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Abstract

This article presents an innovative approach to modeling particle bed growth through suspension
dead-end filtration, a process of paramount importance in various industrial and environmental
contexts. More precisely, it focuses on the numerical formulation of a continuous approach based
on a Stokes–Darcy coupling. In a Level-set/FEM frame, this model effectively captures the dy-
namic evolution of particle beds (cake), taking into account the interaction between suspended
particles and porous media. Model validation is also a key focus of this paper. Numerical tests
are carried out under various conditions, and their results are compared with analytical solutions
and experimental data drawn from the literature. This permits corroboration of the predictive ca-
pabilities of the model, confirming the robustness and accuracy of the proposed approach. Firstly,
Stokes–Darcy coupled flows are investigated in simplified cases such as rectangular geometries
and coaxial cylinders. These scenarios serve as benchmarks to assess the model performance un-
der simple and varied conditions. Additionally, the more challenging case of a three-dimensional
anisotropic flow between two ellipsoids is addressed, where the evolution of the cake takes place
in three dimensions. Through rigorous analysis and comparison with analytical solutions, the
model is proved efficient in capturing the inherent complexities of such scenarios. Finally, richer
two-dimensional Stokes–Darcy flows are considered, in the presence of both impermeable and
permeable obstacles, representing a crucial step towards modeling real industrial processes. This
last study highlights not only the formation of particle-free zones but also the practical relevance
of this work.

Keywords: Stokes–Darcy coupling, Suspension filtration, FEM, Level-Set, Particle bed growth,
Mass transfer

1. Introduction

The formation of particle beds through suspension dead-end filtration is a widely used method
in various industrial applications, such as the manufacturing processes of food, pharmaceutical
or composite materials. In this method, particles transported in a controlled flow first deposit on
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a filtrating membrane, and then continue to deposit on the so-called porous filter cake growing
under the continuous deposition. Controlling this growth is of the utmost importance since it will
determine the final geometry and properties of the particle cake. In specific industrial applications,
such as the production of ceramic matrix composites (CMC), this process also known as "slurry
cast process", is used to optimize the densification phase (matrix injection into a fibrous structure
[1]), enhancing the material quality. Figure 1, extracted from [2], illustrates a CMC cross-section
after the slurry cast process. It can notably be seen that the filling of the fibrous structure by the
suspension has not been optimal, with several zones (macropores) remaining incompletely filled
by the particles. Understanding and modeling the formation of particle beds are therefore essential
for optimizing this type of processes.

Figure 1: SEM imaging of a cross-section of CMC material after the slurry cast process. Image extracted from [2].

Since the seminal work of Ruth et al. [3, 4, 5], numerous theoretical studies have been pro-
vided to better describe the formation of a filter cake, and hence understand both filtration and
sedimentation of a suspension. Ruth’s work, built on the cake seen as a resistance in the sense
of Ohm’s law, has led to several subsequent studies, commonly referred to in the literature as the
"conventional theory" [6, 7, 8, 9, 10, 11, 12, 13, 14, 15]. Many of these theoretical works require
the evaluation of the cake permeability, i.e. the inverse of its resistance. For example, Belfort et al.
[16] and Chew et al. [17] determine, respectively analytically and experimentally, the filter cake
temporal evolution relying on the well-known Kozeny-Carman’s equation [18]. However, such
simple permeability models exhibit some limitations in certain cases, leading to the introduction
of alternative expressions encompassing more of the local fluid-structure interactions that build
up permeability at upper scales; see the review [19] or dedicated literature in composite manu-
facturing such as [20] for example. Alternatively, some studies propose to model filtration as a
diffusion process, yielding a diffusion-like filtration equation [21, 22, 23, 24]. However, this type
of model is not very popular and remains subject to debate [25, 26]. Other filtration models can
also be mentioned, such as those based on multiphase theory [27, 28, 29] or the phenomenological
approach [30, 31]. For more details, we refer the reader to the reviews by Lee et al. [32] or Olivier
et al. [19], where the authors carry out a comparative analysis of various models and approaches,
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aiming to highlight their specific similarities and differences. While these filtration models may
perform adequately in simple or 1D configurations, they are limited in complex 3D scenarios. In
the present paper, we endeavor to introduce a 3D numerical model that aims at simulating cake
formation in complex scenarios representative of industrial cases.

In the same vein, numerical modeling of the suspension filtration has been developed consid-
erably, particularly with the discrete element method (DEM) [33, 34, 35, 36]. This method, based
on a Lagrangian approach, describes the motion of each particle within a system, incorporating
liquid phase considerations through liquid–particle interaction forces. More recently, several stud-
ies have proposed more accurate methods using an Eulerian–Lagrangian approach, coupling the
DEM to describe particle motion with a computational fluid dynamics (CFD) method to describe
the liquid flow [37, 38, 39, 40]. While the DEM provides convenient access to specific particle
scale information, individual tracking of each particle can prove costly for large systems, such as
those encountered in industrial applications.

Few works in the literature rely exclusively on CFD modeling for the evolution of filter cakes,
with two physics separated by a moving interface to be represented. In [2] addressing dead-end
filtration, the cake/suspension interface is determined using the particle concentration profile es-
tablished by solving a convection–diffusion equation, which is not ideally suited for describing the
complex typologies encountered in this kind of problem. Another notable work is [41] address-
ing particle deposition where a front-capturing method is employed, better suited for describing
complex interfaces. However, this work does not address dead-end filtration but instead focuses
on particle deposition issues, modelled in the article as a first-order reaction. Both studies are
based on resolution using a finite volume method. When the interface is defined, two common
approaches can be considered to couple free flow/porous medium systems [42, 43]. In the one-
domain approach, both zones are represented within a single computational domain, considering
the entire domain as a unified continuum. The well established Darcy-Brinkman’s model implic-
itly describes the interface between free flow and porous medium through spatial variations in ma-
terial parameters. In contrast, the two-domain approach represents free flow and porous medium
flow as separate domains within the computational domain. Each domain has its own governing
equations, with the free flow region described by Navier-Stokes equations and the porous medium
region ruled by Darcy/Brinkman/Forchheimer laws, coupled through appropriate interface condi-
tions.

In this context, the present paper proposes a different approach for the numerical simulation of
particle accumulation in dead-end filtration of a suspension, implementing CFD modeling based
on the finite element method (FEM). This numerical method is better designed for complex in-
terfaces where specific conditions need to be prescribed and, furthermore, advancements in fluid-
porous medium coupling resolution are more established with this approach. The aim of the
present study is to numerically model the spatial and temporal evolution of a particle bed with
complex topology, considering the particle mass conservation which requires an explicit descrip-
tion of the free flow/porous medium interface. The two-domain approach is deemed more appro-
priate for this task. Furthermore, given the low Reynolds numbers typical of such problems, a
Stokes–Darcy coupling is considered. The interface between these two media is represented by an
Eulerian description (front-capturing) using the Level-Set (LS) method. Unlike methods relying
on a Lagrangian description (front-tracking), front-capturing methods naturally take into account
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topological changes, without requiring extensive remeshing and mesh adaptation [44]. The use of
the Level-Set method in the numerical modeling of dead-end filtration offers a robust approach for
representing the change in filter cake topology due to particle accumulation, and thus to accurately
describe mass transfers from the fluid zone to the porous zone. This approach provides a detailed
description of the filter cake evolution within a more reasonable computational time compared to
discrete simulations.

This article is organized as follows. Section 2 deals with the mathematical modeling of the
problem. The description of the problem is presented and the governing equations are exposed.
The numerical implementation using the stabilized finite element method is presented in Section
3. In Section 4, the proposed numerical model is validated and the results obtained are discussed.
Section 5 gives a brief conclusion of the proposed approach.

2. Mathematical modeling

2.1. Problem description

Figure 2: Schematic diagram of dead-end filtration of a solid particle suspension.

