears within the window with uniform position, independent of its dimensions. In other words,

the center x of X is considered to have a uniform distribution across W . Then, the conditional

probability of this aggregate X being visible (i.e., X ⊂ D(t)) knowing it takes a values Y can be

directly expressed.

Indeed, X is visible if and only if its center belong to the eroded spatial support x ∈ (W\C(t))⊖
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X , thus according to the uniform position of X:

P(X is visible | X = Y ) =
A((W\C(t))⊖ Y )

A(W )
. (3)

Subsequently, these probabilities calculated for all observed aggregates are employed to weight

the histograms of their geometric characteristics. In practical terms, the objective is to enhance the

representativeness of observations with a lower likelihood of visibility. In essence, the probability

of an aggregate’s appearance is deduced from both its observation and the likelihood of it being

visible.

More specifically, let X represent the random set associated with the aggregate, and consider a

family of n observed aggregates denoted as {X1, . . . , Xn}. We define the weight of the observation

Xi at time ti as:

ωi = A((W\C(ti))⊖Xi), (4)

where ti denotes the instant of the observation. The application of Bayes’rule yields:

P(X = Xi) =
n∑

k=1

ωk

nωi

P(X = Xk), (5)

wich is solved as:

P(X = Xi) = (
n∑

k=1

ωi

ωk

)−1. (6)

The computation of the weight involves morphological operations (erosion), which can be
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costly for specific shapes of Xi. Consequently, to improve computational efficiency, it is more

judicious to use a ball with an equivalent diameter of Xi (e.g., the equivalent diameter of the con-

vex hull). Such simplification for the weight computation has a pertinent theoretical foundation

according to the generalized Steiner formula for erosion32 if the random aggregate is assumed to

be isotropic.33

The computation of the discrete distribution among the observed aggregates provides a direct

distribution of various geometric and morphological characteristics relevant to practitioners, in-

cluding, area, perimeter, equivalent diameters, and Feret’s diameter. This allows, among other

things, the calculation of the particle size distribution of aggregates for various size-related char-

acteristics. Due to the non-convex nature of these aggregates, it’s advisable to prioritize measure-

ments that are unaffected by convexity, such as maximal Feret diameter or other characteristics

associated with the convex hull of the aggregates.

Practically, to enhance the data’s representativeness, the aggregate distribution at time t0 is

derived from the aggregates detected within a time window [t0 − a; t0 + a] centered at t0. We

selected a time window with a 5-second amplitude. The evolving of maximal Feret diameter

distributions for a video of Adipic Acid crystallization are presented in Figure 10. We can observe,

firstly, that the particle size distribution becomes increasingly scattered over time. As the reaction

progresses, larger aggregates are detected. Secondly, the total number of detections over time

exhibits a characteristic phase of exponential growth, indicative of the reaction kinetics.
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Fig 10 Distribution histograms of the maximum Feret diameter over time, for a video of Adipic Acid crystallization.
The Feret’s diameters unit is in pixels length (according to our spatial resolution 1 pixel = 2µm).

4.2 Analysis of the glued aggregates

The aggregates of the glued part, C(t) can be tracked across numerous frames, enabling clear ob-

servation of their growth. By examining these aggregates in segmented crystallization videos, their

growth becomes readily visible (see video in attachment). Consequently, the dynamic analysis of

the connected components of C(t) (i.e., the aggregates adhering to the air gap) reveals insights into

the kinetics of crystal growth. However, several observations need to be made to quantify this

growth.

The connected components of the glued part, that is, the aggregates attached to the air gap, display
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Fig 11 Example of the evolution of the glued part at three time points from a video of Adipic Acid crystallization.

various growth patterns, as illustrated in Figure 11. On one hand, they undergo continuous intrin-

sic growth due to the crystals’ own development. On the other hand, they experience intermittent

growth due to the arrival of new aggregates on the air gap and/or the merging of connected com-

ponents. Additionally, there are instances where an aggregate detaches from the air gap. These

diverse forms of evolution consequently alter the topological structure of C(t).

In order to quantify the growth of aggregates adhered to the air gap, it is essential to consider

the evolution of the topological structure of C(t). Rules for distinguishing between the various

types of component growth must be established. To achieve this, we employ connected compo-

nent trees.34, 35 This tool allows us to summarize the topological evolution of the structure over

time, capturing phenomena such as component fusion and the appearance of new aggregates. This

approach reveals the different modes of growth of connected components, as depicted in Figure 12.
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Fig 12 llustration of the aggregate tracking rule and the corresponding connected component tree. Here, three ag-
gregates are tracked: aggregate (A) is tracked during the period [t0, t3], aggregate (B) during [t0, t1], and aggregate
(BCD) during [t2, t3].

