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Abstract: In this paper, we propose a new automatic algorithm for detecting weak changes in the
mean of a class of piece-wise CHARN models. Through a simulation experiment, we demonstrate
its efficacy and precision in detecting weak changes in the mean and accurately estimating their
locations. Furthermore, we illustrate the robust performance of our algorithm through its application
to welding electrical signals (WES).

Keywords: change-points; CHARN models; LAN; likelihood-ratio tests; welds

1. Introduction

The analysis of structural change-points, or breaks, has begun with Page [1] in quality
control, but over time, it has expanded to include a strong statistical component in various
fields, such as economics (Perron et al. [2]), climatology (Reeves, Chen, Wang, Lund, and
Lu [3] and Beaulieu, Chen, and Sarmiento [4]), finance (Andreou and Ghysels [5]), and
engineering (Stoumbos, Reynolds Jr, Ryan, and Woodall [6]). The characteristics of changes
in time series vary depending on the magnitude of the changes. These changes can manifest
prominently (indicative of a substantial magnitude of change) or remain inconspicuous
(suggesting a weak magnitude). Furthermore, even when the magnitude is significant,
such changes may transpire only over a limited number of observations, referred to in this
paper as a “false alarm” or an anomaly in the data. Conversely, when breaks persist over an
extended period, the data assume the characteristics of piece-wise stationary data, which is
the focus of our investigation in this study.

The literature on change-points is large and varied. Depending on whether the data
are given in advance (off-line) or acquired sequentially (on-line). One of the statistics
most often used for the segmentation of the time series is the CUSUM test, introduced
by Page [1]. Brown, Durbin, and Evans [7] introduce another version of the CUSUM test
based on the least-squares residuals, denoted by CUSUMols. Zeileis [8] and Zeileis [9]
use the CUSUM test in order to estimate the p-value. Aue and Horváth [10] show how
procedures based on the popular cumulative sum, CUSUM, statistics can be modified to
work for data exhibiting serial dependence. In the context of time series, very little is done
about testing no change against local alternatives to weak changes. We mean by weak
changes those of small magnitudes. Ltaifa [11] and Ngatchou-Wandji and Ltaifa [12] study
this problem for the case of testing the mean of Conditional Heteroscedastic Autoregressive
Nonlinear “CHARN” model . Salman et al. [13] extends the work of Ltaifa [11] to more
general models.

In this paper, we use the theoretical results obtained in Salman et al. [13] and introduce
a new algorithm for detecting weak changes in the mean. We examine the performance

Eng. Proc. 2024, 68, 42. https://doi.org/10.3390/engproc2024068042 https://www.mdpi.com/journal/engproc

https://doi.org/10.3390/engproc2024068042
https://doi.org/10.3390/engproc2024068042
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/engproc
https://www.mdpi.com
https://orcid.org/0009-0004-4401-5906
https://doi.org/10.3390/engproc2024068042
https://www.mdpi.com/journal/engproc
https://www.mdpi.com/article/10.3390/engproc2024068042?type=check_update&version=1


Eng. Proc. 2024, 68, 42 2 of 8

of the proposed algorithm using simulated data, and we apply it to a real data set such
as welding electrical signals (WES). The new algorithm is motivated by the reduction of
the effect of the white noise, which can sometimes it be detected by several methods as a
change-point. At the same time, the proposed one contains some techniques for identifying
the type of changes detected and the distinction between an anomaly (false alarm) and a
true change-point.

This paper is categorized as follows. In Section 2, we recall the essential theoretical
results presented in Salman et al. [13]. In Section 3, we introduce our new algorithm. In
Section 4, a simulation experiment is conducted for the application of our algorithm. In
Section 5, an application to a real data set is performed, and Section 6 concludes the paper.

2. Model, Problematic, and Main Results of Salman et al. [13]

In this section, we recall, in a brief way, the method developed in Salman et al. [13],
from which it has been constructed for detecting weak changes in the mean based on the
theoretical power of the likelihood ratio test. The class of the statistical model presented
in Salman et al. [13] is the Conditional Heteroscedastic Autoregressive Nonlinear model
“CHARN” (see, e.g., Härdle, Tsybakov, and Yang [14]).

