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Abstract: A method is developed to exploit data on complex materials behaviors that are impossible
to tackle by conventional machine learning tools. A pairwise comparison algorithm is used to assess
a particular property among a group of different alloys tested simultaneously in identical conditions.
Even though such characteristics can be evaluated differently across teams, if a series of the same
alloys are analyzed among two or more studies, it is feasible to infer an overall ranking among
materials. The obtained ranking is later fitted with respect to the alloy’s composition by a Gaussian
process. The predictive power of the method is demonstrated in the case of the resistance of metallic
materials to molten salt corrosion and wear. In this case, the method is applied to the design of
wear-resistant hard-facing alloys by also associating it with a combinatorial optimization of their
composition by a multi-objective genetic algorithm. New alloys are selected and fabricated, and their
experimental behavior is compared to that of concurrent materials. This generic method can therefore
be applied to model other complex material properties—such as environmental resistance, contact
properties, or processability—and to design alloys with improved performance.

Keywords: alloy design; machine learning; optimization; molten salt corrosion; wear

1. Introduction and Background

Historically, materials research has been made through trial and error, making it a
very lengthy and costly procedure [1]. However, thanks to an explosion of the availability
of experimental data coupled with advances in artificial intelligence, a new paradigm was
born: materials informatics, which can improve and accelerate materials design and devel-
opment [2]. For instance, regression by machine learning, e.g., using neural networks [3],
Gaussian processes [4], support vector machines [5], or genetic programming [6], can be
exploited to fit some characteristics of existing alloys as a function of composition and/or
processing parameters and then to predict those of new materials in view of alloy design
by combinatorial optimization [7]. Even though this approach has already been proven
successful, there are still a few obstacles to address. First is the lack of databases large
enough to cover the landscape of some specific properties, for which it is hard to make good
predictions or where the machine learning algorithms might over fit the data [8,9]. Then
since only a few selected data points are finally published in the scientific literature—where
failed experimental results and abandoned projects never get to see the light of day—the
final machine learning model does not consider all the possible data, making it biased [10].
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Some promising advances have been made in hopes of solving this problem, such as the
creation of centralized and highly specialized databases [11–13], while others have tried a
holistic approach by coupling the automatization of experimental processing and charac-
terization with modeling techniques [14,15], but such datasets remain largely inaccessible.
In addition, certain complex material characteristics—like processability (e.g., castability,
forgeability, weldability, etc.), environmental resistance (e.g., corrosion, hydrogen embrit-
tlement, irradiation, etc.), or contact properties (e.g., friction, wear, etc.)—are not frequently
assessed in a standardized fashion for a large variety of alloys, which results in a high
experimental scatter across teams. Consequently, in such cases, no dataset exists or can
even be assembled with a large amount of robust data collected in equivalent conditions to
allow for a conventional machine learning treatment.

1.1. Structure of Comparative Data

The objective of this study is to present a strategy that tackles the above-mentioned
obstacles, without the need for a centralized public database or an in-house experimental
setup for data entry purposes through the exploitation of scarce and scattered pairwise
comparative data. Indeed, it seems appealing and relevant to exploit data on the perfor-
mance of materials that have been evaluated in identical conditions. Of course, each batch
of experiments may have been implemented differently, but step by step and by proximity,
a global rank may be inferred among all materials. An illustrative example is presented in
Table 1 where, on each line, a comparison has been reported between two alloys previously
tested in equal conditions in the case of corrosion experiments in molten salts.

Table 1. Pairwise comparison of alloys tested in identical experimental conditions in terms of the
mass change of alloy i (∆mi) relative to alloy j (∆mj) during corrosion experiments in molten salts.

