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Abstract

The High-Temperature Scanning Indentation (HTSI) method [1] allows for the characterization of
material mechanical properties quasi-continuously over a large temperature range in 1-day experi-
ments, based on a cycle with a constant maximum load applied regardless of the temperature. For
materials exhibiting an Indentation Size Effect (ISE), the variations in hardness with temperature can
stem from both temperature and ISE. It is challenging to differentiate their impact on the mechanical
properties. So, a new 1-second indentation cycle was implemented, with an adjustment of the ap-
plied maximum load to control the maximum achieved depth across temperatures. It allows for the
determination of mechanical properties at a given maximum depth over a wide temperature range.

This methodology has been applied to CaF2 single-crystal from RT to 800 ◦C. It enables the char-
acterization of this material at 1000 nm depth over the entire temperature range.. The obtained results
are consistent with conventional indentation results.

Keyword nano-indentation; Ca; F; crystal; extreme environment; hardness; in situ; nanoscale
Highlights

• A new 1-second cycle allowing maximum-depth control throughout thermal cycling for the HTSI
method has been implemented

• This methodology was applied on CaF2, known to present a ISE in temperature

• Mechanical and creep properties of CaF2 were determined from RT to 800 ◦C

I Introduction1

Calcium fluoride is an ionic metal used in various industries for its properties in temperature (lubrifi-2

cation [2–5], optics [6–9], etc.). It has been characterized at high temperature [10] but since it is quite3

brittle at room temperature [11], characterizing its mechanical properties from room temperature to4

800 ◦C is quite complicated.5

Nanoindentation testing allows the characterization of small samples at room temperature [12, 13].6

The classical Constant Stiffness Measurement method (CSM) provides properties along the tested depth7

at a given strain rate [14]. Combining these tests with long-term indentation creep tests [15, 16] as well8

as relaxation tests [16, 17] now gives access to mechanical properties over 8 orders of magnitude in9

strain rate.10

With the recent development of high-temperature nanoindentation devices [18, 19], nanoinden-11

tation testing can be carried out up to 1000 ◦C. Creep properties can then be determined at various12

temperatures using the methods implemented for room temperature testing. However, classical CSM,13

creep, and relaxation indentation tests require precise control of thermal equilibrium during the tests14
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[17]. Carrying out such tests at high temperatures remains a challenge to overcome, and is still time-15

consuming.16

The High-Temperature Scanning Indentation (HTSI) method [1] allows performing 1-second inden-17

tation tests while heating the sample, providing access to mechanical properties over the entire stud-18

ied temperature range. The idea is that performing 1-second indentation tests during slow heating19

(a few ◦C/min) greatly reduces the impact of thermal drift. The indentation cycle is programmed in20

load-control, meaning the same maximum load is applied regardless of the temperature. Moreover, be-21

cause of the short duration of the indentation cycle, CSM cannot be easily implemented during loading22

[20–22]. Thus, mechanical properties are only determined at the maximum depth point. As hardness23

is expected to decrease with temperature, the tested volume increases significantly with temperature.24

However, to better understand the source of variations observed during testing, it is preferred to test25

the same volume of material. Moreover, some materials exhibit an Indentation Size Effect (ISE), where26

their mechanical properties change with depth [23]. Changing both temperature and testing depth does27

not allow distinguishing the impact of each phenomenon on changes in behavior. So is there a way to28

perform indentation tests to characterize CaF2 mechanical properties from RT to 800 ◦C without impact29

of the ISE?30

In the present work, we propose an updated version of the indentation cycle used in [1] to address31

some of the previously identified problems. A new strategy is presented, allowing for a change from32

maximum load-controlled to maximum depth-controlled indentation cycle. Then, this strategy is ap-33

plied to characterize the mechanical (creep and hardness) properties of CaF2 single crystals. Finally,34

discussion on the proposed method and the results is carried out to identify their limitations.35