More precisely, let d, p, k, n ∈ N and k << n. Assume the observations X1, . . . , Xn
issued from the following piece-wise stationary CHARN model

Xt = T(ρ0 + γ ⊙ ω(t); Xt−1) + V(Xt−1)εt, t ∈ Z, (1)

with

Xt = Yt,j = T(ρ0 + γjωj(t); Xt−1,j) + V(Xt−1,j)εt, τj−1 ≤ t < τj, j = 1, . . . , k + 1, (2)

where for j = 1, . . . , k, (Yt,j)t∈Z is a stationary and ergodic process; ρ0 ∈ Rp, T(ρ0, .) and
V(.) are real-valued functions with infx∈Rd V(x) > 0; the τj, j = 0, . . . , k+ 1, are potential in-
stants of changes with τ0 = 1 and τk+1 = n + 1; for j = 1, . . . , k,
Xt,j = (Yt,j, . . . , Yt−d+1,j)

⊤, Xτj−1+ℓ = Xτj−1+ℓ,j, ℓ = 0, . . . , d − 1 and for t ∈ [τj−1 + d −
1, τj), Xt = (Xt, . . . , Xt−d+1)

⊤; for j, ℓ = 1, . . . , k, j ̸= ℓ, the process (Yt,j)t∈Z and (Yt,ℓ)t∈Z
are mutually independent (Yau and Zhao [15] noted that this assumption can be extended
to some weak dependence assumption); (εt)t∈Z is a standard white noise with density

f . γ =
(
γ⊤

1 , . . . , γ⊤
k+1

)⊤
, γj ∈ Rp, j = 1, . . . , k + 1; ω(t) = (⊮[τ0,τ1)

(t),⊮[τ1,τ2)
(t), ...,

⊮[τk−1,τk)
(t),⊮[τk ,τk+1)

(t))⊤ = (ω1(t), . . . , ωk+1(t)) ∈ {0, 1}k+1; for γ = (γ⊤
1 , . . . , γ⊤

k+1)
⊤

and ω(t) = (ω1(t), . . . , ωk+1(t))
⊤, γ ⊙ ω(t) stands for γ ⊙ ω(t) = γ1ω1(t) + · · ·+

γk+1ωk+1(t) ∈ Rp, and γiωi = (γi,1ωi, . . . , γi,pωi) ∈ Rp.
This category of models is expansive, encompassing a variety of models including

AR(p), ARCH(p), EXPAR(p), GEXPAR(p). Statistical and probabilistic properties have been
extensively investigated in the existing literature (see, e.g., Chen, Gan, and Chen [16] for
the study of the ergodicity of GEXPAR models).

For γ0 ∈ Rp(k+1) and β ∈ Rp(k+1) depending on the τj’s, Salman et al. [13] construct a
likelihood ratio test for testing

H0 : γ = γ0 against H(n)
β : γ = γn = γ0 +

β√
n

. (3)

Note that the norm of β is small in front of n, and then the two hypotheses considered are
getting closer as the sample size n grows up.
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First, the authors prove that the test constructed establish the locally asymptotically
normal property (LAN) and the hypotheses considered are contiguous in the sens of Le
Cam (see Le Cam [17] and Droesbeke and Fine [18]). These properties allow the study of
the theoretical power of the test constructed and lead to obtain an explicit expression of it.
Indeed, under some technical hypotheses, they prove that the constructed likelihood ratio
test is asymptotically optimal and its asymptotic power has the following expression

Pk,τk = 1 − Φ(zα − ϑ(ρ0, γ0, β)) (4)

where

• ρ0 represent the true nuisance parameter and α ∈ (0, 1) represent the level of significance,
• zα is the (1 − α)-quantile of the standard Gaussian distribution with cumulative

distribution function ϕ,
• ϑ is a real function defined in Rp(k+1)×p(k+1), where its expression is given in

Salman et al. [13].

In practice, the parameters are unknown and have to be estimated. Many works focus
on the estimation of the parameters; for example, Chen, Gan, and Chen [16] discuss the
estimation of the parameters of the linear and non-linear parts in GExpAR models, which
are particular cases of the CHARN model studied in [13], Brockwell, Davis, and Salehi [19]
for linear models as ARMA, and many others. A decision for the testing problem considered
in Salman et al. [13] can be taken to be the estimation of the test’s power P̂k,τk , which is the
one obtained by replacing the true parameters with their estimators in Pk,τk . To explain
the techniques used here for parameter estimation, for 1 ≤ j ≤ k + 1, 1 ≤ h ≤ p, let ρ̂j,h a
consistent estimator (for example, the maximum likelihood estimator ) of ρ0,h + β j,h/

√
n on

the basis of observations within [τj−1, τj). Then one can consider β̂ j,h =
√

n(ρ̂j,h − ρ̂0,h) as
an estimator of β j,h, where ρ̂0,h is the estimator of the stationary parameter ρ0,h on the basis
of the first piece of observation [1, τ1). By replacing the parameters with their estimators,
the authors prove that the test constructed remains asymptotically optimal, and they derive
an explicit expression of its power, as noted by P̂k,τk .