Ref. Alloy i Alloy j Molten Salt T (◦C) ∆mi/∆mj

[16] Hastelloy N MoNiCr FLiNaK 650 1.28

[17] Inconel 625 Hastelloy N Li2BeF4 750 1.45

[18] Hastelloy C276 Inconel 625 NaCl-KCl-MgCl2 700 1.57

[18] SS316 Hastelloy C276 NaCl-KCl-MgCl2 700 2.26

[19] P91 SS316 NaNO3-KNO3 600 20.82

In this example, the first alloy i is worse than the second alloy j, assuming that a
lower mass variation indicates better corrosion resistance by a measurable ratio ∆mi/∆mj
(although this value is highly sensitive to the testing setup). From this simple example, the
rank P91 > SS316 > Hastelloy C276 > Inconel 625 > Hastelloy N > MoNiCr can be easily
inferred, where the symbol “>” means “worse than.” If an arbitrary overall performance
score S1 is attributed to the best alloy (MoNiCr), it could also be possible to do the same for
the others in Table 1 (where a higher score would reflect a worse performance), relying, for
instance, on the relative weight variations. Hastelloy N would then have a score S2, Inconel
625 a score S3, and so forth until S6 for P91, with S6 > S5 > S4 > S3 > S2 > S1.

Such a situation would be easy to implement without the need of a particular algo-
rithm. Afterward, the rank, or the score, may be fitted as a function of alloy composition
by a standard machine learning regression tool and used for material design, e.g., by com-
binatorial optimization. However, data on complex characteristics, such as processability,
environmental resistance, or contact properties, are usually scattered and sensitive to exper-
imental conditions so a situation such as in Table 1 is almost never found. Moreover, it may
happen that, among a group of alloys (e.g., A, B, C, D, E, and F), the pairwise comparisons
do not yield an obvious ranking (e.g., A > B, B > C, C > D, D > C, D > B, C > E, E > F, etc.).
In such a scenario, even if a real overall hierarchy exists, it would be very arduous to assign
ranks or scores manually, as in the previous example, especially if there is a vast amount of
pairwise comparisons.
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1.2. Envisioned Method

Such a task can be undertaken by specialized algorithms, called incomplete pair-
wise comparison algorithms, since they can establish a ranking among a set of objects
when all available pairs have not been compared, which is usually the case in materials
problems. The chosen algorithm is named SpringRank (SR), originally developed by De
Bacco et al. [20] and intended to infer rankings of nodes in directed networks. It has been
used, for instance, to model faculty hiring networks [21] and the ranking of American
universities [22]. However, to the authors’ knowledge, incomplete pairwise comparison
algorithms have never been used as tools for materials design. The approach developed
here, whose originality is the association of different tools within the specific context of
alloy modeling and design, has several steps, which are reflected in the structure of the
present publication. The first step is the use of a pairwise comparison algorithm to rank
and score alloys according to their relative reported performance in complex situations.
The second step consists in using a machine learning tool—a Gaussian process—to fit the
obtained rank or score as a function of alloy composition so as to obtain a predictive tool
of the relative alloy performance. The last step, when applied, is a multi-objective opti-
mization of composition to design alloys with optimal performance. After a presentation
of the method—pairwise comparison, machine learning, and optimization algorithms—it
is applied to two different case studies—molten salt corrosion of structural alloys and
wear resistance of hard-facing alloys (Works on the modeling and design of hard-facing
alloys were performed between and 2019 and 2023 [23]; those on molten salt corrosion
in 2023–2024 within projects ANR-22-PEXD-0003 and ANR-22-PEXD-0005)—from which
trends solely based on chemical content can be identified. Lastly, the presented strategy
will be validated by experimental results for the case of wear resistance.

2. General Method
2.1. Data Processing

Data processing also presented distinct steps that are common to each case study.
Firstly, a database was built from publications available in the scientific literature, where
at least two different alloys were tested in identical experimental conditions. Secondly, a
list of alloys similar to Table 1 was built where alloy i had a worse performance than alloy
j and its sij was calculated. (In the specific case of molten salt corrosion, sij was equal to
∆mi/∆mj.) Lastly, the list of pairwise comparisons was fed into the SR algorithm in order
to determine the rank of all alloys. The size of the database and its impact on the final result
are discussed separately for each case study.