II Updates of the High-Temperature Scanning Indentation Technique36

II.1 Preparation of the thermal cycle37

As already presented in [1, 24], the HTSI method consists of applying multiple short indentation tests38

along a specific thermal cycle. To ensure thermal equilibrium throughout the tests, calibration steps are39

required. First, it is assumed that since the tip is quite small (1mm to 2mm long) and usually made of40

conductive materials [18], the temperature of the contact point is the same as the one measured at the41

tip backside (see Figure S1). So one should start by defining the thermal cycle to apply to the tip. Then,42

temperature calibration steps are performed following the method proposed by Minnert et al. [19]. For43

a given temperature on the tip side, one should determine the temperature to apply at the back of the44

sample to achieve thermal equilibrium at the contact point. We recommend performing such calibration45

steps at least at two temperatures in the studied temperature range. From experiments, if the maximum46

studied temperature is lower than approximately 700 ◦C, the difference between the settings is believed47

to evolve quasi linearly, as radiation is not expected to play a major role in the heating. Once the settings48

have been correctly determined, the thermal cycle to be applied on the sample side can be constructed.49

It should be noted that the heating rate on the tip and sample may be different since the maximum50

temperatures to be achieved are usually different. The main difficulty here is to have extremely precise51

control of the temperatures during the experiments. A schematic representation of the preparation of52

the thermal cycle is presented in Figure S1 in the Supplementary Materials.53

II.2 Updates of the indentation cycle54

II.2.a From quarter-sinus to half-sinus loading55

The indentation cycle proposed by Tiphéne et al. [1] allows performing an indentation test in 0.8 s but56

induces a burst effect at the beginning of the loading step on all tested materials. Some may believe that57

it is a "pop-in" effect [24]. However, in this case, it is believed to be an experimental artifact since it was58

also observed on fused silica (see Figure S2). It is probably due to the infinite value of the derivative of59

the load at the starting point of the test. To overcome this effect, the quarter sinus loading function used60

in [1] has been replaced by a half-sinus loading function.61

P (t) = Pmax sin

(
πt

2tload

)
⇒ P (t) =

Pmax

2

(
1− cos

(
πt

tload

))
(1)

With Pmax the maximum load and tload the loading time. The corresponding loading cycles have been62

plotted in Figure S2(a). In Figure S2(b), the application on fused silica shows the disappearance of this63

artifact at the beginning of loading.64
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II.2.b From maximum load control to maximum depth control65

As hardness usually decreases with increasing temperature, the tested volume increases when perform-66

ing maximum load-controlled HTSI experiments [1]. However, some materials presents an Indentation67

Size Effect (ISE) at room temperature : the mechanical properties depend on the tested depth. Then, the68

hardness reduction observed during testing is due to both the temperature and the increased maximum69

depth. As, the ISE may depend on temperature, it is not possible to predict its changes in tempera-70

ture and so to correct its effect based on room temperature measurements. To reduce the impact of71

the ISE and better control the tested volume, a cycle controlled in displacement would be much bet-72

ter. As it is quite complicated to implement a 1-second depth-controlled indentation cycle on the used73

force-controlled nanoindentation device, a different approach is used. The idea is to adapt the applied74

maximum load between each test using the result of the previous test. Under the hypothesis that the75

hardness does not change much between two tests, it is then possible to predict the load to target to76

always perform tests at a given maximum depth. Such a strategy requires a sample where hardness77

does not vary in space nor is expected to vary abruptly (due to microstructure changes, for instance78

[24]) during the thermal cycle. So the maximum load in equation 1 for test i would be calculated using79

the results of test i− 1:80

P i
max = P i−1

max

(
htarget

hi−1
max

)2

(2)

With htarget the maximum depth that one wants to reach at all temperatures, and P i−1
max and hi−1

max repre-81

senting the maximum load and depth reached in test i− 1, respectively.82

II.3 Nanoindentation analysis83

Analysis of the HTSI results is performed using a Python code. The classical definitions of hardness,84

Young’s modulus, etc., used in nanoindentation, are implemented. To confirm those results, CSM at85

constant strain rate (CSR), creep, and relaxation tests are also performed at different temperatures. The86

equations for the analysis are reminded in the following section. HTSI values are determined at the87

maximum depth point, while the CSM loading gives the mechanical properties all along the depth.88

Depending on the contact, pile-up or sink-in is observed: one should then prefer Loubet’s model [13] or89

Oliver and Pharr’s model [12].90

Figure 1: Schematic representation of the indentor and corresponding rheological model. We apply the
raw force F and measure the raw displacement u and the raw stiffness K. To determine the mechanical
properties, the load P , depth h and contact stiffness S are required. Adapted from

[25].

