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Higher-order asymptotic model for a 
heterogeneous beam, including corrections 

due to end effects. Natacha Buannic* and Patrice Cartraud t 
Laboratoire M ecanique et M ateriaux Ecole Centrale de Nantes, BP 92101, 44321 Nantes cedex 3, France 

The study presented here is devoted to the ID-modeling of a transversely 
heterogeneous beam with an arbitrary cross-section. The formal asymptotic 
expansion method is used, so that the initial 3D-problem splits in a sequence 
of 2D-problems, posed on the cross-section, and ID-problems, which give the 
governing equations of the overall outer expansion. However, considering the 
higher-order terms of this expansion will actually improve the approximation of 
the 3D solution provided that edge effects are taken into account. The latter are 
treated following a decay analysis technique, which provide the boundary con­
ditions of the ID-problems in such a way that the edge effects decay rapidly. 
Moreover, it is shown that accounting for end effects exempts from using a re­
fined model, since the governing equations for the overall full outer expansion 
correspond to the classical Euler-Bernoulli ones. The example of a cantilevered 
layered sandwich beam is treated and results obtained prove that the method 
enables to recover the exact 3D interior solution, with a very good accuracy. 

Introduction 
Several approaches have been proposed for the 

ID-modeling of heterogeneous and anisotropic 
beams, accounting for non-classical effects such 
as the transverse shear and transverse normal 
deformation, and cross-sectional warping. 
Two general approaches can be identified : the 
method of hypotheses and the formal asymptotic 
expansion technique. The first approach is based 
on introducing ad hoc assumptions regarding the 
displacements, strains or stresses distribution 
in the cross-section, and many higher-order 
theories have been discussed in the literature (see 
references in1 for example). By contrast, the 
asymptotic expansion method is free of a priori 
assumptions, and enables the construction of 
higher-order theories through the computation of 
the successive terms of the expansion. Moreover, 
this method is particularly well-suited for taking 
into account edge effects, which have to be 
incorporated in any refined theory to actually 
improve the approximation of the 3D solution2 • 3 

In this paper, the asymptotic expansion method 
is applied to the case of a transversely hetero-

*Ph. D. Student.
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geneous beam, with an arbitrary cross-section. 
In a first step, the outer expansion is studied 
the 3D elasticity problem splits in a sequence of 
2D-problems, posed on the cross-section, and ID 
differential equations, which provide the overall 
beam response. The boundary conditions of 
these · ID-problems are then derived following 
a decaying state analysis4 • The example of a 
cantilevered layered sandwich beam is treated and 
results obtained, compared to the 3D solution, 
prove the effectiveness and the reliability of the 
method. 

The asymptotic outer solution 
The initial three dimensional problem 

The 3D slender structure considered herein is 
a prismatic rod, of axis Xo: = 0, which occupies 
the configuration fl° = sc: x [O, L], see Fig. l. 
This structure possesses a geometrical small pa­
rameter c:, defined as the ratio of a cross-sectional 
length scale of the beam to the axial one. The 
cross-section se: may be heterogeneous, and of any 
arbitrary shape (the cases of a solid, closed or open 
cross section can be indifferently studied). The 
boundary of n° is defined by on° = re: u q; U r1,
with rij = S0 x {O} and r1 = S0 x {L} the two 
end-sections of the beam, and re: the cross-section 
boundary. For later simplification, the beam is 
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considered to be free of body forces, as well as sur­face tractions on P. The left end r5 is clamped and stress data a;; (x1 , x2) are prescribed on the right end rt. 