2.2. Pairwise Comparison Algorithm

A pairwise comparison algorithm starts with the basic assumption that all actors (i.e.,
alloys) are compared in a pairwise fashion and that there exists a hierarchical rank among
them. This idea is used to describe the system as a directed network (see Figure 1 in the
case of molten salt corrosion; data will be described later), where each individual i is a
node and each pairwise comparison between objects i and j is a weighted and directed
edge. The algorithm then builds an adjacency matrix A, where Aij denotes the comparison
between i and j individuals, where i is ranked above j with a given ratio sij. Then, SR models
each edge as a physical spring and, by virtually stretching the network, finds the node’s
real-valued position that minimizes the total energy of the system, limiting inconsistencies
in the ranking [24] and predicting pairwise comparisons from nodes that are not directly
connected by an edge. Lastly, it provides an overall ranking of all actors by assigning them
a score Si. One of the main advantages of this algorithm is its computing efficiency: for
both case studies, it took only a few seconds to predict an overall rank.
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Figure 1. Graphical representation of the pairwise comparisons between the alloys studied in the
literature (blue: Ni-based alloys, black: ferritic-martensitic steels, green: BCC HEA, red: FCC HEAs,
yellow: austenitic stainless steels (SS), pink: Co-based alloys). The size of nodes is proportional to
their centrality degree. Nodes labeled A1 to A5 represent some reference alloys, i.e., those that have
been compared the most (see Table 2).

Table 2. Reference alloys from the database in terms of their centrality degree.

Ref. Alloy Centrality

(A1) SS 304 62

(A2) Inconel 625 58

(A3) Inconel 600 57

(A4) Hastelloy N 52

(A5) SS 316 48

2.3. Gaussian Process for Regression

An important aspect of SR is that it only needs a relative performance index sij for each
pairwise comparison. This means that other information, such as the chemical composition
and the microstructure, are not taken into account for the final ranking. The score or rank
Si is subsequently linked to the average chemical content of each alloy i by treating it as a
regression problem using a Gaussian process (GP).

A detailed description of GPs can be found elsewhere [25]. A GP is a Bayesian machine
learning tool that can perform a flexible regression of an output (the score or rank attributed
by SR) as a function of a set of input variables (the alloy’s chemical composition) based
on a statistical analysis of the data. This method has been used, for instance, to model the
yield strength of Ni-based alloys [26], the stability of high entropy alloys (HEAs) [27], or
the surface tension of liquid metals [28]. GPs are particularly well adapted to cases where
data is scarce and/or scattered [25]. This means that a GP would be the tool of choice in
the present case where, as will be explained later, on the one hand, a limited amount of
data is available and, on the other, the rank or score inferred by SR may be highly noisy.
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2.4. Multi-Objective Optimization Algorithm

The search for alloys that present the best compromise between several predicted
properties was made with a modified version of the multi-objective “non-dominated sorting
genetic algorithm” NSGA-II [29]. As in most genetic algorithms, the original code works
with a population (i.e., a group of alloys), where each one presents a particular genetic
code (i.e., chemical composition) with a resulting set of characteristics (i.e., properties).
At each generation, the alloys are ranked in a multi-objective perspective through a non-
dominated sorting procedure based on a set of targets and constraints. Then, “parents” are
selected from the population by using a binary tournament selection based on the rank
and crowding distance, from which N “children” are produced by crossing couples of
parents and then mutating genes (total population of 2N, typically a few hundred). At
the end of an iteration, the Darwinian survival-of-the-fittest standard is applied, where
only the N best individuals are kept using the same non-dominated sorting procedure,
consequently becoming the parents for the next generation. After several iterations—which
takes a few hours depending on the size of the population and the performance of the
predictive models used (see later explanation on the use of Thermo-Calc, e.g.)—the genetic
algorithm converges to an optimal solution and finds a Pareto set. In other words, it
provides a group of alloys where a particular characteristic cannot be further improved
without the deterioration of the remaining ones. For example, this approach has been
applied to the design of superior Ni-based superalloys [30] and the discovery of strong and
light HEAs [31].