The problem considered here consists in modeling the filling process of a workpiece with
particles, also known as slurry cast process. The objective is to model and simulate a dead-end
filtration scenario applied to a uniform suspension of spherical solid particles (Figure2). A uniform
suspension with a concentration ϕ = ϕ0 (ϕ is the volume fraction of particles in the suspension)
is continuously injected into a device containing a membrane filter at its outlet. This membrane
filter is permeable to the fluid and impermeable to the particles. The particles transported in
this prescribed flow first deposit on the filter membrane, and then keep on depositing afterwards
on the so-called porous filter cake, which grows under the continuous deposition. Two distinct
time-varying regions of interest can then be distinguished (Figure2): the first is a fluid region Ωs,
describing the uniform suspension with concentration ϕ = ϕ0, while the second is a porous region
Ωc, characterizing the particles deposition (filter cake) with a jamming concentration ϕ = ϕm. The
interface between both media, denoted as Γ, changes over time at velocity v

Γ
and in the direction

opposite to the flow.
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2.2. Governing equations
From a continuous modeling point of view, it is necessary to describe a Stokes–Darcy flow, but

with two porous domains involved for the region governed by the Darcy’s equations: the first one
being static (membrane filter), and the second one evolving over time (growing cake).

In the fluid region Ωs, the considered suspension has a low particle concentration (ϕ < 0.2).
The flow is characterized by a low Reynolds number, and the migration of particles within the flow
is assumed to be negligible. The particle concentration in regionΩs therefore remains constant and
uniform throughout the flow. In this case, the particle velocity is assumed to be equivalent to the
fluid velocity (vp = v f , with v f the fluid velocity and vp the particle velocity), and the suspension
can therefore be considered as a Newtonian fluid, solved by the classical Stokes’ equations. The
viscosity of the medium is constant and depends on the initial suspension concentration ϕ0. The
region Ωs is described by the following equations [45, 46]:

∇ · vs(x) = 0 (1a)

−∇ ·

[
2ηsϵ̇

(
vs(x)

)]
+ ∇ps(x) = 0 (1b)

where ps denotes the suspension pressure, vs the suspension velocity (particles and fluid have
similar velocity vp = v f = vs) and ϵ̇ the strain rate tensor. ηs is the suspension viscosity, whose
expression is given by [47, 48]:

ηs = η f

1 + 5ϕ0/4

1 − ϕ0
ϕm


2

(2)

with η f the suspending fluid viscosity, ϕ0 the initial suspension concentration and ϕm the jamming
concentration. The viscosity of the suspension increases with the presence of particles.

The Stokes equations (1) must be complemented with boundary conditions to close the prob-
lem which is defined in the domainΩs ∈ Rdim (where the exponent dim corresponds to the problem
dimension, dim = 2 or dim = 3). The domain boundary ∂Ωs is decomposed into two distinct parts
∂Ωs \ Γ = ∂Ωs,D ∪ ∂Ωs,N with ∂Ωs,D ∩ ∂Ωs,N = ∅, corresponding respectively to the regions where
Dirichlet and Neumann boundary conditions are prescribed. Let us point out that this split is not a
topological one, but is to be considered as an exclusive decomposition of the vectorial unknowns
on this boundary ∂Ωs, component by component. The inner problem formulated in Ωs (Eq. 1) is
now closed thanks to these boundary conditions named Type I, that read:

vs = v on ∂Ωs,D (3a)
σs · ns = −pext,s ns on ∂Ωs,N (3b)

where ns is the external normal vector to ∂Ωs and σs is the Cauchy stress tensor, defined by
σs = 2ηsϵ̇(vs) − psI. A second type of boundary conditions for Dirichlet, named Type II, can also
be prescribed for this problem with tangential stress components and normal velocity defined; it
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writes:

vs · n = vs on ∂Ωs,D (4a)
t · σc · n = τext ,∀ t tangent to ∂Ωs,D on ∂Ωs,D (4b)

σs · ns = −pext,sns on ∂Ωs,N (4c)

Conditions (4a) and (4b) will be used typically for impervious wall conditions.
The filter cake region Ωc can be represented as an equivalent porous medium. Both the filter

membrane and the filter cake are modelled using Darcy’s approach, with different permeabilities
constant over time, they are described by the following equations:

∇ · vc(x) = 0 (5a)

η f K−1vc(x) + ∇pc(x) = 0 (5b)

where vc, pc and η f are respectively the velocity, pressure and viscosity of the interstitial fluid.
K denotes the porous medium permeability (K = Kc for the filter cake and K = K f for the filter
membrane). The permeability is denoted as K in the isotropic case. Like for Stokes, the Darcy’s
equations (5) defined in the domain Ωc ∈ Rdim, are complemented with boundary conditions on
∂Ωc \ Γ = ∂Ωc,D ∪ ∂Ωc,N with ∂Ωc,D ∩ ∂Ωc,N = ∅, and with vc and pext,c corresponding respectively
to Dirichlet boundary condition for velocity, and Neumann boundary condition for pressure:

vc · n = vc on ∂Ωc,D (6a)
pc = pext,c on ∂Ωc,N (6b)

where n is the outward normal vector to ∂Ωc.
As the fluid flows from a free zone (Stokes) to a porous zone (Darcy), velocities and pres-

sures must obey continuity conditions at the interface Γ between these zones, namely continuity
of normal velocity, continuity of normal stress and Beavers–Joseph–Saffman condition [49, 50],
described as follows:

vc · n = vs · n (7a)
n · σc · n = n · σs · n (7b)

2n · ϵ̇(vs) · t =
−α
√

K
vs · t (7c)

where σc is the porous medium stress, equal to the Darcy fluid pressure (σc = −pcI), α is the slip
coefficient and t are the vectors tangent to the interface.

The Beavers–Joseph–Saffman condition (7c) specifies the tangential velocity on the interface
Γ. Various options exist in literature for the coupling conditions on the tangential velocity com-
ponent [51], with the most commonly used being the Beavers–Joseph (BJ) and Beavers–Joseph–
Saffman (BJS) conditions. In the case of forced fluid infiltration into a porous medium, where
the flow is primarily perpendicular to the porous bed and the tangential component is negligible,
Eggenweiler [52] shows that the BJS condition reduces approximately to the no-slip condition
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vs · t = 0 and provides consistent results. Additionally, in a close configuration with further
specific boundary conditions Carraro et al. [53] prescribe a no-slip condition for the tangential
velocity.

Furthermore, both BJ and BJS conditions are subject to debate, and research is ongoing to
improve them. Indeed, [54] demonstrate that these conditions, originally proposed for flows par-
allel to the porous layer, are not suitable for arbitrary flow directions. In our present problem, the
flow is mainly perpendicular to the interface. To avoid non-physical repercussions from using a
BJS condition, such as influences on interface topology or mass loss, a no-slip condition will be
preferred. Condition (7c) is thus replaced by vs · t = 0.

The interface Γ separating the fluid and porous zones is expected to evolve over time. This
evolution depends on the suspension mass balance flowing across the moving cake boundary.
To capture and locate this interface, we employ the Level-Set method [55]. This method uses a
function Φ(x, t) corresponding most often to the signed distance to the interface. This function is
positive if point x lies inside Ωs, negative if it lies outside Ωs, and zero if it lies on the interface,
defined by :

Φ(x, t = 0) =


min
p∈Γ
∥x − p∥ if x ∈ Ωs

−min
p∈Γ
∥x − p∥ if x < Ωs

(8)

To capture the interface in time, the Level-Set function Φ(x, t) is advected using the classical
transport equation with a velocity v

Γ
derived from the physical problem:

∂Φ

∂t
+ v
Γ
· ∇Φ = 0 (9)

In our problem, it is important to note that the interface between the two zones is not directly
transported by the fluid velocity like in fluid front propagation problems (for instance [56, 57, 44,
20]), but results from the accumulation of particles in the porous zone. Thus, the velocity v

Γ
must

be determined.