II.3.a Determination of modulus and hardness91

We measure the raw force F and the raw displacement u through the solenoid and capacity gauge of92

Figure 1. The total stiffness K is then:93

K =
dF

du
(3)

The load is defined as:94

P = F − Sspringu (4)
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and the depth:95

h = u− P

SLF
= u

(
1 +

Sspring

SLF

)
− F

SLF
(5)

The contact stiffness S is related to K though:96

1

S
=

1

K − Sspring
− 1

SLF
(6)

with SSLF
denoting the load frame stiffness, calibrated on fused silica. It is supposed to stay constant in97

temperature [19]. In the following, the spring stiffness term is neglect in regard of its value (≈ 700N/m)98

compared to the total stiffness (≈ 5× 105 N/m).99

For HTSI tests, the total stiffness K is calculated using the unloading part of the indentation cycle100

[1], assuming a linear fit.101

F = K(u− u0) (7)

with u0 the raw displacement when the force is null.102

In the present work, SEM observation confirmed that no pile-up phenomenon was observed on post-103

mortem indents on CaF2. Oliver and Pharr’s [12] model was then used to determine the contact depth104

hc in this case. According to this model:105

hc = h− 0.75
P

S
(8)

with h, the measured depth, P the applied load and S the contact stiffness.106

The contact area is:107

Ac =

n∑
0

Cih
2/2i

c (9)

with the Ci been calibrated on fused silica. For a perfect Berkovich tip, C0 = 24.5 and the others Ci are108

null.109

The hardness H is defined as:110

H =
P

Ac
(10)

Through Sneddon work’s [12, 13, 26], the stiffness can be related to the reduced modulus:111

Er =
S

2

√
π

Ac
(11)

The indentation modulus M [27–29] is then defined as:112

1

M
=

1

Er
− 1− ν2i

Ei
(12)

with Ei and νi the tip Young’s modulus and Poisson ratio respectively. νi was considered constant in113

temperature. The tip modulus changes in temperature were implemented, following the formula in114

[18].115

In case of homogeneous isotropic materials, the Young’s modulus E is then computed as:116

E =
M

(1− ν2)
(13)

With ν the Poisson ratio of the sample. We are dealing here with single-crystal samples, whose behaviors117

are anisotropic. However, we will still consider that equation 13 holds true in the following. For a more118

precise analysis, the work of [27–30] should be consulted.119

II.3.b Creep properties120

To characterize the creep properties of the sample, the representative stress σr is first computed using121

the method described in [31]:122

σr =
H

γ
=

ξ3 cot θ

ξ1 cot θ − (1− ξ2)
H
E

H (14)
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with θ the equivalent conical angle (70.32◦ for a Berkovich tip) and ξ1, ξ2 and ξ3 characteristic tip’s123

parameters. For HTSI tests, the hardness is calculated along the creep segment using the unloading124

contact stiffness to compute the contact depth (see Equation 8).125

During the long-term creep tests, the load is maintained constant, and the contact stiffness is mea-126

sured continuously throughout the holding period. The strain rate is then defined as described in [16]:127

ε̇creep =
Ṡ

S
(15)

In the case of the relaxation tests, the stiffness is held constant [17]. Therefore, the strain rate can no128

longer be defined through the stiffness variations. Following the analysis of Baral et al. [16], the strain129

rate is defined using the variations in representative stress:130

ε̇relaxation = − 1

E

dσr

dt
(16)

Finally, as the HTSI tests are quite quick, stiffness is not recorded during the test. Therefore, the131

strain rate is then defined using the classical definition [32, 33]:132

ε̇HTSI =
ḣ

h
(17)

An example of the calculation of the creep properties in the case of HTSI tests is plotted in Figure S3 in133

the Supplementary Material.134

Supposing that the material follows a Norton-Hoff creep law:135

ε̇ = ασ1/m
r exp

(
− Q

RT

)
(18)

with α a pre-exponential factor, m the strain-rate sensitivity, Q the creep activation energy, R the gas136

constant and T the absolute temperature. At a given temperature, one can determine the strain rate137

sensitivity through [15, 16]:138

m =
d ln(σr)

d ln(ε̇)
(19)

