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Example of an industrial problem: optimization of a wind-farm
layout

A set of points model
• Each point (vector) represents the

positions of a turbine.
• The set of points corresponds to the

positions of all the turbines.
• Find an optimal layout of turbines

minimizing the wake effects.
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Context and problem formulation

Optimization of functions defined over clouds (sets) of points
• Dealing with functions assumed to be black-box
• We consider functions having inputs in the form of bags of vectors (or point clouds).
• These types of functions are encountered in many domains, such as: image processing,

design of experiments optimization, . . .

Variable of interest
• X : space of all sets of n unordered points {x1, . . . , xn} where xi ∈ Rd , i = 1, . . . , n and
nmin ≤ n ≤ nmax.

• X ∈ X is a set of points and will be referred to as a cloud of points.

Approach
• Computationally cheap case: evolutionary algorithm
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Mixed aspect: no order and varying size

Comparing two clouds of points with different sizes
The functions of interest are permutation-invariant with respect to their inputs.
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Figure: Two clouds of points in d = 2 dimensions with n = 15 points for the blue cloud and n = 10 points for
the red one.

5 / 29



Evolutionary algorithm over clouds of points
in convex domains
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Optimization with Evolutionary Algorithm

Difficulties
• F is a black-box function, no information about its smoothness, a fortiori its convexity.
• All these aspects combined make it difficult to define gradients.

Related works for windfarm design
• We can find in Bilbao and Alba [2], Pillai et al. [4], and Pillai et al. [3] algorithms,

optimizing positions, based respectively on simulated annealing, genetic algorithm and
particle swarm optimization.

• Authors suppose predefined positions and use binary encoding. Our work differs by letting
points vary continuously.

Evolutionary algorithms
• We adopt an evolutionary algorithm that evolves an initial population, creates new ones by

crossover and mutation and stops after a fixed number of iterations.
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How to define crossover and mutation over clouds of points ?

With the discrete uniform measures modeling

• For two cloud of points X (j) = {x(j)1 , ..., x(j)n }, j = 1, 2 we associate PX (j) = 1
n

∑n
i=1 δx(j)i

• We can compute a new cloud of points by finding an intermediary uniform measure.

Wasserstein distance
• For two measures µ and ν defined over Rd , the Wasserstein distance of order p is defined

as follows : W p
p (µ, ν) = infπ∈Π(µ,ν)

∫
Rd×Rd ρ(x , x

′)pdπ(x , x ′)
• ρ(x , x ′) corresponds to the Euclidean distance between x and x ′

• Π(µ, ν) is the set of all probability measures defined over Rd × Rd with marginals µ and ν.

Wasserstein barycenter
• A barycenter (ν∗) of N measures ν1, ..., νN is defined as to minimize
f (ν) =

∑N
i=1 ϵiW

p
p (ν, νi ), with ϵi ≥ 0,

∑N
i=1 ϵi = 1 see Agueh and Carlier [1].
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Wasserstein distance to define barycenter

Wasserstein barycenter: illustration
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Figure: Two initial clouds at left and right, and their Wasserstein barycenter in the middle
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Contracting effect

Theorem
Consider P ′ to be the set of discrete measures over Rd with finite support and ϵ ∈ [0, 1]. Let
PX1 , PX2 and PX∗ be defined respectively as
• PX1 =

∑n
i=1 αiδx1

i
,
∑n

i=1 αi = 1, αi > 0,

• PX2 =
∑m

j=1 βjδx2
j
,
∑m

j=1 βj = 1, βj > 0 ,

• PX∗ =
∑k

l=1 λlδx∗l ,
∑k

l=1 λl = 1, λl > 0 ,

with PX∗ the unique minimizer of arg
PX∈P ′

min ϵW 2
2 (PX ,PX1) + (1 − ϵ)W 2

2 (PX ,PX2).

If the above is verified, we have:

∀l ∈ {1, ..., k}, x∗l ∈ Conv(x1
1, ..., x1

n, x2
1, ..., x2

m)

where Conv(x1
1, ..., x1

n, x2
1, ..., x2

m) is the closed convex hull of the set {x1
1, ..., x

1
n, x

2
1, ..., x

2
m}
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Evolutionary operators: crossovers

• Given ϵ ∼ U [0, 1]
• Equal weights crossover: For two measures (PX1 and PX2), Xc defined as

PXc = argmin
PX

W 2
2 (PX ,PX1) +W 2

2 (PX ,PX2)

• Random weights crossover: For two measures (PX1 and PX2), Xc defined as

PXc = argmin
PX

ϵW 2
2 (PX ,PX1) + (1 − ϵ)W 2

2 (PX ,PX2)

• What crossover ?
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Evolutionary operators: mutations
• Escape from contraction: To define operators taking into account the contracting

property, we introduce the following operators over clouds of points
• Full Domain mutation: given Xc and Xrand a cloud of points randomly sampled in the

domain, Xm defined as

PXm = argmin
PX

ϵW 2
2 (PX ,PXc ) + (1 − ϵ)W 2

2 (PX ,PXrand
)

.
• Boundary mutation: given Xc and Xbound a cloud of points randomly sampled at the

domain boundary, Xm defined as

PXm = argmin
PX

ϵW 2
2 (PX ,PXc ) + (1 − ϵ)W 2

2 (PX ,PXc∪Xbound
)

.
• How to arrange the two mutations ?
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Alternating Mutation

A first type of mutation based on Wasserstein operators alternates, with a random weight,
between the Boundary and the Full Domain mutations. It is detailed in Algorithm 1.