3. Results
3.1. Case Study 1: Molten Salt Corrosion
3.1.1. Overall Context: Current State of Corrosion Resistance Data in the Scientific Literature

Molten salt reactors (MSRs) are a type of Generation IV nuclear fission reactor in which
the primary coolant is a molten salt mixture [32]. Their design presents several operational
and safety advantages over their solid fuel counterparts, such as the continuous removal of
Xe after shutdown and more compact components of the primary loop, among others [33].
Moreover, MSRs are also promising in terms of recycling nuclear fuel and improving
safety while maintaining an economic edge [34]. Nonetheless, the extreme conditions
to which the structural materials are being subjected make it imperative to manufacture
alloys with outstanding characteristics, such as a stable microstructure, high-temperature
strength, and irradiation resistance, although the most limiting factor probably is their
resistance to corrosion in molten salts [35]. The latter might be, for instance, fluorides or
chlorides [36]. Unfortunately, corrosion experiments in molten salts are extremely sensitive
to testing conditions. It has been shown that the alloy’s performance is dependent on
the experimental setup, such as the exposure time [37], the salt’s composition [38,39], the
cover gas [40,41], the relative velocity between the sample and the molten salt [42,43],
the crucible [44,45], the temperature [46,47], the alloy’s microstructure [48–53], and small
variations in the alloy’s chemical composition [54–56]. Moreover, it must be taken into
account that some of these are difficult to measure, such as the purity of the salt [57] and
the real-time evolution of its chemical composition [58].

There have been different data-centric strategies that tackle the modeling of corrosion-
resistant alloys, though not particularly under molten salts. For example, Ozdemir et al. [59]
used a random forest algorithm to screen the whole compositional space of the HfNbTaTiZr
high entropy alloy system and identified a particular composition that presented improved
properties for biomedical applications. Their approach for predicting the corrosion potential
was validated through subsequent experimental examination. Likewise, Roy et al. [60]
also developed an ML model coupled with a descriptors optimization for the prediction of
the corrosion rate of multi-principal element alloys in aqueous solutions. They observed
that, even though their approach narrowed down the compositional space of potential
alloys, they needed a larger dataset and data of better quality in order to improve their
predictions of the corrosion rate. On the other hand, Sasidhar et al. [61] recognized that
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predicting pitting potential from numerical values exclusively—such as alloy composition,
pH, test temperature, and ion concentration—was a rather simplistic approach. So they
developed a model that had three distinct components: numerical (developed in [62]),
categorial (which took into account the microstructure and type of material), and textual
(which included, among others, the description of the test method and heat treatment that
were interpreted via natural language processing). Their model helped them understand
the contributions of different atomic species in different metallic systems toward pitting
resistance. Nevertheless, all such approaches [59–62] were limited to rather conventional
data, i.e., where a single property was consistently measured, for limited alloy categories
and/or where testing parameters had to be included as inputs, irrespective of whether data
was collected manually or automatized using language processing [61]. This makes such
methods rather restrictive compared to the present one, which can potentially embrace a
very wide set of alloys and conditions provided that comparative pairs of data are available,
independently of experimental conditions.

In the following sections of the paper, it will be showed how, by leveraging sparce
and diverse data from scientific literature, the proposed method can identify the chemical
elements that contribute the most to molten salt corrosion. In addition, it does not require
explicitly enviromental factors as inputs (e.g., salt purity, temperature, exposition time,
etc.), which in turn reduces the amount of variables necessary for the ML model. Lastly, the
objective of the present method is not to accurately predict the mass loss or corrosion rate
of a given alloy tested with a given experimental setup, but rather to be able to correctly
identify the alloying elements that contribute the most to the materials’ performance.