One can then calculate the activation volume of creep vac using the relation described in [15, 16]:139

vac =

√
3kBT

mσr
(20)

with kB , Boltzmann’s constant.140

In nanoindentation, one should exercise caution when comparing creep and relaxation tests [16].141

Strain rate sensitivity values obtained here were lower than 0.1, so the representative strain rate defini-142

tion of [16] was not used.143

III Results144

III.1 Interest in the maximum depth-controlled indentation cycle145

This strategy has been applied to a CaF2 single crystal. Figure 2 presents the changes in the maximum146

load and depth achieved during the HTSI tests. As observed, the proposed changes in maximum load147

between each test allow for good control of the maximum depth at various temperatures. Experimen-148

tally, false surface detection leads to a false hardness value near 40 ◦C. This results in a significant149

decrease in the applied load. However, the system corrects itself quickly (within 2 to 4 indents), and the150

target depth value is once again reached. The error remains quite low throughout the entire tempera-151

ture range (see Figure 2c). CaF2 is known to exhibit an Indentation Size Effect (ISE) on hardness [23,152

34]. As observed in Figure 2, hardness decreases more rapidly when using a maximum load-controlled153

cycle instead of a maximum depth-controlled cycle due to this effect.154
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Figure 2: (Top) Maximum depth (left) and load (right) versus temperature measured on CaF2 during
heating. (Purple) Indentation cycle with a target load of 40mN at all temperatures. (Cyan) The adapted
indentation cycle is used with a 1000 nm target depth at all temperatures. (Bottom left) Percentage of
error on achieved maximum depth compared to target depth for the maximum depth-controlled HTSI
tests. Except for the points related to false surface detection, the error stays within ±5%. (Bottom right)
Corresponding hardness versus temperature curves on CaF2. The impact of increasing testing depth
can clearly be observed on the hardness values here.

III.2 CaF2 at room temperature155

CaF2 was first characterized at room temperature. Figure 3 presents the hardness and Young’s modulus156

determined by CSM at various loading rates. Mean values at 900 nm are recap in Table ??. Values are157

consistent with literature [23, 34]. As it can be seen, there is no clear impact of the strain rate on the158

modulus. However, on hardness, there is both an impact of loading rate [35] and a size effect [23]. For159

future analysis, when comparing results, they are taken at a depth of 1000 nm.160
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Figure 3: Impact of strain rate on hardness and Young’s modulus at RT on CaF2 samples. The given
values are the mean ± 3std values. 5 to 10 indents were carried out at each strain rate. Contrary to
modulus, hardness is sensitive to strain rate and exhibits a size effect. Unfortunately, the tip used to
get those results has been damage by HT indentation tests, which explain the oscillations that can be
observed at low depths.

To gather more information on the creep behaviors of CaF2 at room temperature, indentation creep161

and relaxation tests, as well as constant high-strain rate tests, were conducted. The results of strain rate162

versus modulus-compensated stress are plotted in Figure 4. The evolution is consistent across the tests.163

However, the variations are not linear at all, and the sample appears more sensitive to strain rate as it164

increases. This behavior is unexpected for FCC structures but quite common in BCC structures [36].165
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Figure 4: Stress versus strain rate curve on CaF2 single-crystals at room temperature, obtained using
various indentation tests. Non-linearity indicates different creep behaviors, depending on strain rate
and temperature.

III.3 CaF2 at high temperatures166

III.3.a Mechanical properties in temperature167

Young’s modulus and hardness changes with temperature are plotted in Figure 5. The black curve168

corresponds to the expected changes in Young’s modulus for CaF2 along the studied orientation [35,169

37]. As expected, the measured values decrease with temperature. However, the absolute values vary170

around the expected value at a given temperature. In the HTSI tests at temperatures higher than 750 ◦C,171

the variations in Young’s modulus are quite unreliable. Due to issues with the automatic testing, the172

tests at these high temperatures were conducted manually, and thermal equilibrium is not expected to173

be achieved. It can be observed that all CSM tests at 200 ◦C yield very small values.174