3. New Algorithm for Weak-Changes Detection and Their Locations Estimation

Here, we introduce a new algorithm motivated by both the reduction of the impact
of white noise and the classification of the detected changes into change-points and false
alarms. In the sequel, we denote by Pk,τk , k ≥ 1 the theoretical power of the test considered
at τk = (τ1, . . . , τk). For α ∈ (0, 1) representing the level of significance, we denote by
P0,τ0 = α the nominal level of the test.

Let ζ ∈ (0, .1) and X1, X2, . . . , Xm, (m << n), the m first stationary observations.
A crucial point to mention is that, in practice, m will be smaller than that considered in [13].
Our procedure for detecting weak changes in the time series X1, X2, . . . , Xn and estimating
their locations is described in the following Algorithm 1.



Eng. Proc. 2024, 68, 42 4 of 8

Algorithm 1 Automatic algorithm for weak changes detection

Location 1 :
Put t = 1

(S1) : Consider the two intervals I1 and I2 that contains respectively the ob-
servations X1, . . . , Xm+t−1 and X1, . . . , Xm+t. So that the difference between
the two intervals considered is the single observation Xm+t which is under
testing.
(S1)

′ : Adjust model (1) to I1 and I2. Then, apply the testing procedure
presented in [13].

If |P1,t −P0,τ0 | > ζ,

Replace Xm+t with Xm+ς in I2, with t + 1 ≤ ς ≤ j, j << m, and Repeat
(S1)

′ with the updated I2

If |P1,ς −P0,τ0 | > ζ,
The first change location is estimated on τ1 = m + t.
Then, Go to Location 2.

Else
A False Alarm is detected.
Remove Xm+t from the sample, Do t = t + 1 and Go to (S1).

Else
Do t = t + 1 and Go to (S1).

Location i :

We already estimated the (i − 1)th change location τi−1 in step i − 1
Consider the next h observations to Xτi−1 : Xτi−1+1, . . . , Xτi−1+h
Put t = 1 and Do

(Si) : Consider the two intervals I1 and I2 that contains respectively the
observations Xτi−1 , . . . , Xτi−1+h+t−1 and Xτi−1 , . . . , Xτi−1+h+t. So that the dif-
ference between the two intervals considered is the single observation under
testing.
(Si)

′ : Adjust model (1) to I1 and I2. Then, apply the testing procedure
presented in ().

If |P1,t −P0,τ0 | > ζ,

Replace Xτi−1+h+t with Xτi−1+h+ς in I2, with t + 1 ≤ ς ≤ j, j << h, and
Repeat (Si)

′ with the updated I2

If |P1,ς −P0,τ0 | > ζ,
The ith change location is estimated on τi = τi−1 + h + t.
Then, Go to Location i + 1.

Else
A False Alarm is detected.
Remove Xτi−1+h+t from the sample, Do t = t + 1 and Go to (Si).

Else
Do t = t + 1 and Go to (Si).

4. Simulation Experiment

For the simulation, we use the same particular CHARN model as in Salman et al. [13]
having the following expression

Xt = ρ0,1 +
β j,1√

n
+

(
ρ0,2 +

β j,2√
n

)
Xt−1 e

ρ0,3+
β j,3√

n

X2
t−1

+
√

θ1 + θ2X2
t−1 εt, (5)

j = 1, . . . , k, t ∈ Z,
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where n denotes the number of observations, (εt)t is a standard white noise with a differen-
tiable density f . Here, on [τj−1, τj), ρ0 = (ρ0,1, ρ0,2, ρ0,3) ∈ R3, β j = (β j,1, β j,2, β j,3) ∈ R3; ρ0
is the parameter to be specified in each particular model considered.

Data Presenting One Single False Alarm

In this section, we consider the problem of detecting and identifying the change
faced. The data are generated by model (5) for n = 300, ρ0,1 = 0.2, ρ0,2 = 0.3, ρ0,3 = 0,
β1,1 = 5, β1,2 = −3, β j,3 = θ2 = 0 and θ1 = 1. At an instant between 1 and n, say τ2, we
replace the corresponding observation, say Xτ2 , by another observation, for example, ϵ
where ϵ ∼ N (−1, 2). For α = 5% and ζ = 0.25%, Figure 1 illustrates the behavior of the
power when facing a change and Table 1 shows the results obtained for different values
of ζ.