Algorithm 1 Alternating Wasserstein Mutation
Input: X cloud to mutate, prob the probability to perform a Boundary Mutation
Output: The mutated cloud(s)

1: Draw ϵ and r uniformly in [0, 1]
2: if r ≥ prob then
3: Do Full Domain Mutation with weight ϵ
4: else
5: Do Boundary Mutation with weight ϵ
6: end if

The two mutations can also be done successively in a deterministic way.
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Default crossovers and mutations: comparison algorithm
denoted Ref_gen

Crossing by random choice of points among parents
• Let X 1 = {x1

1, ...x
1
n1
, ∅n1+1, ..., ∅nmax} and X 2 = {x2

1, ...x
2
n2
, ∅n2+1, ..., ∅nmax}

• X c = {x1, ...xn, ∅n+1, ..., ∅nmax} is their crossover if ∀i ∈ {1, ..., nmax}, xi is randomly
sampled in {x1

i , x
2
i} with a Bernoulli law (1/2). Rearrange to have full points on left.

Gaussian Mutation
• Let X c = {x1, ...xn, ∅n+1, ..., ∅nmax}
• Sample m randomly in {n − 1, n, n + 1}
• Add or remove point according to m
• Perturb each point with a truncated Gaussian with a diagonal covariance matrix where the

variance is given by the following :
• σ2 = 0.01 ∗ E [∥X − X ′∥2].
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Test functions

Inspired from wind-farms

• We consider the following family of test functions mimicking wind-farms productions:

• Fθ({x1, ..., xn}) =
∑n

i=1

(∏
j ,j ̸=i fxj ,θ(xi)

)
f0(xi)

Mindist and Inertia
• FminDist({x1, ..., xn}) = mini ̸=j ||xi − xj ||, Finert({x1, ..., xn}) =

∑n
i=1 ||xi − X̄ ||2 with

X̄ = 1
n

∑n
i=1 xi

The input of the functions
• Number of points vary between 10 and 20, in a fixed rectangular domain. Number of

iterations and populations sizes are respectively 500 and 300. We maximize the functions.
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Diversity of population

Wasserstein-based diversity
The diversity can be calculated at each iteration in the following way:

Div(pop) =
1
λ

∑
Xi∈pop

W 2
2 (PX∗ ,PXi

) , (1)

where pop = {Xi , i = 1, ..., λ} is a population of sets, PXi
the associated discrete measures,

and PX∗ is the Wasserstein barycenter of the clouds of pop. The support’s size of PX∗ is
chosen to be the mode of all sizes in pop.

Some notations
• WBGEA_1t denotes the algorithm based on Wasseerstein operators with equal weights

crossover, WBGEA_1t_rc (random weight crossover) and WBGEA_1t_nc (no crossover)
• Ref_gen denotes the baseline comparison algorithm and Ref_gen_nc its version without

crossover.
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WBGEA vs Ref_gen
The results indicate that the algorithm based on Wasserstein operators denoted as WBGEA
yields better results except on FminDist .
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Figure: Average over 20 (+/- std. deviation) of the evolutions of the maximum of the functions in each
population over the evolutionary algorithms iterations.
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WBGEA vs Ref_gen
The diversities of the populations in the algorithms based on Wasserstein operators vanish to
zero more quickly.
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Figure: Average over 20 (+/- std. deviation) of the evolutions of the diversities of the populations over the
evolutionary algorithms iterations.
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Best designs
It can be seen that the designs are consistent with the simulated physical phenomena.
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Figure: Best observed designs corresponding, respectively, to the test cases Finert , F0 and FminDist (left to right).
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Conclusions I

• Numerical tests suggest a mutation independence principle: for composite mutations made
of different types of perturbations, like the boundary and the full domain mutations, the
perturbations should be applied independently.

• For WBGEA, crossover with random weights yield better results but the absence of
crossover is again more competitive on the test functions.

• The Wasserstein crossover reduces diversity and the classical crossover creates diversity.
• The Wasserstein operators seem to be adapted to optimize functions where the optimal

design present regularity as alignments.
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Extend the operators in non convex domains
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Non convex domains
• In the previous methods, the domain of the points are supposed to be convex.
• Let’s consider now non convex domains including exclusion zones.
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Figure: A non convex domain delimited by a red line and containing holes in blue as exclusion zones
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Feasible clouds can give non feasible
• Barycenter of two feasible clouds of points can produce a non feasible cloud
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Figure: The two initial clouds of points in black and blue and their barycenter in red.
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Projecting points
• A way to repair non feasible clouds of points is to project the non feasible points.
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Figure: On left, the initial cloud of point in black contains non feasible points. On right, the the cloud of points
in blue contains the projected points int he feasible domain.
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Minimal deformation

Theorem: projecting points minimize the deformation
• Let’s denote Df the feasible domain.
• PX =

∑l
i=1 αiδxi +

∑n
i=l+1 αiδxi , αi > 0

• ∀k ∈ {l + 1, ..., n}, xk /∈ Df

• ∀k ∈ {l + 1, ..., n}, consider x∗k the nearest feasible point of xk
• PX∗ =

∑l
i=1 αiδxi +

∑n
i=l+1 αiδx∗i

• Then for any PY =
∑m

j=1 βjδyj (βj > 0) containing only feasible points:

W2(PX ,PX∗) ≤ W2(PX ,PY )
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Feasible Optimal designs
Even with the projections, the optimal designs reflect the simulated physical phenomena.
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Figure: Best observed designs corresponding, respectively, to the test cases Finert , F0 and FminDist (left to right).
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Conclusions II and perspectives

Conclusions II
• We have proposed evolutionary algorithms based on Wasserstein operators to optimize

clouds of points in non convex domains.
• The Wasserstein operators are able to capture geometrical information related to the

objectives functions.

Perspectives
• Theoretical convergence properties.
• Include in Bayesian optimization framework for time-consuming functions.
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Thanks For Your Attention !
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