2.3. Determination of the interface velocity
In a suspension flow of solid spherical particles, the particle mass conservation reads [58]:

∂ϕρp

∂t
+ ∇ · (ϕρpvp) = 0 , ∀x ∈ Ωs ∪Ωc (10)

where ϕ, ρp and vp denote, respectively, the concentration, density, and velocity of the particles.
The study domain here contains a discontinuity dividing it into two continuous sub-domains,

Ωs and Ωc, separated by the interface Γ. The above equation (Eq.(10)) can only be applied within
each sub-domain; it is not valid on the interface where there may be strong variations. A condition
on Γ is then necessary to describe the mass transfer between the two sub-domains and thus the
mass conservation throughout the entire domain. Rewriting the integral mass balance to include
both media and the mobile interface implies the following jump condition on Γ:

Jϕρp(vp − v
Γ
)K · n = 0 (11)
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where v
Γ

is the interface velocity. J f K = fs− fc represents the jump in quantity f with fs and fc the
values of f in Ωs and Ωc respectively. n is the external normal vector to Ωc. The particle density
does not vary independently on the domain where they are present, Ωs orΩc, so one can then write
ρ

p
c = ρ

p
s . The jump relation (11) yields the interface velocity v

Γ
, i.e. the Level-Set velocity:

v
Γ
· n =

(
ϕcvp

c − ϕsvp
s

ϕc − ϕs

)
· n (12)

In the porous zone Ωc, particles are immobile and the concentration is the jamming concentration,
i.e. vp

c = 0 and ϕc = ϕm. In the fluid zone Ωs, the concentration is constant ϕs = ϕ0 and particles
flow at the same velocity as the fluid, determined by Stokes’ equations, i.e. vp

s = vs. Consequently,
the Level-Set velocity is derived as follows:

v
Γ
· n = −

ϕ0

ϕm − ϕ0
vs · n (13)

We can notice that since ϕm and ϕ0 are known constants, the Level-Set velocity is negatively
proportional to the suspension velocity, calculated with the Stokes’ equations. A summary of the
problem modeling is given in Figure3.

Figure 3: Problem modeling synthesis.

3. Numerical implementation

With the physical flow models established, the corresponding numerical implementation is
now presented. This numerical resolution is carried out in the Zset 1 (development version) en-
vironment [59]. Numerous references are available in the literature concerning the resolution of

1http://www.zset-software.com/
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Stokes–Darcy/Level-Set problems, in particular [60, 56, 61, 62]. This section is based on these
works.

The Stokes and Darcy problems must be coupled using the continuity conditions described
above (Eq.(7)). The coupling method, which can be direct or decoupled ([63, 64]), relies on in-
terfaces that can be represented either explicitly by coincident meshes of these interfaces [65, 66]
which may require remeshing operations, or implicitly by depicting the interface – mesh intersec-
tion. The latter solution has been chosen here, coupled with a monolithic approach of Stokes and
Darcy flows using the same mesh.

The numerical resolution of the problem considered will be carried out using stabilized finite
element formulations. We will consider the mixed velocity/pressure formulations stabilized by a
variational multi-scale method, here the so-called Algebraic SubGrid Scale (ASGS) method [60].

In a monolithic approach, the difficulty is to formulate mathematically stable finite element
solutions for both Stokes and Darcy flows. The various physical flow zones are then identified by
the Level-Set function, obtained by a finite element resolution of the convection equation (9).

3.1. Integral weak formulation of Darcy’s problem
The filter cake is modelled by Darcy’s equations (6) in domain Ωc, the solutions of which are

both velocity vc and pressure pc. In the case of the mixed velocity–pressure approach used here, the
dual formulation is preferred to express the Darcy’s problem, since its solutions (vc,pc) are defined
in the same approximation spaces as the Stokes problem solutions [61]. To describe the weak dual
formulation of the problem, we introduce the spaces Qc = L2(Ωc), Vc = {vc ∈ H(∇.,Ωc)|vc · n = vc

over ∂Ωc,D} and V0
c = {v

c ∈ H(∇.,Ωc)|vc · n = 0 over ∂Ωc,D}, L2(Ωc) and H(∇·,Ωc) corresponding
respectively to the Lebesgue space of square integrable functions and Sobolev space.

The weak integral formulation is classically obtained by multiplying the strong form by the
velocity and pressure test fields, respectively wc ∈ Vc

0 and qc ∈ Qc, and then integrating by parts
this formulation over the Ωc domain. Integration by parts of the pressure term in these equations
yields the dual formulation of the Darcy’s problem and the boundary conditions associated with
it. This formulation consists in finding

[
vc, pc

]
∈ Vc × Qc such that:

< ∇ · vc, qc >Ωc = 0 , ∀qc ∈ Qc (14a)

< η f K−1vc,wc >Ωc − < pc,∇ · wc >Ωc + < pc,wc · n >∂Ωc = 0 , ∀wc ∈ Vc
0 (14b)

The notation < ·, · > designates the L2 scalar product in Sobolev space.
In equation (14b), the integral on ∂Ωc decomposes into ∂Ωc,D, ∂Ωc,N and Γ. The component

on ∂Ωc,D disappears because the test field is chosen as the variation of the real field and therefore
cancels out on this domain boundary. The component on ∂Ωc,N corresponds to the natural pressure
boundary condition. The integral weak dual formulation of Darcy’s problem is written as follows
[56, 67]:
Find

[
vc, pc

]
∈ Vc × Qc such that, ∀wc ∈ V0

c and ∀qc ∈ Qc:

Bc([vc, pc], [wc, qc]) = Lc([wc, qc]) (15)
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The bilinear form Bc and the linear form Lc are defined by:

Bc([vc, pc], [wc, qc]) =< η f K−1vc,wc >Ωc − < pc,∇ · wc >Ωc

+ < ∇ · vc, qc >Ωc + < pc,wc · n >Γ
(16a)

Lc([wc, qc]) =< pext,cn,wc >∂Ωc,N (16b)

3.2. Integral weak formulation of the Stokes’ problem
The suspension is modelled by the Stokes’ equations (3) in the domain Ωs, the solutions of

which are velocity vs and pressure ps . The function spaces Qs = L2(Ωs) , Vs =
{
vs ∈ H1(Ωs)|vs = v on ∂Ωs

}
and V0

s =
{
vs ∈ H1(Ωs)|vs = 0 on ∂Ωs

}
are required to introduce the integral weak formulation of

the Stokes’ problem which is obtained by multiplying the Stokes equations by the test fields ws ∈

V0
s and qs ∈ Qs and then integrating this formulation over the domain Ωs. An integration by parts

of these equations reveals the boundary conditions of the problem and reads :
Find

[
vs, ps

]
∈ Vs × Qs such that:

< ∇ · vs, qs >Ωs = 0 , ∀qs ∈ Qs (17a)

< 2ηsϵ̇(vs), ϵ̇(ws) >Ωs − <
(
2ηsϵ̇(vs) · ns

)
,ws >∂Ωs

− < ps,∇ · ws >Ωs + < ps,ws · ns >∂Ωs = 0 , ∀ws ∈ Vs
0

(17b)

with < A, B >Ωs=
∫
Ωs

A : B dΩs the L2 double dot product. The integral on boundary ∂Ωs is
decomposed into ∂Ωs,D, ∂Ωs,N and Γ . The term cancels on ∂Ωs,D considering the restriction on
the velocity in Vs, and the natural boundary condition corresponds to the normal stress prescribed
on ∂Ωs,N (Eq. 3b) : σs · ns = pext,s · ns. Using the interface conditions, i.e. the continuity of the
normal stress (Eq.7b ) and the no-slip condition for the tangential velocity (vs · t = 0), we obtain
the weak formulation of the Stokes equations [56, 67]:
Find

[
vs, ps

]
∈ Vs × Qs such that, ∀ws ∈ V0

s and ∀qs ∈ Qs:

Bs([vs, ps], [ws, qs]) = Ls([ws, qs]) (18)

The bilinear form Bs and the linear form Ls are defined by:

Bs([vs, ps], [ws, qs]) =< 2ηsϵ̇(vs), ϵ̇(ws) >Ωs − < ps,∇ · ws >Ωs

+ < ∇ · vs, qs >Ωs + < pc,ws · ns >Γ
(19a)

Ls([ws, qs]) =< pext,sns,ws >∂Ωs,N (19b)

The same approach must be employed to derive an integral weak formulation with the Type II
boundary conditions specified in equation (4).

