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Mines Saint-Étienne, Univ. Lyon, CNRS, UMR 5307 LGF, F-42023, Saint-Étienne, France

Abstract

Diffraction peak profiles were calculated numerically for dislocation ensembles

with different spatial arrangements and correlations between the Burgers vector

signs. The latter property determines the stored elastic energy in the crystal and

the width of the diffraction peaks. It is shown that within the approximation

of the asymptotic line-profile theory the relationship between peak breadth and

the magnitude of the diffraction vector in the modified Williamson-Hall (mWH)

plot is linear. The slope of the line is proportional to the arrangement parameter

M and to the square root of the dislocation density. The only rigorous way for

determining M is the asymptotic Fourier method. Therefore, the evaluation

of the dislocation density from the mWH-plot alone is impossible and should

be avoided. The mWH plot however, is very useful in practice. Its linearity

indicates a consistent asymptotic line-profile analysis.
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X-ray or neutron line profile analysis (LPA) is a powerful tool for determin-

ing microstructural parameters such as coherent domain size and dislocation

density in faulted crystals [1]. The corresponding theories relate the Fourier

transform [2, 3, 4] or the restricted moments [5, 6] of the intensity distribution

to parameters of the dislocation ensemble such as the average density (ρ), its5
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spatial fluctuation, and the outer cut-off radius Re (or the arrangement param-

eter M = Re
√
ρ as introduced by Wilkens [3]). These theories are based on the

mathematical form of the mean square strain (< ε2 >) and have an asymptotic

character, which means that the predicted equations describe accurately only

the beginning of the Fourier transform or the tail region of the peak profile.10

Well before the development of the accurate models, Warren and Averbach

proposed a general Fourier method for the evaluation of the coherent domain size

and microstrain [7]. This served as starting point for the simplified Williamson

and Hall analysis [8] aiming to retrieve the same parameters from the breadths

of the peaks. They have shown that for lattice defects creating a Gaussian distri-15

bution of atomic displacements, the integral width (β∗, measured in reciprocal

space) corresponding to large diffraction vectors (~g) should be linear as a func-

tion of the modulus of g = 1/dhkl (where dhkl is the distance between the planes

corresponding to the same hkl family). According to their derivation the slope

and the intercept of the expected line are proportional to the average micros-20

train < ε2 >1/2 and to the inverse of the crystallite size (∼ 1/t), respectively.

Therefore, plotting β∗ as a function of g (the so called Williamson and Hall or

WH-plot) allows a simple evaluation of these microstructural parameters.

For plastically deformed crystals it was experimentally found that the peak

breaths show a characteristic scatter about an imaginary line, a phenomenon

called ”strain anisotropy” [9]. Based on the results of LPA theories stating that

< ε2 > is proportional to ρ and to the contrast factor Cg of dislocations [10, 11]

Ungár and Borbély [12] have introduced modified versions of the Williamson-

Hall and Warren-Averbach analyses (called mWH and mWA). Plotting the full

width at half maximum (FWHM, which behaves similarly to β∗ [11, 13]) as a

function of g
√
Cg the characteristic scatter disappeared in the mWH-plot and

the data could be described by a parabola [12]

∆g0.5 =
0.9

t
+ (

πAb2

2
)1/2ρ1/2 (g

√
Cg) +O (g

√
Cg)

2, (1)

where ∆g0.5 is the FWHM and 0.9 is the Scherrer factor of a cube shaped

crystallite. The parameter A depends on dislocation arrangement (M) and can25
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be determined by Fourier analysis only. Nevertheles, the knowlegde of A in

eq.(1) could be very useful in practice, since it would allow determining ρ. In

spite of its utility and growing interest in using the method (due to its simplicity)

no accurate study has been performed revealing the relationship between A and

M . According to ref. [14] A ≈ 10 can be taken for a wide range of dislocation30

distributions, but the paper doesn’t give more details. In view of the increasing

number of publications [15, 16, 17] using the mWH-plot only for evaluating

ρ, it is important quantifying the relation between A and M as well as the

applicability limits of the mWH method.