As previously observed, the hardness value at room temperature depends on the strain rate. A175

mean strain rate of 2 s−1 is estimated during loading in the HTSI tests, which is consistent with the176

higher hardness value obtained at room temperature. When increasing the temperature, hardness starts177

decreasing rapidly until 200 ◦C. At higher temperatures, it still decreases but less rapidly. A slight drop178

in hardness is observed around 500 ◦C before the decrease in hardness smoothens again until 750 ◦C179

approximately. Strangely, an increase in hardness is observed near 800 ◦C.180

Hardness variations with temperature are consistent with those measured by Deadmore [11], al-181

though the absolute values differ. This discrepancy is expected to be due to differences in tested depth182

since Vickers hardness yields results at larger depths compared to nanoindentation tests. Finally, the183

impact of strain rate on hardness seems to decrease with increasing temperature.184
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Figure 5: (Top) Young’s modulus and (bottom) hardness changes with temperature for CaF2 single-
crystal. All data are measured at a depth of 1000 nm. The colors indicate the strain rate during loading
(mean values for HTSI tests). Strain rate greatly impacts the hardness values at room temperature, but
its impact decreases at high temperature. The hardness changes are consistent with literature data [11].
On the Young’s modulus data, the black lines represent Voigt (top) and Reuss (bottom) bounds. The
black diamonds show the expected Young’s modulus changes, given the crystal orientation. The HTSI
data appears consistent with these values up to 750 ◦C.

III.3.b Creep properties185

To obtain the creep properties of CaF2 at different temperatures, creep and relaxation tests were con-186

ducted. The strain rate versus modulus-compensated stress curves at all temperatures can be founded187

in Figure S4 in the supplementary material. Classical constant strain rate (CSR) and creep indentation188

tests are compared to relaxation tests and HTSI results.189

Under the assumption that a single creep mechanism dominates the creep behavior of CaF2 (Norton-190

Hoff creep law, Equation 18), the master curve has been plotted in Figure 6 for an activation energy191

of 100 kJ/mol. Such analysis give access to more than 20 orders of magnitude for the temperature-192

compensated strain rate.193

The different tests overlap quite well, and the trend at high temperatures appears consistent with194

the results of Sadrabadi [10]. However, assuming a constant value of the activation energy over this195

wide temperature range is questionable since, according to the literature, we would expect it to increase196

with temperature: Oneill et al. [38] found an energy of 42 kJ/mol for temperatures below 300 ◦C, while197
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Figure 6: Master curve obtained for CaF2 with an activation energy of 100 kJ/mol. The various indenta-
tion tests exhibit good agreement, and the trend is consistent with the high-temperature tests conducted
by Sadrabadi [10].

Mekala [39] proposed an apparent activation energy (in J/mol) for creep following:198

Q(T ) = 8.31(20.8 T (K) + 7640) (21)

when the temperature is in the range 400 ◦C to 927 ◦C (180 kJ/mol to 271 kJ/mol).199

The strain rate sensitivity and activation volume have been plotted against the temperature-compensated200

strain rate in Figure 7. At room temperature, the activation volume is relatively low (ranging from 1 to201

5b3 depending on the strain rate). An increase in temperature or a decrease in strain rate leads to an202

increase in this volume.203

The activation volume appears to increase linearly up to 200 ◦C. Interestingly, the activation volume204

from the HTSI tests increases more rapidly than that from the creep and relaxation tests between 200 ◦C205

and 400 ◦C. However, at higher temperatures, the HTSI results align once again with those of the creep206

and relaxation tests. At high temperatures, the trend is consistent with the results of Sadrabadi [10].207
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Figure 7: (Top) Strain rate sensitivity and (bottom) activation volume for creep versus temperature-
compensated strain rate (Q = 100 kJ/mol). The results show consistency at both low and high temper-
atures (for x > 1 × 1010 or x < 1 × 106). However, in the intermediate range, there appear to be two
distinct behaviors, corresponding to the HTSI tests conducted between 200 ◦C and 500 ◦C.