Fig. 1 3D slender heterogeneous structure !-Y 

The 3D static problem pc of linear elasticity con­sists in finding the fields uc, ec and uc, such that: divxuc = 0 uc = ac(x1, x2): et(ut) et(ut) = grad�(ut ) uc .n = 0 on ft ut .e3 = U3;(X1 ,x2).ei on rt 
U0 = 0 on r5 (1) 

where a0 (x1 , x2) denotes the elastic moduli ten­sor, and where grad� and divx correspond res­pectively to the symmetric strain and divergence operators, with respect to the spatial coordinate X. 
The asymptotic expansion method The first step of the method consists in defining a problem equivalent to (1), but now posed on a fixed domain which does not depend on the small parameter c. To this end, we introduce the following change of variable5 • 6 to take into account the slenderness ofthe beam cross-section 
Consequently, z3 represents the slow or large scaleor macroscopic ID-variable of the problem and Yo: = � the fast or small scale or microscopic 2D-one. Throughout this paper, Latin indices take values in the set {1,2,3} while Greek indices in {1,2}. We also use the Einstein summation convention on repeated indices. 
According to this change of variable, we as­sociate the new strain and divergence operators in the following manner : 

{ ds_ ds 1 ds gra x · - gra z3• + Egra Yo.. 
d. d" 1 d" IVx. = IVz3 .+E IVyo. · 

(3) 
where grad�

3 
and div z3 correspond to partial dif­ferentiations with respect to the only variable z3, 

while grad�o. and div Yo. are the differential opera­tors with regard to the two microscopic variables Yo: · As a second step, it is necessary to presuppose the order of magnitude of the loadings which are applied to the structure. Especially, we pose : 
{ �!3(x1,x2)=c�-�33(y1 ,Y2) (4) a-o:3(x1 ,x2) = c .O"o:3(y1 ,Y2)Furthermore, the elasticity moduli afjkl are as­sumed to be independent of c, so we have 

(5) Third, following a standard technique, the solu­tion uc of the (Po) problem is sought in the follo­wing form6 

u(Jl (x) = u�(z3)ea+cu1 (z3, Yo:)+c2u2(z3, Yo:)+ ...
(6) In (6), the superscript (I) rather than c is used in order to distinguish throughout this paper the interior solution (I), which satisfy the equations (l)i _4 but not the boundary conditions (1)5_6, from the exact 3D solution (uc, uc ), which verifyall the equations ( 1).When introducing the relations (2)-(6) into the pc problem (1) and equating the terms of a same order with respect to c, we replace the problem pc by a family of problems. The fields involved in the latter are functions of the two kinds of variables Yo: and z3, but no longer depend on the small parameter c. So, when treating the Zr and Ya-coordinates as independent, and considering the fields function of the only variable z3 as given data, we can regard each of these problems as a microscopic 2D-problem, which is posed on the scaled section S. In that sense, these successive problems will be denoted herein Pfv, where the superscript k stands for the order of the current problem with respect to c. As it will be seen in the next subsection, the solution of these problems enables us to determine the microscopic parts of the expansion (6). Then, expressing the existence conditions of solutions for the P2kD problems, we obtain the formulation of macroscopic ID-problems, denoted by P1kv, the solution of which gives the macroscopic parts ( function of z3) of the field ( 6). 

The set of microscopic 2D-problems As explained previously, the formulation of an infinite set of microscopic Pf D problems is derived, with k starting from -1. All these 
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problems are posed on the scaled cross-section S, 
deduced from S" through the scaling (2). 
The first problem P215 occurs for k - l
and can be written as follows : 

The only data of the problem are thus contained in 
the tensor grad�3 (u0). According to the form of 
the field u0 given in (6), it can easily be established 
that this problem possesses a direct solution which 
is : 

In that sense, the two data 83u�(z3 ) contained in 
the term grad�3 (u0) do not constitute effective
data, since the associated solution corresponds to 
a zero deformation state6 

The displacement field given in (8) is obtained up 
to an element of R, defined as : 
R = { v(z3, Ya) /v = i); (z3)ei + cp(z3)[Y1 e2 - y2e1]} (9) 
The elements of R are such that the deformations 
grad�"' (v) are equal to zero, and R constitutes 
thus the set of the trial solutions of the micro­
scopic Pf D problems. Consequently, the complete 
solution of (7) has to be written as follows : 

{ 
u1 = u}(z3).ei + cp1 (z3)[y1 .e2 - y2.e1] 

-ya, ,83u�(z3).e3
= u1 (z3,Ya)

(10) 