In this work the peak profiles of infinitely long right circular cylindrical crys-35

tals containing screw dislocations parallel to the cylinder axis were numerically

calculated by considering the displacement field (~u) of dislocations for isotropic

media [18]. A cylinder radius of R=1.5 µm and a density of ρ = 1014 m−2 were

first considered, which resulted in 1424 dislocations in the model (712 inside

the cylinder and 712 image dislocations, required by the zero stress condition40

on the lateral surface of the cylinder [19]). The number of dislocations with

positive and negative Burgers vectors was equal and oriented with their senses

along ± [1, 1, 0]. The simulations were done considering the fcc lattice of Al with

elastic anisotropy close to 1.

To account for correlations between dislocations’ spatial position and be-45

tween their Burgers vectors four arrangements were studied. In the random-

random (RR) model both the Burgers vectors and positions were randomly

chosen. In the random-cell (RC) model the random Burgers vector choice was

kept, but dislocations were positioned into the walls of a cellular structure (fig.1).

Finally, random dipoles (RD) and random dipolar cells (RDC) were generated.50

For these structures the dipole width d, was equal to the average dislocation

spacing ρ−1/2 = 0.1 µm and the dipole vector sense (~d) was random. The

dipole center locations were randomly chosen over the whole cross section of the

cylinder (RD model) or in the dislocation wall region (RDC model).

In the following we describe the peak profile I(q) in terms of the reciprocal

space variable q = k−g with origin at the peak center, where k = 2sinθ/λ is the
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Figure 1: Example of a random cell (RC) model. Positive and negative dislocations are

marked by ”+” and ”-”, respectively. The distance between cell-wall centers in horizontal and

vertical directions is 0.3 µm and the mean wall thickness is 0.1 µm.
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scattering vector and g = 2sinθB/λ is the diffraction vector corresponding to

the peak center given by the Bragg angle θB (λ is the wavelength of the X-rays).

It is handy to describe I(q) in terms of its Fourier transform

A(L) =

∫ ∞
−∞

I(q)e−2πiqL dq, (2)

which can be calculated based on the theory of X-ray diffraction [20]. In eq.(2) L

is the modulus of the vector ~L perpendicular to the diffracting lattice planes hkl.

~L can be parallel or anti-parallel to ~g. According to the kinematical scattering

theory the Fourier transform A(L), of the peak profile for crystals with lattice

defects can be written as [3, 10]

A(L) =
1

V

∫
e2πi~g·[~u(~r+

~L)−~u(~r)] dV, (3)

where V is the volume of the crystal and ~u(~r) is the sum of the displacement55

fields created at point ~r by all the defects in the crystal. Eq.(3) also assumes

that diffraction peaks have unit area
∫
I(q) dq = 1.

The real and imaginary parts of the Fourier coefficients (eq.(3)) were calcu-
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Figure 2: 311 peak profiles of the studied models. The peaks were calculated for the charac-

teristic radiation CuKα1 = 0.15406 nm.
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lated by Monte-Carlo integration considering 500,000 random point pairs in the

cross section of the cylinder The imaginary part related to the < sin > term had60

values below 10−4 in agreement with the negligible polarization of the generated

structres [21] and it was omitted. For each model 100 different configurations

were considered and the Fourier coefficients were averaged. This corresponds to

coherent scattering of the X-rays by all realizations. The peak profile for a given

model was calculated by taking the inverse Fourier transform of the averaged65

coefficients (based on eq.(2)). Then the integral breath (β∗) and the FWHM

were evaluated. β∗ was equal to the value obtained from the original coefficients

(β∗ = 1/(L1

∑
A(L))) within a relative error of 10−4, where L1 = 3 nm).