IV Discussion208

IV.1 On the HTSI method209

IV.1.a Impact of temperature control on H and E210

As observed previously (Figure 5), changes in hardness and Young’s modulus with temperature appear211

consistent, at least up to 750 ◦C for the modulus. In Figure 8, we plot the maximum depth, load, stiff-212

ness, contact depth and area, reduced modulus, Young’s modulus, and hardness versus temperature213

determined by HTSI. It is worth mentioning that the control of the achieved maximum depth is satis-214

factory across the studied temperature range. Although there is some scattering, it results in a constant215

contact depth and contact area. Consequently, variations in hardness are primarily attributed to fluctu-216

ations in maximum load. Conversely, changes in reduced modulus (and consequently Young’s modulus)217

are primarily influenced by variations in stiffness.218

A detailed analysis of the measurements errors impact on the properties can be founded in the219

supplementary materials (Section S.III.). Considering Figure S5, it is evident that the error in stiffness220

will significantly impact Young’s modulus but will have less impact on the contact depth, contact area,221

and hardness. For this reason, the authors have more confidence in the hardness data and attribute its222

variations to the material rather than the measurements. However, they caution that Young’s modulus223

data should be analyzed with care. While the overall trend is usually consistent, the values should be224

interpreted cautiously.225
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Figure 8: The evolution of maximum depth, load, contact stiffness, contact depth, reduced modulus,
contact area, hardness, and Young’s modulus with temperature for CaF2 single-crystal, as determined
through HTSI testing, is presented. It is evident that variations in hardness directly correspond to
changes in load, while alterations in Young’s modulus are associated with fluctuations in contact stiff-
ness.

IV.1.b Control of the achieved maximum depth226

As demonstrated previously, the maximum depth control methodology performs well on CaF2 single-227

crystal samples. This approach was then applied to annealed copper samples with a grain size of around228

50 µm.229

A series of 100 indents was conducted, with the first indent performed at a controlled maximum230

load. Subsequent ninety-nine indents were conducted with a target maximum depth of either 200 nm or231

1000 nm (see Figure 9). As observed, when targeting a maximum depth of 1000 nm, the proposed modi-232

fication leads to an achieved depth in the range of ±20% of this value. This is not that good. Moreover, if233

the targeted depth is decreased, higher errors are obtained. This technique results in significant discrep-234

ancies between the achieved maximum depth and the target depth on annealed copper. These errors are235

expected to arise from local variations in hardness related to the microstructure of the polycrystalline236

copper samples. An alternative methodology should be considered to conduct maximum depth control237

indentation tests on copper (and similar) samples. The assumption of low hardness variations in space238

is crucial for the successful implementation of this strategy. It should be notice that 20% difference in239

the maximum achieved depth at all temperatures may be better than multiplying the achieved depth by240

2 or 3 between RT and high temperature.241
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Figure 9: Updated indentation cycle applied to pure annealed copper. (Top) Maximum depth achieved
in the test depending on the target depth. Blue squares represent a target depth of 200 nm, while red
triangles represent a target depth of 1000 nm. (Bottom) Percentage of error in the achieved depth com-
pared to the target depth.

IV.1.c Creep analysis242

As it can be seen in Figure S3, depth increases during the creep segment during the HTSI tests. The243

same effect can be observed when performing classical creep test. As there is some ISE on the samples,244

it is expected that part of the hardness decrease comes from this effect. This is an error source in the245

estimation of the creep properties. However, in the case of HTSI tests, the authors have not yet found a246

way to correct it since stiffness is not recorded during the creep segment. Moreover, this effect may be247

negligible compared to the others hypotheses supporting the analysis.248

For the classical creep tests is also around 100 nm at RT. As stiffness is measured during the creep249

segment, it should be possible to correct this effect by estimating the hardness decreases due to ISE250

before calculating the creep properties. However, the thermal drift may be a larger source of error so251

we do not correct this effect on the tests.252

Finally, the ISE is temperature-dependent effect and is expected to be less and less pronounced as253

temperature increases. From CSM tests performed at various temperatures, the authors estimated that254

near 200 ◦C the hardness variation between 1000 and 1200 nm is 0.025GPa (H(200◦C) ≈ 0.35GPa) while255

the decrease is estimated at 0.1GPa at RT.256

One should be careful when analyzing creep tests following the presented analysis as it may lead to257

inaccurate results if stationary creep is not reached in the timespan of the creep stage.258
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IV.2 CaF2 behaviors259

IV.2.a A BCC-like behaviors at RT260

At room temperature (RT), the activation volume appears to be quite low (see Figure 7). This observa-261

tion is intriguing because it suggests that a thermally activated mechanism such as climb could be the262

controlling mechanism at RT [40]. However, this proposition seems unexpected because climb mecha-263

nisms typically require thermal activation, as noted in previous studies [41].264