Since o-0 = 0, the second microscopic problem PJD consists in finding the fields o- 1 , e1 and u2, solu­
tions of: 

According to the expression (10) of u1 obtained 
at the preceding order, the macroscopic data con­
tained in grad�3 (u1 ) are found to be 83u�(z3), 

83u§(z3), 833u�(z3), 83cp1 (z3). The two data 
83 u� ( z3) will provide a direct solution u�art si­
milar to expression (8). The four other data cor­
respond respectively to a macroscopic extension, 
two macroscopic curvatures and a macroscopic 
torsion rotation. The problem (11) does not have 
an analytical form solution in general, excepted 
in the case of homogeneous isotropic rods, and 

of some particular cases of heterogeneous cross­
sections5 

Due to the linearity of ( 11), the displacement field 
u2 can be expressed as a linear function of these 
four effective data. Adding the direct solution 
u�art provided by the two data 83u;(z3) as well as
the rigid motion of R, the complete displacement
field at the second order recovers the following
form:
{ u2 = fi2 + X 1E(y13).83u§{z3)

+X1C"' (y13 ).833-U� (z3) + X 1 T (y13) ,83cp1 (z3)
(12) 

where: 
{ u2(z3,y13) = u;(z3).ei + cp2(z3)[y1 ,e2 - y2,e1] 

-ya, ,83u� (z3) .e3
(13) 

For later consistency of notations, we introduce 
the four-components vector e1 ( z3) and the 3 x 4 
matrix x1 (y13) so that we have :

u2 = fi2 (z3,y13) + X1 (y13).e1 (z3) (14) 
with: 

{ e1 (z3) = t {83u½,833u?,833ug,a3cp1 }x1 (yi3) = [x1E,x1c1,x1c2,x1rl (15) 
In (15), the four effective data have been grouped 
in the vector e1 (z3), with the result that the latter 
represents the first-order macroscopic strain vec­
tor. 
In the same manner as the displacement field, the 
stress field o- 1 solution of PJD has a linear expres­
sion with regard to the data 

{ o- 1 = T1 E(y13).83u§(z3) + T 1C"(y13).833U�(z3)
+T1T (y13).83cp1 (z3)

(16) 

which will be formally denoted as : 
(18) 

where T1 (y13) corresponds to the regroupement of 
the four elementary stress tensors T 1E, T100, T 1 T.
The formulation as well as the expression of 
the solution of the first two microscopic problems 
have been so far given. Treating exactly in a same 
manner the higher-order problems PtD, k 2: 1, a 
generalization of the latter results can be easily 
outlined. 
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For an arbitrary power k of the small parameter 
E, the Pfn problem posed on the scaled section S consists in finding the fields uk+1, ek+1 and uk+2 satisfying the following equations 

{ div uk+l = -div uk
Yo: Z3 uk+l = a(ya) : ek+l ek+1 = grad�Juk+2) + grad�3 (uk+1) (l9)uk+1 .n = 0 on 8S with k 2:'. -1 and where the negative powers of ukand ek vanish. When solving this problem P2

kn at order k, we consider that the preceding P;D 1 problem has al­ready been solved and thus that the fields ukand uk+ 1 have been determined. Consequently, the terms div z3 uk and grad�
3 

( uk+l) constitutemacroscopic given fields for the current problem Pf D : the first one can be regarded as a fictive vo­lume force and the second one as an initial strain state in the cross-section S. The variational form of problem (19) consists in finding the field uk+2 in a space W(S) of suffi­ciently regular functions 1/J such that 
{ V 1/J E W(S), 

f5 uk+ 1 : grad�J'I/J)dS = f5 divz3 0"k .'I/JdS(20) where the stress field uk+1 is related to the field uk+2 following (19)2. According to the variational form (20), it can be established that the existence of a solution for the Pf D problem is guaranteed provided that the data div 230-k verify the following relation :
\/ v E �, ls divz3 0"k .vdS = 0 (21) 

The compatibility condition (21) will enable us to formulate the macroscopic problems, as we shall see in the next section. Under this necessary condition (21), the solutions uk+1, ek+1 and uk+2 (determined up to anelement of �) exist and can be linearly expressed with respect to the data contained in div z3 uk and grad�
3 