Several average peaks were calculated corresponding to the diffraction vec-

tors given in Table S1 of the Supplementary Material (SM1). The 311 peaks70

shown in fig.2 indicate that models with uncorrelated Burgers vectors (RR and

RC) lead to broader peaks than the models containing dipoles. The latter,

1 table, figure and equation numbers in the SM are preceded by an S
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due to effective screening of their stress fields, create less elastic energy in the

crystal and consequently narrower peaks. The original WH-plot of the peaks

corresponding to the RC model is shown in fig.3. Both β∗ and the FWHM75

follow the linear trend predicted by Williamson and Hall [8]. A characteristic

scatter is, however, visible (ex. at equal g) and the non-zero intercepts of the

fitted lines suggest the existence of small coherent domains. These ”deviations”

from the expected line with zero intercept are corrected in the mWH-plot [12] by

plotting the widths as a function of g
√
Cg (fig.4). The corresponding contrast80

factors are given in Table S1.

Remarkable is the separation of the results in two groups, the RR and RC

models on one side and for RD and RDC on the other. Since both groups

contain models with different spatial arrangements (random and cellular), we

conclude that peak broadening and microstrain are mainly determined by the85

correlation between Burgers vector signs and less by spatial arrangement. The

slope and intercept of the fitted lines determine A and the coherent size t (eq.1)

and are given in Table 1. Ungár and Tichy [22] have suggested a modification

of eq.(1) by plotting (∆g)2 as a function of g2C (see eq. (S3) and fig. S1).

The two approaches give identical values for B2 and A, but there are significant90

differences between D and t. The corresponding values given in Table 1 indicate

that D is smaller than t by a factor of 4 to 7 and is in the range well measurable

by standard equipment (below 1 µm). Since no size broadening is expected

for the analyzed structures, we conclude that the original formulation (eq.(1))

should be used.95

The maximum value of A ≈ 1 is smaller by one order of magnitude than the

value of A = 10 mentioned in [14]. We emphasize that the RR (and also RC)

model with uncorrelated Burgers vectors corresponds to the upper limit of mi-

crostrain created by dislocations, which cannot be realized in real crystals. As

shown in ref. [23] uncorrelated dislocations create stored elastic energy which100

diverges with the crystal size and therefore this model has the largest micros-

train. According to discrete dislocation dynamics [24], in plastically deformed

crystals a correlation between positive and negative Burgers vectors develops.
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Figure 3: WH-plot of the FWHM and β∗ for ten peaks corresponding to the RC model.

Figure 4: mWH-plot considering the FWHM of 10 peaks corresponding to the studied models.
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Table 1: Parameters A and t of the mWH eq.(1) as well as B2 and D after Ungár and Tichy

[22] (eq. (S3)). The error of A (and B2)≈ 0.02, while the relative errors of t and D are below

0.01.

Model RR RC RD RDC

A 0.89 0.87 0.28 0.26

B2 0.93 0.91 0.30 0.27

t [µm] 1.10 1.19 1.28 4.83

D [µm] 0.26 0.28 0.36 0.66

The corresponding correlation lenght is of about the average dislocation spacing,

which means that for real structures A < 1. Simulations for edge dislocations105

(fig. S2) confirmed that the maximum value of A ≈ 1, which lets us concluding

that A = 10 [14] underestimates the dislocation density by more than one order

of magnitude.

The lower limit of A can be estimated by considering the narrowest dislo-

cation dipoles present in the sample. Using transmission electron microscopy110

(TEM) Essmann and Mughrabi [25] conclude that the annihilation distance for

screw and edge dipoles in copper is of about 50 nm and 1.6 nm, respectively. As

this distance can depend on the chemical composition and crystal structure we

consider an approximate lower limit for edge dipoles of d = 5 nm. Simulations

for the RD model give A ≈ 4 · 10−6, which is practically zero.115

According to the above estimations A is between 0 and 1, but the impor-

tant question which arises is whether one can determine its value in a given

experimental case? One possibility would be using TEM, however, the method

can be rather time consuming if results with statistical relevance are required.