Using a monolithic approach, the weak formulation of the coupled Stokes–Darcy problem is
obtained by summing the stabilized variational formulations of either problem [61]. Let us recall
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that the same test functions are used to approximate the pressure and velocity fields respectively
over the entire domain. The separation of the definition domains for each model is achieved by
introducing a Heaviside function Hs, respectively Hc, which is equal to 1, respectively 0, in the
Stokes domain and 0, respectively 1, in the Darcy domain. The mixed variational formulation of
the Stokes-Darcy coupled problem consists in finding v ∈ V = Vs × Vc and p ∈ Q = Qs × Qc such
that, ∀w ∈ V0 = V0

s × V0
c and ∀q ∈ Q:

B([v, p], [w, q]) = L([w, q]) (20)

The bilinear form B and the linear form L are defined by:

B([v, p], [w, q]) =< 2ηsϵ̇(v), ϵ̇(w)Hs >Ω + < η f K−1v,wHc >Ω

− < p,∇ · w >Ω + < ∇ · v, q >Ω
(21a)

L([w, q]) =< pext,sn,w >∂Ωs,N + < pext,cn,w >∂Ωc,N (21b)

where v|Ωi = vi and p|Ωi = pi, with i = {c, s}.

3.3. Stabilization of the weak formulations
To solve both the Stokes and Darcy finite element problems, discretization is performed by

reducing the variational spaces V and Q (from the respective spaces (Vs × Qs) and (Vc × Qc))
to finite-dimensional spaces Vh and Qh such that Vh ⊂ V and Qh ⊂ Q. The continuous domain
Ω is discretized into a domain Ωh comprising ne elements, each defining a subdomain Ωe

h (thus
Ωh =

∑ne
e=1Ω

e
h).

In this study, in order to keep compatible finite element discretization over the whole do-
main, both velocity and pressure spaces are approximated using piecewise linear functions (P1/P1
approximations). The Vh and Qh spaces for the Stokes and Darcy problems are defined using tri-
angles if dim = 2, or tetrahedra if dim = 3. Due to this approximation, a stabilization method is
necessary to solve the problem since the LBB (Ladysenskaya–Brezzi–Babuska) condition is not
satisfied [68]. The chosen method is the ASGS (Algebraic SubGrid Scale) method, which allows
for the definition of solutions for both the Stokes and Darcy problems in the same approximation
spaces. This approach facilitates solving a coupled Stokes–Darcy problem using a monolithic
approach [67, 60].

The underlying idea of the ASGS method involves a decomposition of the functional spaces
and solutions to approximate the effects, onto the FE discrete solution,of the problem, of the exact
solution components that cannot be captured by the mesh. Indeed, the system is decomposed into
a coarse-scale system (finite element scale) and a sub-grid system:

• Finite element scale:

B([vh, ph], [wh, qh]) + B([vh
′

, p
′

h], [wh
′

, qh]
′

)︸                     ︷︷                     ︸
residual

= L([wh, qh]) (22)

• Sub-grid scale:

B([vh, ph], [wh
′

, q
′

h]) + B([vh
′

, p
′

h], [wh
′

, qh]
′

) = L([wh
′

, q
′

h]) (23)
11



The stabilized finite element approximation spaces defined in velocity and pressure are now de-
noted V∗h and Q∗h with: V∗h × Q∗h = (Vh × Qh)

⊕
(V

′

h × Q
′

h). The solution of the sub-grid system
(Eq. 23) is expressed as a function of the Finite Element residual of the problem. By replacing
the sub-grid terms in the finite element system (Eq. 22) with their new expressions, the stabi-
lized weak formulation is obtained. Additional information about this method for the coupled
Stokes–Darcy problem, including the detailed expression of stabilized formulations, can be found
in [60, 56, 67, 61].

The stabilized weak formulation is written for the Stokes-Darcy coupled problem as follows:

Bstable([v, p], [w, q]) = Lstable([w, q]) (24)

with Bstable and Lstable defined by:

Bstable([v, p], [w, q]) = B([vh, ph], [wh, qh]) +
ne∑

e=1

τp < ∇ · vh,∇ · wh >Ωe
h

+

ne∑
e=1

τu < Hcη f K−1vh + ∇ph,−Hcη f K−1wh + ∇qh >Ωe
h

(25a)

Lstable = L([w, q]) (25b)

Solving the sub-grid problem involves two stabilization constants τu and τp defined by [67, 60]:

τp = Hccp
η f

K
l2
p + Hsc1η f (26a)

τu = Hc

(
cu
η f

K
l2
u

)−1
h2

K + Hs
h2

K

c1η f
(26b)

cp cu and c1 are constants taken equal to 1. lu and lp are characteristic lengths defined by (L0hK)1/2

where hK corresponds to the mesh size of the element and L0 to a characteristic length of the
domain.

3.4. Level-Set transport
We have previously noted that a Φ Level-Set function is transported by solving a transport

equation (9). By adding to this equation an initial condition and a condition on the incoming
boundary, we obtain the following strong form:

∂Φ

∂t
+ v
Γ
.∇Φ = 0 ∀(x, t) ∈ Ω × (0,T ) (27a)

Φ(x, t = 0) = Φ0(x) ∀x ∈ Ω (27b)
Φ(x, t) = Φ(x, t − ∆t) ∀x ∈ ∂Ω− , ∀t ∈ (0,T ) (27c)

with Ω = Ωc ∪ Ωs and ∂Ω = ∂Ωc ∪ ∂Ωs \ Γ. v
Γ

is the Level-Set velocity given by mass balance
conservation across interface Γ (Eq.(13)). ∂Ω− is the incoming edge of ∂Ω, i.e. the section of the
boundary through which matter enters.

12



Problem (27) is solved using a P1 finite element approximation. Finite-dimensional spaces
Vg

h and V0
h are introduced to approximate spaces Vg = {q ∈ H1(Ω)|q = g on ∂Ω−} and V0 =

{q ∈ H1(Ω)|q = 0 on ∂Ω−} . Let Φh ∈ Vg
h be an approximation of the unknown function Φ.

After discretizing the time derivative operator using an implicit Euler scheme, the following weak
discrete formulation consists in finding Φ ∈ Vg such that:

<
Φh(tn)
∆t
,Φ∗h >Ωh +

1
2
< v

Γ
,∇ [Φh(tn) + Φh(tn−1)]Φ∗h >Ωh=<

Φh(tn−1)
∆t

,Φ∗h >Ωh , ∀Φ∗h ∈ V0
h (28)

Since the above formulation tends to induce oscillations in the solution for problems dominated
by convection, it is stabilized through the classical SUPG (Streamline Upwind/Petrov–Galerkin)
method [69]. The principle consists in introducing a test function Φ̃∗h ∈ V0 of the form :

Φ̃∗ = Φ∗ + τKv.∇Φ∗ (29)

with τK of the following form: :

τK =
1
2

hK

||v|K ||
(30)

hK is the mesh size of the element K and v|K is the mean velocity on K. The weak discrete
formulation is then written :

<
Φh(tn)
∆t
,Φ∗h >Ωh +

1
2
< v

Γ
,∇ [Φh(tn) + Φh(tn−1)]Φ∗h >Ωh +τK <

Φh(tn)
∆t

v
Γ
,∇Φ∗h >

+
τK

2
< v

Γ
· ∇ [Φh(tn) + Φh(tn−1)] , v

Γ
· ∇Φ∗h >=<

Φh(tn−1)
∆t

,Φ∗h > +τK <
Φh(tn−1)
∆t

v
Γ
,∇Φ∗h >

(31)

The test function (29) therefore introduces an elliptic term into the weak discrete formulation
which creates a numerical diffusion and then a stabilization of the transport equation resolution.