(uk+l ).When solving the Pfn problem (11), it has been shown that the data grad�3 (u1 ) naturallyintroduces the first order macroscopic strain e1 (z3), defined in (15)i . In a same way, the data div 23 uk and grad�
3 

( uk+1) of the Pfn problemare found to involve the contribution of the (k + l)th-order macroscopic strain ek+l(z3), butalso the one of the first gradient of the kth-order strain (i.e. 83ek (z3 )), the second gradient of the (k - l)th-order strain (i.e. 833ek-1 (z3)), andso on until the kth gradient of the first-order 

strain, 8f e1 (z3). Consequently, assuming that the compatibility condition (21) is satisfied, the solutions uk+2 and uk+1 of (19) can be formallywritten as follows 

with : 
{ ek (z3) = 1 {83ut833U1-l ,833U;-l ,83ip

k} x_k (Y/3) = [X.kE, X.kC1 , X.kC2, X.kT]
(23) with k 2:'. -1 and where quantities ek vanish for k � 0. Therefore, solving in sequence the 2D­problems Pfn enables to derive the following expression of the asymptotic outer solution uUl 

(6) 

(24) 
In (24), the displacement fields x_P(y13) and the stress fields rP (y13) constitute the microscopic parts of the outer expansions, and we have seen throughout this section how to determine these fields from the solution of 2D-problems posed on the cross-section. On the other hand, the fields iiP(z3, y13) and their respective gradients eP(z3) characterize the macroscopic parts of the outer state (uU) , uUl), and have now to be found, in order to completely define the outer solution. The way of obtaining the latter fields will be presented in the next section. 
The set of macroscopic ID-problems As already mentioned, the equilibrium equa­tions corresponding to the unknown displacement fields iiP are obtained from the compatibility con­dition (21). Expressing this condition for the 2D-problems Pfn and PtJ;1 leads indeed to the formulation of the macroscopic ID-problems P1

kn· 

Governing equations of the first ID-problem Expressing the relation (21) with the four 'ele­mentary' functions of�: v3(z3)ea, v0 (z3)e0 and (y1 e2 - y2ei) on one hand, and putting 1/J = y0e3 
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in (20) on the other hand, lead for k = l to : 
(25) 

where the kth-order beam stresses Nk(z3),T!(z3), M�(z3), Mf(z3) correspond respectively to the axial force, the transverse shearing forces, the bending moments and the twisting moment, defined by 

In the same way, one obtains from the P:fv pro­blem the relation ihTJ = 0. Furthermore, it can be proved that the first-order shearing forces T� are zero, so that equations (25)2 are identically satisfied. Consequently, the equi­librium equations of the Plv problem recover the classical form : 
(27) 

The constitutive relations of the Plv problem can be defined as 
The components of the 4 x 4 matrix A1 are com­puted from the quantities Tl3 defined in (17). Thus, Al 1 is the stretching stiffness, A�2 and 
A13 the two bending stiffnesses, A!4 the twisting stiffness and the extra-diagonal quantities are the different coupling terms. Note that the effective stiffness matrix A 1 is determined from the solu­tion of the first-order 2D-problem Piv · It can be proved that A1 is symmetric and positively defi­nite6 . Governing equations of the kth ID-problem Applying recursively the method used for the derivation of equilibrium equations for the Plv problem, one obtains, for the P1kD problem, k 2'. 2: (29) 
From the solution uk+I of the Pf D problem, it canbe seen that the kth-order constitutive relations 

take the following form : 
{ a-k = A1 .ek + A2 .83ek-1A3 !::> -k-2 Ak ak-1-1+ .u33e + ... + . 3 e 

(30) 
with uk(z3) = t{Nk,Mf,Mf,M;}. The 4 x 4 matrix AP, p 2'. 2, is obtained from the stress fields rP, introduced in (24), which corresponds to the solution of the Pfj; 1 problem, consideringas only data 8f-1e1 . 