Table 1. Power around changes detected in a class of AR(1) model.

((β11, β1,2), (τ1, τ2), ϵ ∼, ζ))⊤

τ̂ and Power

(1, 1)
(101, 200)
N (1, 1)
0.15%

(3,−2)
(101, 250)
N (1, 2)
0.25%

(5,−3)
(111, 280)
N (−1, 2)

0.25%

(10,−6)
(91, 295)
N (2, 2)
0.35%

τ̂1 102 101 111 91
P̂1,τ1−1 0.050541 0.050713 0.050811 0.050972
P̂1,τ1 0.052418 0.053712 0.054612 0.057321
P̂1,τ1+1 0.052503 0.053515 0.054874 0.057819
P̂1,τ1+2 0.052315 0.053821 0.054731 0.057643
P̂1,τ1+3 0.052517 0.053644 0.054912 0.057967
P̂1,τ1+4 0.052421 0.053553 0.054826 0.058042

τ̂2 200 250 280 295
P̂2,τ2−1 0.050912 0.050626 0.050963 0.050121
P̂2,τ2 0.052915 0.054261 0.053987 0.061092
P̂2,τ2+1 0.051981 0.051725 0.516471 0.051681
P̂2,τ2+2 0.051734 0.051628 0.051811 0.051874
P̂2,τ2+3 0.051413 0.051632 0.051736 0.051642
P̂2,τ2+4 0.051386 0.051589 0.051481 0.051328

Figure 1. Behavior of the power when facing a change.
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5. Welding Electrical Signals

Here, using our algorithm mentioned in Section 3, we apply the method of [13] for
detecting weak changes in the mean of arc-welding series. First, the chronogram of the WES
series (Wt) seems to present a trend and does not present a seasonality. The Augmented
Dicky-Fuller test (see Cheung and Lai [20]) approve the non-stationarity of this series. For
that, we decompose this series in a summation of two components as follow:

Wt = Yt + Xt,

where (Yt) represents the unknown trend assumed to be continuous and (Xt) is a piece-
wise stationary series with mean (µt) and variance (σt). Using the Akaike Information
criterion AIC (see [21]), we estimate the trend by the following moving-average with order 5

Ŷt =
1
5

2

∑
j=−2

Wt+j.

The Box-Ljung and Box-Pierce tests (see Brockwell and Davis [22]) applied to the residual
series reject the null hypotheses, and then they are not iid. Also, the QQ-plot and the
histogram of the residuals seems to explain that the residual series is normally distributed
in addition to Shapiro-Wilk test. Basing on all of these investigations, we assume the
heteroscedasticity of the residual series and by taking into consideration the AIC, we
propose a shifted model defined as follow:

Xt = ρ0,1 +
β j,1√

n
+ σjεt, t ∈ [τj−1, τj), j = 1, . . . , k + 1,

where k is the number of change-points which is unknown and must be estimated, τ1, . . . , τk
designate the change-point locations, (εt) is a standard Gaussian white noise, V(x) = σj
represents the variance of Xt in each interval [τj−1, τj).

Here, for the test problem, γ0 = 0, γn =
(
0, β2/

√
n, . . . , βk+1/

√
n
)
∈ Rk+1 with

β = (0, β2, . . . , βk+1). Figure 2 shows the breaks detected in the WES series for ζ = 0.15%,
and 0.25%. This series is considered as a normal weld, and we can mention that for ζ = 3%,
no change has been detected.

(a) ζ = 0.15%.
Figure 2. Cont.
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(b) ζ = 0.25%.
Figure 2. Change-points estimates in WES corresponding to two different thresholds.

6. Conclusions

We have introduced a new algorithm for detecting weak changes in the mean using
the method proposed by Salman et al. [13]. The simulation experiment conducted shows
that our algorithm is efficient in detecting multiple breaks and distinguishing between a
change-point and a false alarm. Comparing to the results obtained in Salman et al. [13], our
algorithm seems to be more accurate.

A facet of our perspective, relevant to this research, entails creating an automated method
to ascertain the optimal threshold appropriate for the particular domain under investigation.
Tackling this worldwide challenge is a crucial consideration for myriad researchers in this
discipline, and it serves as a substantial focal point for our upcoming endeavors.
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