Given the evolution of the convective velocity, the signed distance function property verified
by the Level-Set method, i.e. ∥∆ϕ∥ = 1, may be compromised during the resolution of the trans-
port equation (27). To adress this, a reinitialization step is required to restore this important unit
gradient property. In this work, a direct reinitialization method [70, 71, 72] is employed. This
method consists in recalculating the Level-Set function from the projection of each node onto the
interface, i.e. the shortest distance to the interface. It is more accurate than the method proposed
by [73] based on solving a Hamilton–Jacobi type equation. In contrast to the latter, the direct
reinitialization method has the advantage of not requiring any tuning of parameters (number of
reinitialization steps, reinitialization time step, etc.). While it typically entails a higher computa-
tional cost, with an appropriate data structure (e.g., k-d tree), this method can be made efficient.

With the weak formulations in place, the Stokes–Darcy and Level-Set problems are incremen-
tally solved using a weak coupling algorithm (Algorithm.1), relying on the same simplicial mesh.

4. Results and discussions

The validation of a model and its numerical implementation is a crucial step to ensure the
reliability and accuracy of the obtained results. In this section, we address the validation of the
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Require: ϕ0 : initial Level-Set function, v0 : initial velocity, p0 : initial pressure
Ensure: v, p, ϕ : updated velocity, pressure, and Level-Set function

1: t ← 0
2: while t < T do
3: Step 1: Solving the fluid problem
4: With the interface position defined by ϕ(t), solve the Stokes–Darcy coupled system

(Eq.(24)) to obtain v(t + ∆t) and p(t + ∆t)
5: Step 2: Update the Level-Set function
6: Modify the fluid velocity v(t +∆t) at the interface to account for particle mass conservation

(Eq. (13))
7: Solve the Level-Set transport equation (Eq.(31)) and update ϕ(t + ∆t)
8: Step 3: Reinitialize the Level-Set function
9: Reinitialize ϕ(t + ∆t) to maintain the signed distance function property

10: t ← t + ∆t
11: end while
12: return v(t), p(t), ϕ(t)

Algorithm 1: Weak coupling algorithm.

model presented in the previous sections, focusing on the temporal evolution of the filter cake. This
validation is based on various flows relevant to the description of the investigated phenomena. The
first two flows studied involve Stokes–Darcy in a rectangular geometry and Stokes–Darcy between
two coaxial cylinders. Theses cases enable to assess the model performance under simplified
conditions that are representative of many systems. The third case focuses on a three-dimensional
(3D) anisotropic flow within an ellipsoid domain. Finally, we will examine a 2D Stokes–Darcy
flow in the presence of impermeable and permeable obstacles, representing a first step towards an
industrial process model. The simulations presented in this section are carried out on an intel CPU
i7-1165G7 laptop in multithreading mode with 4 cores.

4.1. Cake growth in a rectangular domain with Stokes–Darcy flow
We consider here a Stokes–Darcy flow within a 2D rectangular geometry. A filter membrane is

placed at the outlet, it has a thickness δ f and a permeability K f . This membrane filter, represented
as an additional Darcy zone (Figure 4b), induces the accumulation of particles, leading to the
formation of a filter cake. The evolving thickness of the cake over time is denoted by δc(t).

Whether under a prescribed inlet volume flow rate or a prescribed inlet pressure, [16] have
analytically determined the thickness δc(t) for this configuration, it writes:

• Prescribed inlet pressure:

δc(t) = R f Kc



(
R f + δc(0)/Kc

)2

R2
f

+ 2t
ϕs

(ϕc − ϕs)
∆p
η f

1
R2

f Kc


1/2

− 1

 (32)
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Dimensions
( L × h = )

Physical parameters Numerical parameters

5 10−2 m × 10−2 m ∆p = 105 Pa, η f = 10−3 Pa.s Mesh:

Kc = 10−13 m2, K f = 10−15 m2 nbnodes = 2734

δc(0) = 0 m, δ f = 10−3 m nbDOF = 8202

ϕc = ϕm = 0.6, ϕs = 0.1 Fixed time step:

∆t = 0.1 s

Table 1: Simulation parameters for the 1D-flow rectangular geometry. nbnodes and nbDOF respectively denote the
number of nodes and the number of degrees of freedom.

• Prescribed inlet flow rate (velocity v known and constant):

δc(t) = δc(0) +
ϕs

(ϕc − ϕs)
v t (33)

where ∆p is the imposed pressure drop, δc(0) is the initial cake thickness, ϕs (resp. ϕc) is the
particle concentration of the suspension (resp. the cake), Kc (resp. K f ) is the permeability of the
cake (resp. filter) and Rc = δc(t)/Kc (resp. R f = δ f /K f ) is the hydraulic resistance of the cake
(resp. filter).

In this part, we numerically solve this problem and subsequently compare the obtained re-
sults against the aforementioned analytical solutions. First, the fluid flows under prescribed inlet
pressure condition. The simulation parameters are detailed in Table 1 and Figure 4a and will be
referred to as 1D-flow since homogeneous Type II conditions (impervious walls) are considered
along the lateral edges (y = 0 and y = h).

In Figure 5 is plotted the numerical cake thickness δc(t) in comparison with the analytical so-
lution given by Eq.(32). Concurrently, Figure 6 illustrates the absolute (

∣∣∣δnumerical
c − δ

analytical
c

∣∣∣) and

relative (
∣∣∣∣ δnumerical

c −δ
analytical
c

δ
analytical
c

∣∣∣∣) errors between the two solutions. Our observation reveals a remarkable
concordance between the results, characterized by a low overall error. Notably, the relative error
(Figure 6a) exhibits high values in the initial increments, attributable to the very small values of
δ

analytical
c at the beginning of the computation. This observation is corroborated by the correspond-

ing solution and absolute error (Figures 5-6b), the latter showing a maximal absolute lower than
1E − 4 m for dimensions in the range of 1E − 2 m.

Furthermore, Figure 4 presents the state of the problem at different times, highlighting the
evolution of the zero iso-value of the Level-Set function. Consistent with the prescribed boundary
and initial conditions, the filter cake remains invariant along the y-axis. Sub-figures 4c and 4d also
depict the velocity and pressure fields, respectively. We can verify that the problem reveals itself
to be essentially one-dimensional, with velocity and pressure confined in the x-direction.

Figure7a illustrates the robust conservation of volume. Indeed, it can be seen that the volume
flow rate at the inlet remains consistent with that at the outlet throughout the filling process. Fur-
thermore, Figure7b depicts the proper conservation of particle mass ensuring that the numerical
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(a) t = 0 s

(b) t = 40 s

(c) t = 101 s

(d) t = 230 s

Figure 4: Prescribed inlet pressure condition for 1D-flow: temporal progression of the zero iso-value of the Level-Set
function (black line). Additionally depicted are: (a) the mesh and boundary conditions, (b) delineation of physical
zones, (c) representation of velocity field and magnitude, and (d) visualization of pressure field.
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Figure 5: Prescribed inlet pressure condition for : computed filter cake thickness vs time, compared with the analytical
solution of Eq.(32).

(a) (b)

Figure 6: Prescribed inlet pressure condition: analysis of discrepancy between the cake thickness computed δc(t) and

calculated from Eq.(32), presented through (a) relative error
∣∣∣∣∣ δnumerical

c −δ
analytical
c

δ
analytical
c

∣∣∣∣∣ and (b) absolute error
∣∣∣∣δnumerical

c − δ
analytical
c

∣∣∣∣
.

17



nbnodes = 716 nbnodes = 2 734 nbnodes = 10 815

Mean relative error 0.80% 0.48% 0.33%

Total mass variation 0.63% 0.038% 0.028%

Table 2: Mean relative error and total mass variation for different mesh density.