Contrary to the first order effective stiffness matrix A 1, the higher-order stress-strain matrices Ak , k 2'. 2, are not necessarily symmetric or positively definite tensors. Especially, the second order one, A2 , appears to be antisymmetric and even equal to zero following certain symmetry properties of the cross-section. A study of these symmetry properties can be found in 7 in the case of 3D periodic media. 
It must be noted that the Pf D problem is treated once the lower-order ID-problems are solved. Therefore, the strains e1 , ... , ek-I of rela­tion (30) are known, so that the effective unknown strain of that problem is ek, associated to the unknown displacement field { u�-1, ut <pk}. As amatter of fact, the higher-order effects may be seen as fictive volume loadings, as pointed out in8 

In order to solve the macroscopic ID-problem P1kD, it remains to complete the governing equa­tions (29)-(30) with the boundary conditions at the ends z3 = 0 and z3 = L. This will be the subject of the next section. 
Corrections due to end effects 

Preliminary remarks The successive terms of the outer expansion (uUl, uUl) are not able to satisfy arbitrarily prescribed end sections conditions, and a specific study appears to be necessary. 
One way to take into account the edge ef­fects is to complement the outer expansion (6) by an inner expansion which gives the correct beam behavior near the end sections. However, such an approach requires to solve boundary layer problems at each order. A more direct method enables to find the appropriate boundary con­ditions for the outer solution. This method, so called the decay analysis technique, is based on Maxwell-Betti's theorem and provides the set of boundary conditions for the outer expansion, involving the solution of canonical problems, which can be solved once for all. 
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This method has been initially proposed for plate 
problems4 , and has been applied to the cases of 
homogeneous beams9 , and of layered orthotropic 
beams in a plane-stress analysis2 • The main 
steps of this method are presented in the next 
section. 

The decay analysis method 

The aim of the decay analysis technique 
proposed in4 is to derive the correct boun­
dary conditions which have to be prescribed on 
the interior asymptotic expansions (24) in order 
that the difference between the latter and the 
exact 3D solution remains significant only near 
the edges. 

For example, when considering the boun­
dary conditions on the end-section f5 (x3 = 0), 
the problem is to find the boundary conditions for 
the interior solution such that one has : as x3 -+ oo (31 )  

\Ve recall that, i n  (31 ) ,  the superscript (I) stands 
for the interior solution while (u" ,  u" ) corres­
ponds to the exact 3D elastostatic state which 
verifies ( 1 ) .  
To obtain the boundary conditions such that the 
decaying condition (31 )  holds, the method pro­
posed in4 relies on the use of the reciprocity the­
orem (l'v[axwell-Betti's theorem) ,  as explained be­
low. 
Let (u(l ) , u( l l )  and (u (2 l ,  u(2 l )  be two elastostatic 
states which verify the equations ( 1 h-4 , i.e. the 
equilibrium equations, compatibility relations as 
well as the traction free condition of the 3D pro­
blem. 
Applying the reciprocity theorem with these two 
states leads then to the relation : i [a- ( l ) u (2 l - a- (2 ) u ( 1 ) ]n1· dS" = 0 (32)lJ t ZJ l 

q;u,1, 
The main idea of the method amounts then to 
choosing for one of the states (1 )  or (2) the dif­
ference between the exact solution of the P" pro­
blem and the interior solution. For example, let 
state (1)  be that difference, so that 

(u( l ) , u( l ) ) = (uUl , uUl ) - (u" , u" )  (33) 

If we now enforce the difference (u ( l l , u( l l ) to be 
rapidly decaying when going away from the end­
section f5 , it comes from the decay condition (31 )  
that the integral on the edge r£  vanishes so that 
(32) is reduced to :

(34) 

Since (34) has to be verified for any regular 
state (uC2l , uC2l ) , it follows that the relation 
(34) will provide the boundary conditions on the
interior fields (uUl , uUl ) so that the edge ef­
fects decay rapidly, as we shall see in the following.

Let us now exploit the equation (34) to de­
rive the six expected boundary conditions for the 
outer expansions (uUl , uUl ) at each end-section. 