Further insights from studies by Keig et al. [42] and Evans et al. [43] shed light on this phenomenon.265

These studies suggest that edge dislocations exhibit significantly lower speeds compared to screw dis-266

locations at RT. Additionally, at low temperatures (below 700 ◦C), vacancies may arise due to the move-267

ment of interstitial fluorine ions, resulting in local charges [44]. Evans et al. [43] propose that near RT,268

a probable controlling mechanism could involve the interaction of edge dislocations with these local269

charges. In this scenario, edge dislocations would need to overcome electronic barriers to move within270

the crystal structure.271

This behavior bears resemblance to the phenomenon of screw dislocations overcoming Peierls stress272

in body-centered cubic (BCC) structures at low temperatures [8, 41]. Futher analysis would be required273

to better understand this behavior.274

IV.2.b Changes of behaviors with high temperature275

As observed previously, hardness exhibits significant scattering at low temperatures due to strain rate276

effects. This phenomenon can be attributed to the activation of a low number of gliding systems at low277

temperatures [38, 45, 46]. Such behavior resembles the characteristics of body-centered cubic (BCC)278

structures. As the temperature increases, more gliding systems become activated. Near temperatures of279

around 200 ◦C [38] and between 400-500 ◦C [46, 47], an increase in the number of active gliding systems280

is observed. This trend is consistent with the observed drop in hardness near 500 ◦C in Figure 5. Finally,281

at temperatures higher than 600 ◦C, plasticity is expected to become more isotropic [47].282

As observed in Figure 5, an unexpected increase in hardness is observed near 800 ◦C. This could be283

attributed to a reaction of the sample with oxygen, resulting in material hardening [11]. After the high-284

temperature testing, the samples were no longer transparent, indicating a reaction had occurred. SEM285

observation of the samples (see Figure S6 and S7) revealed the presence of a structure on the sample286

surface that was not observed before high-temperature testing. EDX analysis (see Figure S8) of this287

structure showed a depletion of fluorine, replaced by oxygen. This suggests that the sample reacted288

with oxygen at high temperatures to form calcium oxide [48–50]. It appears that the vacuum level of289

1× 10−2 Pa was insufficient to prevent this reaction.290

V Conclusions291

This paper presents an update version of the High-Temperature Scanning Indentation technique [1].292

It allows determining the mechanical properties of a material at a given depth on the whole studied293

temperature range. The main points of the article are as follows:294

• The 1-second indentation cycle presented in [1] has been modified. HTSI tests are then carried295

out at a controlled maximum depth all along the thermal cycle. To do so, the applied maximum296

load is adjusted between each indent, using previous results.297

• The old and update cycles have been applied to study the mechanical properties of CaF2 single-298

crystals from room temperature up to 200 ◦C. CaF2 is known to present a important ISE effect299

against depth. Thanks to the update methodology, the temperature effect has been separated for300

the ISE effect and has been clearly quantified here. The error on the maximum achieved depth301

stays within ±5% on the whole temperature range on CaF2 single-crystals.302

• Error analysis on the determination of hardness and Young’s modulus shows that hardness values303

obtained by HTSI are quite reliable in temperature. On the other hand, stiffness and Young’s304

modulus are greatly impacted by temperature mismatch: one should analyze them with caution.305

• Hardness and creep properties of CaF2 have been characterized from RT to 800 ◦C. The results are306

consistent with literature data.307
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• An equivalence between time and temperature was successfully plotted with an activation energy308

of 100 kJ/mol. Various indentations tests give consistent results with literature data. A focus on309

the activation energy values would be required to better understand the mechanism(s) controlling310

creep depending on temperature and strain rate for this material.311

• Hardening of the sample near 800 ◦C has been related to the reaction of the sample with H2O or312

O2 present in the chambers through EDX characterization.313

However, the proposed methodology is based on the assumption of low hardness variations in space.314

The error on the achieved maximum depth is quite high when applying the technique on annealed315

copper. It was expected but it means another methodology should be applied for this type of samples.316

Moreover, having the properties changes again depth at all temperature would be quite interesting.317

Finding a way to implement a CSM mode at high speed would be a way to go further on this topic.318