(a) (b)

Figure 7: Prescribed inlet pressure condition: (a) comparison of volume flow rates at the inlet and outlet over time,
(b) evolution of mass balance ( Jϕsdt+ϕsdδc−ϕcdδc

Jϕsdt ) with respect to time.

solution adheres to the mass balance equation [16] : Jϕsdt+ϕsdδc = ϕcdδc. Here, Jϕsdt represents
the quantity of particles per unit time supplied by the incoming flow, ϕsdδc denotes the quantity
of particles per unit time lost by the suspension, and ϕcdδc denotes the quantity of particles per
unit time deposited in the cake. In Figure 7b, the variable Jϕsdt+ϕsdδc−ϕcdδc

Jϕsdt is plotted as a function
of time, it demonstrates clearly that the loss and gain of particle mass exhibit qualitative equiv-
alence. Additionally, the cumulative sum over time (curve integration) of these mass variations
yields a total mass variation of +0.038%. Consequently, particle mass is effectively conserved
during the filling process. Additionally, this case study was conducted with two other mesh sizes,
nbnodes = 716 and nbnodes = 10815, and the results for the mean relative error and the total mass
variation are presented in Table 2. It is evident that as the mesh size decreases, both the error
and the mass loss are reduced. Furthermore, even with a coarser mesh (nbnodes = 716), the error
and mass total variation remain within acceptable limits. This demonstrates one of the advantages
of the Level-Set method, which does not require any extensive remeshing and mesh adaptation,
unlike other methods.

Instead of applying pressure at the inlet, a constant velocity v = (2.10−3, 0, 0) m/s is now
imposed, ensuring a consistent volume flow rate over time. Given the constancy of velocity in this
scenario, the analytical time profile of pressure can be readily deduced from Darcy’s equations.
The findings presented herein are highly compelling. A meticulous comparison of the computed
cake thickness and pressure with their analytical counterparts reveals an outstanding agreement
(refer to Figs. 8,9,10). Moreover, the preservation of particle mass, as depicted in Figure11,
is notable, with a mere +0.064% total mass variation observed during the whole cake growth
process.
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Figure 8: Prescribed inlet flux condition: computed filter cake thickness vs time, compared with the analytical solution
of Eq.(33).

(a) (b)

Figure 9: ¨rescibed inlet flux condition: analysis of discrepancy between the computed thickness δc(t) and the an-

alytical thickness described by Eq.(33), presented through (a) relative error
∣∣∣∣∣ δnumerical

c −δ
analytical
c

δ
analytical
c

∣∣∣∣∣ and (b) absolute error∣∣∣∣δnumerical
c − δ

analytical
c

∣∣∣∣.
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(a) (b)

Figure 10: Prescribed inlet flux condition: (a) analytical and numerical pressure plotted against time. (b) Relative
error between analytical and numerical pressure.

Figure 11: Prescribed inlet flux condition: evolution of mass balance ( Jϕsdt+ϕsdδc−ϕcdδc
Jϕsdt ) with respect to time.

20



The outcomes presented in this section are notably satisfactory, reflecting the effectiveness of
the proposed numerical model. The computation time for these cases is reasonable, approximately
57 minutes for the prescribed inlet pressure case and 11 minutes for the prescribed inlet flux case.
A good agreement is observed when comparing the numerical solutions with the analytical ones
provided by [16]. Additionally, the preservation of particle mass during the filling process is con-
sistently well-maintained. Moreover, [17] conducted experimental dead-end filtration assessments
employing suspensions of varying concentrations, with measurements of filter cake thickness over
time. The successful alignment of the results obtained from the present model with these ex-
perimental measurements, as illustrated in Figure 12, further underscores the model reliability in
representing this type of problem.

Figure 12: Temporal evolution of filter cake thickness for various initial concentrations, juxtaposed with experimental
measurements from [17], represented by markers. The cake porosity chosen here is 0.35 (ϕc = 0.65) [74].

4.2. Cake growth in a Stokes–Darcy flow between two coaxial cylinders
We now examine a more intricate flow scenario, specifically a 2D purely radial flow, illustrated

in Figure13a. The geometry under investigation comprises two coaxial cylinders with inner radius
Ri = 5 × 10−3 m and outer radius Ro = 2 × 10−2 m. Introducing a filter membrane on the outer
cylinder leads to the formation of a filter cake between the two cylinders. This filter is positioned
at a radius Rm = 1.95 × 10−2 m and a pressure of 105 Pa is prescribed on the surface of the inner
cylinder (see Figure13a-13b). The relevant problem parameters are outlined in Figure13a and
Table3. Given the purely radial nature of the flow, an analytical solution can be readily derived.
[16] provides the following analytical equation for this radial flow:

dδc

dt
=

ϕs∆p
(ϕc − ϕs)η f

Rm(
R f +

Rm
Kc

ln
(

Rm
Rm−δc

))
(Rm − δc)

(34)
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Dimensions Physical parameters Numerical parameters

Ri = 5 × 10−3 m ∆p = 105 Pa, η f = 10−3 Pa.s Mesh:

Rm = 1.95 × 10−2 m Kc = 10−13 m2, K f = 10−15 m2 nbnodes = 17982

R0 = 2 × 10−2 m δc(0) = 0 m, δ f = 5.10−4 m nbDOF = 53946

ϕc = ϕm = 0.6, ϕs = 0.1 Fixed time step:

∆t = 0.03 s

Table 3: Simulation parameters for the coaxial cylinder case.

Let us clarify that R f refers to the hydraulic resistance of the filter, while Rm designates the radius
at which it is positioned. In [16], the filter is not considered as a part of the flow area, in contrast
to our approach. This is why in our case, in the numerator of Eq.(34), Rm must be replaced by Ro.

In the present case study, as in the previous one, our objective is to juxtapose the results of our
simulation with the analytical solution derived by [16] (Eq.(34)). For this purpose, Figure 14 illus-
trates a new plot of the computed cake thickness δc(t) (measured along the x-axis), compared with
the solution provided by Eq.(34). Simultaneously, we plot the relative and absolute errors between
both solutions in Figure 15. The findings indicate a high degree of consistency, characterized by
an low overall mean error (2.42 × 10−5 m for mean absolute error).

In Figure 13 is plotted the change in the zero iso-value of the Level-Set function. A quasi-1D
problem seems to emerge, specifically expressed in the radial direction, with cake shape remaining
invariant in the orthoradial direction. This is corroborated by the velocity and pressure distributions
presented in Figs.13c-13d. The simulation of the entire geometry, instead of an axisymmetric
resolution, is justified by examining the model capacity to accurately represent the displacement
of the Level-Set in this type of configuration. The transport of a circular Level-Set can indeed be
non-trivial. To this end, Figure 16 illustrates the time-dependent average radius of curvature of the
Level-Set iso-zero. More precisely, at each time is computed the mean distance from each point on
the Level-set zero iso-value to the center of the cylinders. In this figure, the numerical curvature
radius is compared to the analytical counterpart (Eq.(34)), demonstrating a highly satisfactory
concordance between the two.

This case study is concluded with an analysisn of the volume and particle mass conservation.
Figure 17a reveals the effective volume conservation, and notably that the volume flow rate at
the inlet consistently matches the one at the outlet over the entire duration of the filling process.
Additionally, the conservation of particle mass can be analyzed from Figure 17b, it confirms that
the numerical solution nicely fits to the mass balance equation from [16]: JRoϕsdt + ϕs(Rm −

δc)dδc = ϕc(Rm − δc)dδc, with JRoϕsdt the quantity of particles per unit time supplied by the
incoming flow, ϕs(Rm − δc)dδc the quantity of particles per unit time lost by the suspension and
ϕc(Rm − δc)dδc the quantity of particles per unit time deposited in the cake. Figure 17b represents
the temporal change of the quantity JRoϕsdt+ϕs(Rm−δc)dδc−ϕc(Rm−δc)dδc

JRoϕsdt that yields a cumulative sum over
time (curve integration) of the mass variations of −0.244%. Consequently, the conservation of
particle mass is well-maintained during the filling process.
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(a) t = 0 s (b) t = 18 s

(c) t = 30 s (d) t = 48 s

Figure 13: Coaxial cylinder case: temporal progression of the zero iso-value of the Level-Set function (black line).
Additionally depicted are: (a) the mesh and boundary conditions, (b) delineation of physical zones, (c) representation
of velocity field and magnitude, and (d) visualization of pressure field.
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Figure 14: Coaxial cylinder case: computed filter cake thickness vs time compared with the analytical solution of
Eq.(34).