The end section z3 = 0 

In the case of the clamped end-section, the part 
af3 involved in u ( l ) is unknown. Consequently, 
the state (2) has to be selected such that u2 = 0.  
Such states (2) are given by the six fundamen­
tal solutions of the cantilevered beam, submitted 
to an unit tension ( BE) , bending ( BBo ) , flexure
( BF0 l and torsion ( BT) _  So, from (34) ,  the follo­
wing boundary conditions are derived for the outer 
expansion : 

r a(2)u(I) dS = 0 Jro ,3 ' (35) with (2) = . ( BE) , .  (BBo ) , . (BF0 ) , • (BT) 

where f0 is the scaled end cross-section. 

The end section Z3 = L
Since we have stress edge-data, the states (2) 

are given by the six rigid body displacements. In­
serting these states in (34) and taking into account 
the assumptions ( 4), one obtains : 

So in that case, a justification of the Saint-Venant 
principle is obtained, since the boundary condi­
tions involve load resultants. 

The macroscopic outer solution 

Inserting (24) in (35) and (36),  and using the 
overall beam equilibrium equations involving the 
solution of the canonical problems, one can derive 
the boundary conditions at each order and then 
solve successively the macroscopic ID-problems. 

Considering the first ID-problem PfD , we 
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are led to the following boundary conditions { u� (0) = 03u� (0) = uj (O) = <p1 (0) = o
N 1 (L) = frL u33 dS; T� (L) = frL iia3 dS
M� (L) = frL - ycrii33 dS; MJ (L) = 0 ( 37) which are the classical engineering boun­dary conditions in the Euler-Bernoulli theory. Consequently, the method used here enables to rigorously justify this theory (governing equations and boundary conditions) as the leading term of the outer expansion. 

Let us focus now on the ID-problem involv­ing the full macroscopic outer expansion. Solving the first ID-problem PlD , from (27), (28) and the positive-definiteness of A 1 , it turnsout that 833e 1 (z3) = 0. As a result, the second ID-problem PlD leads to 833e2 (z3) = 0, and in a recursive manner, one can prove that the differential equations of the pth-order macroscopic problem are of the form 
Ahom l a2uP + Ahom l a3up- 1 + Ahom 1 a3up- l 

I I  3 3 1 2 3 I 1 3 3 2 

+A�4m l Oj <pp = 0
Ahom l a3u' P + Ahom 1 a4u,p- l + Ahom 1 a4u,p- l 

j I 3 3 j2 3 I j3 3 2 

+Ahom l a3 ,np - 0 1· - 2 3 j4 3 -r - , - , 

Ahom l  !:l2 uP + Ahom l !:l3'UP-l  + Ahom l  !:l3uP- l 
41 U3 3 42 U3 I 43 U3 2 

+A�4m l Oj <pp = 0 (38) This remarkable result enables to define the pro­blem involving the macroscopic part of the full outer expansion, defined by 
(39) 

The differential equations of this problem are ob­tained from the addition of ( 38) at each order : it results that the macroscopic part of the full outer expansion verifies the differential equations of the generalized Euler-Bernoulli's theory. Lastly, the expression of the boundary conditions at the end-sections r0 , rL are directly given by (35), ( 36) .
Therefore, it is possible to obtain the macroscopic part of the outer solution from the solution of a single ID-problem, without determining any of the terms of the expansion. Such a property results from the assumption that the beam is loaded only on its end-sections, otherwise, a higher-order gradient beam model is obtained. A similar result can be found in the case of 

homogeneous isotropic infinite plate strip, free of external loads in the interior and free of surface tractions on its upper and lower faces4 
Numerical example 

To illustrate the method, a sandwich beam with a square cross-section is considered. The corresponding geometric and material properties are shown in Fig. 2. The beam length is 300 mm (so that c = 1/15) and the beam is cantilevered at the end r� , and subjected to a transverse shear force at the end fr, in the e 1 direction. 

20 mm 

rIIIIlJ E=200 000 Mpa - v=0.3

Dll E=400 Mpa - v=0.3

Fig. 2 beam cross-section geometry and 
material The exact 3D solution is computed with a detailed finite element model of the structure, obtained from an extrusion of the cross-section model used to solve the microscopic problems. 