While TEM easily allows determining the spatial arrangement of dislocations,120

present simulations have shown that peak broadening is mainly determined by

the correlations between the signs of the Burgers vectors. At low densities Burg-

ers vector determination is possible by TEM, but it becomes more and more

difficult if the local density exceeds a few times 1014 m−2.

Evidently, A can be estimated by asymptotic Fourier analysis [2, 3, 4], but125
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Figure 5: Empirically found relation between A and the Wilkens arrangement parameter M .
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in this case the dislocation density and the outer cut-off radius are also ob-

tained, which makes the use of the mWH-plot superfluous for ρ evaluation. For

better understanding the asymptotic method it is instructive to recall its basic

assumptions and to compare them with the information available in the mWH-

plot. The asymptotic Fourier [2, 3, 4] and restricted moment [5, 6] methods130

exploit the mathematical form of the displacement field of a single dislocation

in an infinite medium as well as the approximation that close to the disloca-

tion line the influence of other dislocations on the gradient of ~u is negligible.

Thanks to this condition the dislocation density evaluated from the asymptotic

models is not affected by the dislocation arrangement. The integral width and135

the FWHM depend on the contrary on the correlation between the signs of the

Burgers vectors over large distances, which in a given practical case is influenced

by the crystal structure, deformation path, active slip systems, etc. Fortunately,

the Fourier analysis also allows determining the corresponding correlation be-

tween the Burgers vector signs, which is expressed in terms of the outer cut-off140

radius Re [4] or the M parameter [3]. The asymptotic analysis was performed in

this work for all simulated profiles. The results evidence an empirical allometric

relationship A = αMβ , with α = 0.16± 0.03 and β = 0.6± 0.1 (fig.5).
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As discussed above there are no means estimating A for a given experimental

case other than the Fourier analysis. For this reason the use of the mWH-plot145

alone for determining ρ should be avoided. The same remark is also valid for

the phenomenological model of Williamson and Smallman [26] based on the

classical WH-plot. Contrary to its inadequacy for quantitative ρ evaluation,

the mWH plot is very useful in practice for checking the consistency of LPA

results. Its main strength relies in the predicted linear relationship between150

β∗ (or FWHM) and g
√
Cg. Additional simulations indicate that the second

order term in eq.(1) is negligible for densities varying from 1013 to 1015 m−2

(fig. S3), for mixed ensembles of edge and screw dislocations (fig. S4) as well as

for the case when dislocations of different slip systems are present. Therefore,

when dislocations (or small isotropic coherent domains and dislocations) are155

the major sources of peak broadening, the linearity of the mWH-plot suggests a

consistent asymptotic line-profile analysis. This means that the assumptions of

the asymptotic theory were valid and the correct contrast factors were chosen for

the studied case. As an example we consider the case of narrow dipoles (d = 5

nm), when the mWH-plot is better fitted by a parabola (fig. S5) rather than a160

line. In this case the contrast factor (calculated for a single dislocation) fails to

correctly capture the strain field around the dipole, therefore, narrow dipoles

represent an applicability limit of the theory. Such structures have a small M

parameter (≤ 1) [27], which should always raise concern on the validity of the

results in real cases.165

It seems that the linearity between ∆g and g has a much deeper physical

sense than the original approximation of Williamson and Hall [8] for lattice de-

fects creating a Gaussion distribution of atomic displacements. As shown in

ref. [28] this linearity is an intrinsic property of the Bragg equation. Taking

its derivative, one can easily show that the peak width ∆g = cos(θB)∆(2θ)170

/λ is linearly related to the standard deviation of the interplanar spacing,

< (∆dhkl/dhkl)
2 >1/2 (or microstrain) and to the magnitude of the diffrac-

tion vector g = 2sin(θB) /λ. Present simulations show that anisotropic effects

induced by the directionality of the displacement field of dislocations as well as

10



by the non-Gaussian distribution of the atomic displacements are accounted for175

in the mWH-plot by the square root of the contrast factors.
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