The tracking of an aggregate between two images is carried out using a morphological distance:

a connected component At present in image t is tracked at time t + 1 if and only if At+1 has a

shape that is sufficiently close to At. Specifically, the rule considered is as follows: Component At

persists at time t+ 1 if and only if:

At+1 ⊂ At ⊕B(0, r), (7)

where r is a small chosen value that serves as a prior bound for ∆d(A)
∆t

, the discrete derivative

of the diameter of A.In practice, choosing the value of r is straightforward, as the instantaneous

continuous growth of an aggregate between two successive images is very small compared to the

size of new aggregates that would adhere to the air gap. In our case, we chose a ball with a radius

of 5 pixels.

Finally, applying the aforementioned tracking rule, the extraction of tree branches without
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fusions allows the identification of periods during which a connected component can be tracked,

as shown in Figure 12. For each tracked aggregate, the evolution of its diameter is obtained over

the entire tracking period. This provides, among other things, information about the kinetics of

crystal growth. The evolution of the equivalent diameter of aggregates adhering to the air gap

during Adipic Acid crystallization is depicted in Figure 13. These results reveal the presence of

a temporally localized growth phase with a distinctive profile. Such data would enable experts to

adjust parameters of physico-chemical models of crystal growth kinetics.

Fig 13 Evolution of the diameter of the different aggregates adhered to the gap followed during their respective
periods (each curve corresponds to the tracking of an aggregate). The diameters unit is in pixels length (according to
our spatial resolution 1 pixel = 2µm).

5 Conclusion and prospect

5.1 Conclusion

The proposed method effectively addresses our industrial challenge by enabling the quantitative

analysis of crystal aggregates from data provided by our acquisition system, regardless of the con-

sidered crystal morphologies. This is a semi-supervised approach where the operator configures
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the segmentation parameters for video analysis, observes the segmented video, and then selects

a relevant period for quantitative characterization of the aggregates. This approach leverages the

dynamics of the acquired videos and the phenomenon of probe fouling to extract quantitative in-

formation about the crystallization process.

In particular, the analysis of the detected part, denoted as D(t), reveals a wealth of quantitative

information about the process. It provides access to the particle size distribution of the aggregates

in the reactor over time and highlights the key stages of crystallization. On the other hand, the

analysis of the glued part, denoted as C(t), allows us to track the evolution of aggregates adhered

to the gap, thereby deducing the growth kinetics of these crystals. However, it is important to note

that, due to hydrodynamic reasons, the kinetics of glued crystals may not necessarily reflect those

of the crystals present in the reactor.

This method has several limitations. Firstly, beyond a certain degree of probe fouling, the

segmentation becomes less relevant, thereby hindering quantitative analysis. Furthermore, the

proposed characterization is limited to the scale of the aggregates. Lastly, it is essential to bear in

mind that the characterizations and quantifications pertain to the 2D projections of the aggregates.

Therefore, caution should be exercised in their interpretation, particularly because these aggregates

are not necessarily convex.23, 36
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5.2 Prospects

From an application perspective, various opportunities arise based on the practical objectives envi-

sioned, as the segmentation method provides direct access to the projections of aggregates. How-

ever, from the standpoint of our study, this method’s primary limitations lie in its restriction to the

aggregate scale and the confined characterization to 2D projections. To address these limitations,

it would be interesting to achieve a finer 3D characterization of the process, focusing on the scale

of individual crystals.

For this purpose, accessing the aggregate projections provided by the proposed segmentation,

combined with stochastic geometric models of aggregates, presents a promising perspective. Re-

cent work on a similar issue has demonstrated encouraging results.37 The underlying idea involves

constructing a realistic 3D model of crystal aggregates, which would subsequently be characterized

by the numerous aggregate projections available through the segmentation method. Ultimately, this

would allow for the direct characterization of the 3D geometry distribution of individual crystals.

It is worth noting that this approach necessitates restrictive assumptions about crystal morphology,

yet it remains a promising prospect for specific targeted applications.
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amélioration de l’extraction morphologique des surfaces, amélioration de la reconstruction
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