On the other hand, the asymptotic method is applied. In a first step, the microscopic 2D­problems are treated. Given that the kth-order strain gradient, with k � 2, are zero, the compu­tations only concern the solution of the first two problems PiD and PiD ·Moreover, the 3D numerical solution of the canonical problems is computed considering a beam of a finite length. This length is taken sufficiently large so that the way of loading does not influence the stress distribution at the fixed end. The boundary conditions for the ID-problem corresponding to the macroscopic part of the full outer expansion can then be calculated. Finally, the analytical solution of this problem is derived, enabling to determine the full asymptotic macroscopic deflection u? + c:u1 + c:2ui + c:3ur ,which is found to stop at the third order. The latter is compared to the deflection of the centroidal axis given by the 3D computation, see Fig. 3, where the contribution of the successive terms of the outer expansion is shown. It is obvious that the zero-th-order solution u? (which is the solution of the PlD problem), gives a very bad estimation of the exact solution, emphasizing the fact that the beam studied here is weak in shear. 
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The term u� is found to be zero, and a significant 
improvement is given by the second-order solution 
(which is of the same order of magnitude of the 
zero-th order one), and the agreement between 
the solution computed up to the third-order (i.e. 
the full outer solution) and the 3D solution is very 
good. Moreover, it can be noticed that the third­
order approximation differs from the second-order 
one only through a non-zero deflection at the 
built-in end, underlining the contribution of edge 
effects. 

Deflection 
0.01 ..--....--..... --,------,.--.� 

0.008 

0.006 

OJX>4 

0.002 

0 

0 

-30 exact solution 
0th-order solution 

• 2nd-order solution 
• 3rd-order solution 

I 
I • -· - .. -i- - . · -
! • 

• ! 
• I 

! --� -- -· -·--t- -

-f- - - -
50 I 00 150 200 250 300 

centroidal axis coordinate 

Fig. 3 Deflection of the cantilever beam 

Furthermore, far from the ends, and using the 
solution of the microscopic 2D-problems and 
expression (24), it is possible to calculate the 
distributions of displacements, strains, and 
stresses in the cross-section, which are found to 
be very closed to those obtained from the 3D 
computations. 
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Fig. 4 Difference between 3D deflection and 
0th-order deflection 

It is also interesting to study the results which 
could be given from a Timoshenko's beam model. 
Following this theory, the overall beam deflection 

is obtained adding a linear term with respect to 
the centroidal axis coordinate to the zero-th-order 
deflection. But in point of fact, the difference be­
tween the 3D exact solution and the zero-th-order 
solution, shown in Fig.4, is found to be non-linear 
because of edge effects. Thus, whatever the value 
of the shear coefficient, it can be seen that the 
Timoshenko's model will lead to a solution which 
cannot fit the 3D solution, even far from the 
edges. 

Concluding Remarks 

In this paper, the formal asymptotic expansion 
method is applied to derive of a 1D-model for an 
elastic beam. In a preliminary step, this method 
enables a rigorous accounting for non-classical 
effects, without any assumption of their rela­
tive order of magnitude, through the solution 
of successive microscopic 2D-problems. Then, 
considering the overall beam response, it has been 
proved that, in the case where the beam is loaded 
only at its end-sections, the full outer expansion 
is the solution of an elementary Euler-Bernoulli 
problem, provided that edge effects are considered 
to derive the proper boundary conditions. So we 
can claim, as others2 • 10 , that considering end 
effects makes the use of a refined beam theory 
unnecessary. 

The main interest of the method presented 
here is to provide the full outer expansion from 
the numerical solution of only two 2D-problems 
and a set of 3D canonical problems. Especially, 
the edge effects are taken into account without 
computing any inner expansion. 

The example of a layered beam shows that 
the method leads to the approximation of the 
exact 3D outer solution with a very good accu­
racy. Applications of this method to the study of 
thin-walled composite beams will be made in the 
near future. 
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