(a) (b)

Figure 15: Coaxial cylinder case: analysis of discrepancy between the computed thickness δc(t) and the ana-

lytical thickness described by Eq.(34), presented through (a) relative error
∣∣∣∣∣ δnumerical

c −δ
analytical
c

δ
analytical
c

∣∣∣∣∣ and (b) absolute error∣∣∣∣δnumerical
c − δ

analytical
c

∣∣∣∣.
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Figure 16: Coaxial cylinders case: computed time-dependent average radius of curvature of the Level-set zero iso-
value compared with its analytical counterpart.

(a) (b)

Figure 17: Coaxial cylinder case: (a) comparison of volume flow rates at the inlet and outlet over time, (b) change in
mass balance ( JRoϕsdt+ϕs(Rm−δc)dδc−ϕc(Rm−δc)dδc

JRoϕsdt ) with respect to time.
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Dimensions Physical parameters Numerical parameters

ro
z = 5.00 × 10−3 m ∆p = 105 Pa, η f = 10−3 Pa.s Mesh:

ri
z = 1.25 × 10−3 m kx = 9.10−14 m2, ky = 10−14 m2 nbnodes = 91 120

r f
z = 1.55 × 10−3 m kz = 4.10−14 m2, K

f
= K

c
nbDOF = 364 480

ro
y

ro
z
=

ri
y

ri
z
=

r f
y

r f
z
= 0.5 ϕc = ϕm = 0.6, ϕs = 0.1 Variable time step

ro
x

ro
z
=

ri
x

ri
z
=

r f
x

r f
z
= 1.5

Table 4: Simulation parameters for the ellipsoids case.

In summary, the obtained results are deemed satisfactory, characterized by an overall low error
and achieved within a reasonable computation time of approximately 4 hours with a fixed time
step. The careful analysis confirms the correct conservation of both volume and particle mass
throughout the studied process.

4.3. 3D anisotropic cake growth in a Stokes–Darcy flow between two ellipsoids
This section presents a study of a 3D orthotropic radial flow between two ellipsoids. In contrast

to the previous cases, this scenario is more complex as the evolution of the filter cake differs in all
three directions. The outer ellipsoid has semi-axes of length ro

x = 7.5 × 10−3 m, ro
y = 2.5 × 10−3

m, ro
z = 5 × 10−3 m, while those of the inner cylinder are ri

x = 1.875 × 10−3 m, ri
y = 6.25 × 10−4

m, ri
z = 1.25 × 10−3 m. An ellipsoidal filter membrane is positioned near the inner ellipsoid with

semi-axes r f
x = 2.325 × 10−3 m, r f

y = 7.75 × 10−4 m and r f
z = 1.55 × 10−3 m. A pressure of 105 Pa

is applied to the outer ellipsoid, leading to the accumulation of particles from the inner ellipsoid
to the outer one (Figure20).

For better validation, the permeability cake is assumed to be anisotropic, and described by the
following orthotropic tensor:

K
c
=


kx 0 0

0 ky 0

0 0 kz


(x,y,z,)

(35)

The permeability of the filter is set equal to that of the cake K
f
= K

c
, for an easier calculation

of the analytical solution. Indeed, under certain conditions, it is possible to derive an analytical
solution for this problem. In the case of a purely radial isotropic 3D flow between two spheres
with respective radii ri and ro, the combination of Darcy’s equation (5b) with the mass conservation
equation (5a) yields the basic 1D ODE:

1
r2

d
dr

(
r2 dp

dr

)
= 0. (36)
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Figure 18: Ellipsoids case: computed filter cake thickness vs time (dotted line), compared with the analytical solution
of Eqs.(39) (solid line).

(a) (b)

Figure 19: Ellipsoids case: analysis of discrepancy between the computed cake thickness δc(t) and the analyt-

ical thickness described by Eqs.(39), presented through (a) relative error
∣∣∣∣∣ δnumerical

c −δ
analytical
c

δ
analytical
c

∣∣∣∣∣ and (b) absolute error∣∣∣∣δnumerical
c − δ

analytical
c

∣∣∣∣.
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With the above equation, the analytical temporal evolution of cake thickness can be easily derived:

dδc

dt
=

ϕs

(ϕc − ϕs)
∆p
η f

Kc
ri

(r − ri)r
(37)

In the orthotropic case under consideration, the principle for solving analytically involves trans-
forming the orthotropic system into an isotropic system of permeability Kc through a change of
variables, making it simpler to solve [75, 76]. The transformation to the isotropic coordinate
system (X, Y, Z) is accomplished using the following relations [75]:

X =
(

Kc

kx

)1/2

x, Y =
(

Kc

ky

)1/2

y, Z =
(

Kc

kz

)1/2

z (38)

with Kc =
(
kxkykz

)1/3
. The problem then becomes analogous to that of Eq.(36). The inverse

transformation allows deducing, for the anisotropic problem, the temporal variation of the cake
thickness along the three axes x, y, and z:

dδc(x, y = 0, z = 0)
dt

=
ϕs

(ϕc − ϕs)
∆p
η f

kx
ri

x

(x − ri
x)x

(39a)

dδc(y, x = 0, z = 0)
dt

=
ϕs

(ϕc − ϕs)
∆p
η f

ky
ri

y

(y − ri
y)y

(39b)

dδc(z, x = 0, y = 0)
dt

=
ϕs

(ϕc − ϕs)
∆p
η f

kz
ri

z

(z − ri
z)z

(39c)

These three equations are independent of each other. It should be noted that this analytical solution
is only feasible if the ratios of the semi-major axes of all ellipsoids satisfy:

rx

ry
=

√
kx

ky
,

rx

rz
=

√
kx

kz
,

ry

rz
=

√
ky

kz
(40)

Once again, our aim is to compare the results of our numerical simulation with the solutions
provided by Eqs.39. The problem parameters are presented in Figure20a and Table 4. Based
on the symmetry of the problem, the simulation is conducted on one-eighth of the geometry.
In Figure18 are plotted the computed cake thickness along the three axes, compared with those
derived from Eqs.39. The results exhibit excellent agreement, as evidenced by the low errors
displayed in Figure19 (relative errors lower than 1.75%). These errors can be further minimized
with a finer mesh size, especially in the y-direction. Figure 20 illustrates the system state at various
moments, revealing an ellipsoidal cake, as anticipated by Eqs.39-40. The nature of the problem
is distinctly three-dimensional, as evidenced by the velocity and pressure distributions (Figs.20c-
20d). The displacement of the Level-Set is effectively managed by the numerical resolution. The
computation time is approximately 34 hours on a laptop but can be largely reduced in HPC. Thus,
the current numerical model accurately describes this type of anisotropic 3D cake formation. It
is noteworthy to emphasize the importance of employing a Level-Set reinitialization method for
high-quality results.
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(a) t = 0 s (b) t = 1.6765 s

(c) t = 4.1515 s (d) t = 7.9665 s

Figure 20: Ellipsoids case: temporal progression of the Level-Set iso-zero (black line). Additionally depicted are: (a)
the mesh and boundary conditions, (b) delineation of physical zones, (c) representation of velocity, and (d) visualiza-
tion of pressure.

As a conclusion of these test-cases, it must be pointed out that coupling Stokes–Darcy regions
with permeabilities of 10−13 − 10−15 m2 and moving boundaries is not trivial. This can be achieved
only with specific minimal ingredients [56, 61, 62] .