VI Materials and methods319

VI.1 Material320

The CaF2 single crystals were provided by Edmund Optics. These transparent crystals were uncoated321

flat samples of 2mm-thickness and 12.5mm-diameter. Parallelism is lower than 1 arcmin. The physical322

properties were taken from the literature: Burger’s vector [51], lattice parameter [52], elastic constants323

[53], and Poisson ratio (0.26) [35].324

The results on copper samples were obtained using the annealed samples previously used in [24].325

VI.2 Experimental set-up326

VI.2.a Microstructure characterization327

All SEM characterizations were carried out using a Tescan SEM MIRA 3 equipped with an EDX Oxford328

Instruments XMax 80mm2 detector and a EBSD Oxford Instruments NordLys camera. EBSD charac-329

terization was carried out to verify the orientation of the CaF2 single-crystal. EDX analysis was con-330

ducted on CaF2 samples after high-temperature nanoindentation to verify the surface composition.331

Post-processing was performed using the MTEX MATLAB ToolBox [54].332

VI.2.b Nanoindentation testing of CaF2333

Load-controlled nanoindentation tests were conducted using the InSEM HT nanoindentation device334

(KLA Corporation), which was located inside a vacuum chamber (KLA, TN, USA) or inside a TESCAN335

SEM (LTDS, France) with a pressure of 1 × 10−2 Pa. A diamond Berkovich tip was used at room tem-336

perature, a sapphire tip was used up to 400 ◦C, and a WC tip was used up to 800 ◦C. Tip calibration was337

performed on a fused silica sample at ambient conditions prior to any experiments [13, 14]. Between338

high-temperature tests, the tip was regularly calibrated on fused silica. The specimens were mounted339

as indicated by Minnert et al. [19]. The minimal distance between each indent was 10 times the contact340

depth [55]. Temperature settings and controls were conducted in the same way as in [1, 24].341

Table 1 presents the various indentation tests that were carried out on the CaF2 samples. Classi-342

cal CSM [12, 13] tests, as well as creep [15, 56] and relaxation [17] indentation tests, were conducted343

between room temperature (RT) and 800 ◦C after reaching thermal equilibrium. Due to difficulties in344

maintaining thermal equilibrium for long periods at high temperatures, relaxation tests were only con-345

ducted up to 200 ◦C and creep tests up to 400 ◦C.346

HTSI [1] tests were then carried out to obtain the mechanical properties throughout the studied347

temperature range. The updated version of the indentation cycle was used to control the maximum348

achieved depth throughout this range. The loading is performed in 0.5 s which gives a mean strain rate349

during loading of 2 s−1.350

To complete these results, high-speed constant strain rate (HS-CSR) indentation tests at RT were351

performed on an Alemnis device (depth-controlled device) [57].352
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Table 1: Indentation tests carried out on the CaF2 samples.

type of test Temperature hmax ε̇loading tholding

RT 900 → 1000 nm 1 → 5× 10−3 s−1 -
CSM at 100 ◦C 1000 nm 0.1 → 5× 10−3 s−1 -

constant strain rate 200 ◦C 1000 nm 0.1 → 5× 10−3 s−1 -
(CSR) 400 ◦C 1000 nm 0.1 → 5× 10−2 s−1 -

600 ◦C 1000 nm 5× 10−2 s−1 -
800 ◦C 1000 nm 5× 10−2 s−1 -

Creep

RT 1000 nm 0.1 s−1 10 h
100 ◦C 1000 nm 0.1 s−1 1000 s
200 ◦C 1000 nm 0.1 s−1 1000 s
400 ◦C 1000 nm 0.1 s−1 1000 s

Relaxation
RT 1000 nm 0.1 s−1 10 h

100 ◦C 1000 nm 0.1 s−1 1000 s
200 ◦C 1000 nm 0.1 s−1 1000 s

ine
Half-Sinus Loading

400 ◦C 1000 nm 2 s−1 (mean) 1 s
600 ◦C 1000 nm 2 s−1 (mean) 1 s

HTSI
RT→ 800 ◦C 1000 nm 2 s−1 1 s
1.5 ◦C/min (mean)

HTSI
RT→ 250 ◦C 750 → 1400 nm 2 s−1 1 s
2 ◦C/min Pmax = 40mN (mean)

HS-CSR RT 1000 nm 1 → 1000 s−1 -
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