4.4. Cake growth in a Stokes–Darcy flow with tows
In this section, we present a numerical simulation of a 2D case study representative of the

slurry cast process commonly used in manufacturing composite materials. This process involves
the injection of particles into fibrous structures. As illustrated in Figure 1, the filling may not
be optimal, leaving areas without particles, known as macropores. These macropores can have a
significant influence on the final properties of the composite material. As with previous valida-
tions, this case study is modelled using a coupling between the Stokes’ equations, describing the
motion of the suspension, and the Darcy’s equations, characteristic of the filter cake. Firstly, tows
containing hundreds of individual fibers are modelled as obstacles in the domain, impermeable to
fluid and particles. The simulation geometry is illustrated in Figure 21a, where the 2D domain
represents a very small cross-section (only two tows of fibers are considered) of the slurry cast
process. The tows are positioned regularly in the domain. In the actual process, their arrangement
is typically more complex, and their volume fraction is larger. The simulation parameters are sum-
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Dimensions Physical parameters Numerical parameters

Geometry: ∆p = 105 Pa, η f = 10−3 Pa.s Mesh (impermeable case):

1.3 mm × 1.5 mm Kc = 10−13 m2, K f = 10−15 m2 nbnodes = 7 913

Tows (ellipses): δc(0) = 0 m, δ f = 6.10−4 m nbDOF = 23 739

rx = 0.4 mm ϕc = ϕm = 0.6, ϕs = 0.15 Mesh (permeable case):

ry = 0.2 mm nbnodes = 11 804

nbDOF = 35 412

Fixed time step:

∆t = 10−3 s

Table 5: Simulation parameters for Stokes–Darcy flow with tows.

marized in Table 5, they are chosen to best reflect the real experimental conditions of the slurry
cast process [2].

Figure 22b shows the evolution of the filter cake at different times for ϕs = 0.15. It can be
seen that the geometry fills correctly, while a particle-free region forms under the upper fiber. As
mentioned previously, such particle-free zone can be found experimentally (Figure1). Therefore,
the proposed numerical model also enables the prediction of the occurrence of such zones.

Moreover, while geometry certainly has an influence on the formation of macropores, it is
interesting to examine the influence of initial suspension concentration on the formation of these
particle-free regions. Figure 22 shows the evolution of the filter cake for two different initial
concentrations. As can be observed, higher concentrations correlate with faster filling and a lower
probability of macropore formation. This is supported by the volume flow rates plotted in Figure
23; the flow rate decreases more rapidly with increasing concentration for pressure-driven inlet
conditions, corresponding to a faster pressure loss due to the faster cake growth. Globally, tows
force the suspension to flow primarily along the left and right walls of the domain, resulting in the
accumulation of cake on the lower-tow edge and then between both tows. It is in this intermediate
region that concentration will drive the macropore formation (see Figure 21). Depending on the
advancement velocity of the cake front (and thus the concentration), it may close under the upper
tow, preventing particles from reaching the center and thereby allowing macropore formation.
Consequently, the initial suspension concentration appears to exert a significant influence on the
quality of the filling process.

The same study is now conducted for fluid-permeable and particle-impermeable tows. These
tows are modelled as Darcy zones with an isotropic permeability (isotropy plane for unidirection-
nal fibre tows) of 10−12 m2 (Figure 24). While the fluid viscosity η f = 10−3 Pa.s is considered in
the darcean tows (particles filtered), the viscosity of the slurry ηs = 1.15 × 10−3 Pa.s for ϕs = 0.1
and ηs = 1.25 × 10−3 Pa.s for ϕs = 0.15, determined from Eq. 2 is used for the Stokes flow, like
for previous cases. The Level-Set zero iso-value is initialized around the tows, and its velocity
is set to zero inside them to model impermeability to particles. The computation times here are

30



(a) t = 0 s (b) t = 0.595 s

(c) t = 1 s (d) t = 2 s

Figure 21: Pressure inlet controle injection for impermeable tows: temporal progression of the zero iso-value of the
Level-Set function (black line). Additionally depicted are: (a) the mesh and boundary conditions, (b) representation
of velocity field and magnitude, (c) delineation of physical zones, and (d) visualization of pressure field.
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(a) ϕs = 0.1

(b) ϕs = 0.15

Figure 22: Filter cake evolution for different suspension concentrations: (a) ϕs = 0.1, (b) ϕs = 0.15. At each time:
impermeable case on the left, permeable case on the right.
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Figure 23: Comparison of volume flow rates at the inlet and outlet over time for the impermeable and permeable tow
cases

approximately 2 hours (ϕs = 0.15) and 3 hours 15 minutes (ϕs = 0.1) for the impermeable case,
and 3 hours (ϕs = 0.15) and 5 hours 15 minutes (ϕs = 0.1) for the permeable case. Figure 22 illus-
trates the displacement of the Level-Set iso-zero. It can be observed that, in this case, the filling
occurs more rapidly than in the previous scenario with impermeable tows - compare Figures 21
and 24 -, and there is no macropore formation for both concentrations; although the increase in
concentration also reduces the filling duration (see also Figure23). Similar to the previous case,
the tows force the suspension to flow along the edges (Figure24). However, the permeability with
respect to the fluid allows for a stronger flow towards the center, resulting in the formation of a
cake above the tows. Consequently, when the cake front approaches the upper tow, the center is
already filled, preventing the formation of macropores.

It would be relevant to study the influence of the various problem parameters on the formation
of macropores. Particle-scale simulations (e.g. DEM) would certainly enable study of this phe-
nomenon in greater details, including the influence of microscopic structure, whose influence is
probably non-negligible. However, the present model at the industrial scale allows a focus on the
influence of macroscopic data, such as geometric parameters, flow rate or initial suspension con-
centration. These in-depth investigations will contribute to a better understanding and optimization
of the slurry cast process for manufacturing high-quality composite materials. These aspects are
out of the scope of this model setting contribution, and will be examined in future work.

5. Conclusion

In this work was presented a numerical model of particle bed formation by suspension dead-
end filtration. This modeling consists of a Stokes–Darcy coupling, with two porous possibly
orthotropic domains involved for the region governed by Darcy with low permeabilities: the first
being static (filter membrane), and the second changing with time (filter cake). As the particle
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(a) t = 0 s (b) t = 0.5 s

(c) t = 0.888 s (d) t = 1.9 s

Figure 24: Pressure inlet controle injection for permeable tows: temporal progression of the zero iso-value of the
Level-Set function (black line). Additionally depicted are: (a) the mesh and boundary conditions, (b) representation
of velocity field and magnitude, (c) delineation of physical zones, and (d) visualization of pressure field.
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concentration is low, the suspension can be considered as a Newtonian fluid and therefore solved
by the classical Stokes’ equations. The filter membrane and cake are modelled using Darcy’s
equations, with different isotropic permeabilities constant over time. The numerical solution of
the problem is based on a monolithic approach using a single simplicial mesh. Discretization
is performed using the P1/P1 velocity–pressure mixed finite element method, stabilized by the
ASGS method. The moving interface separating the Stokes and Darcy zones is modelled using the
Level-Set method. The displacement velocity of this interface is determined by a mass balance of
the particles on across its surface. The transport equation of the Level-Set method is solved by a
P1 finite element formulation stabilized by the SUPG method. The Stokes–Darcy and Level-Set
problems are weakly coupled and solved on the same simplex mesh.

The results obtained were successfully validated by comparing numerical data with analytical
solutions, including in 3D with anisotropic permeabilities, as well as by comparing them with
existing experimental measurements [17]. This validation demonstrated that the present model
offers an accurate representation of particle bed formation dynamics. Furthermore, solving the
problem in the presence of tows enabled to model more complex cases, closer to industrial situa-
tions. The numerical results obtained were highly satisfactory: Level-Set displacement is accurate
and particle-free zones, when they exist, can be described. However, the absence of relevant quan-
titative data in the literature makes it difficult to carry out a more in-depth analysis.

A number of research areas remain to be explored, including the influence of various parame-
ters, such as initial suspension concentration, on the formation of particle-free zones. It would also
be relevant to extend the model to other types of filtration, such as crossflow filtration, based for
example on the Beavers–Joseph–Saffman condition [49, 50]. These are opportunities for future
work aimed at improving our understanding of filtration phenomena and refining model parame-
ters for even greater accuracy. Finally, this numerical approach has provided promising results for
the modeling of suspension dead-end filtration, opening up opportunities for future research and
contributing to the advancement of knowledge in this essential field for industry and other related
applications.
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