Nonetheless, few attempts have been made toward the design of alloys specifically re-
sistant to molten salt corrosion. For instance, Wang et al. [63] coupled automated character-
ization with machine learning in order to study the corrosion mechanisms of Cr-Fe-Mn-Ni
single-phase face-centered cubic (FCC) HEAs during four days in a LiCl-KCl eutectic salt
(44 wt% LiCl—56 wt% KCl) with an addition of 2 wt% EuCl3. They found that those with
the highest Ni content were the most resistant, suggesting a sacrificial mechanism where
Mn dissolved to avoid Fe from being depleted. On the other hand, Raiman and Lee [64]
compiled experimental data—in fluorides and chlorides—from several publications from
the period between 1960 and 2016. Their correlation analysis yielded that salt purification
played a significant factor in the corrosion rate, followed by experiment setup and salt type.

There a few publications in the scientific literature where selected groups of alloys
have been tested in identical experimental conditions, which were later considered for the
present study. Since a standardized procedure for corrosion experiments under molten salts
does not exist, the data points in the database are highly scattered. A total of 130 different
publications have been taken into account, representing a total of 135 different alloys: 38
austenitic stainless steels, 33 ferritic-martensitic steels, 3 HEAs, 2 Co-based, and 59 Ni-
based alloys. Some of the experiments were performed in fluorides [65–67], nitrates [68–71],
chlorides [72–80], carbonates [81–83], sulfates [84–86], and even mixtures of several of
them [87–89]. Some researchers performed their experiments by controlling the purity of
the salt [90–92] or choosing a particular cover gas such as Ar [93–95], air [96–98], CO2 [99],
or N [100–102]. The experiments reported in the scientific literature were performed
at various temperatures, ranging from 250◦C [103–105] up to around 900◦C [106–108],
whereas some were tested in a non-isothermal fashion [109–111]. The times of exposure
were also very diverse, where some alloys were studied for a few hours [112–114] up to
several weeks [115–117]. Even the chosen crucibles were distinct, being as different as
oxides [118–121], glassy carbon [122–124], graphite [125–127], or stainless steels [128–130],
among others. The assessment of corrosion also involved various methods, like measuring
a weight change [131–133], the thickness of a corroded layer [134–136], or the corrosion
current during an electrochemically monitored experiment [137–139].
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3.1.2. Application of the Method: From SpringRank to Machine Learning Prediction of
Corrosion Resistance

As corrosion is an electrochemical phenomenon that can take place via different attack
modes—with each one having its own mechanisms [140]—the choice of a metric that
faithfully reflects the alloy’s resistance is not an obvious one. For the following, two criteria
were used to express the metal’s performance against molten salt corrosion:

• The absolute value of the mass change (both gain and loss) after a given exposure time
to reflect the fact that a good alloy would either dissolve slowly [141], grow gradually
a stable oxide scale [81], or even passivate [142]. On the contrary, an important weight
loss [143] would indicate a fast dissolution and poor behavior, whereas a large gain
in mass would suggest a rapid oxide growth [69], associated with a high risk of scale
spallation [107] and eventually to an accelerated metal loss. The possibility of an
important weight gain balanced by a subsequent weight loss is not considered in
this approach.

• The corrosion rate measured by electrochemistry (a corrosion current density [144]) or
attack depth [136].

Consequently, the comparative index sij was given by the absolute value of the ratio
between the alloy i that had the highest mass change (or corrosion rate) divided by that of
its competitor j. A total of 4306 pairwise comparisons were used as inputs for the ranking.

Figure 1 shows the network generated from all the pairwise comparisons. Each node
is an alloy, and the edges correspond to pairs of alloys that have been compared in the
scientific literature. From its general structure, it can be seen that it is a sparse graph
since not all nodes are connected to all others; in fact, some of them are just compared
against only one alloy. This comes from the usual practice where an experimental study
focuses on examining a particular commercial alloy against homemade ones in order to
analyze the impact of minor changes in their chemical composition, as in the case of N1,
N2, and Inconel 713LC [56]. A clear setback from the presented strategy is that all the
considered alloys (i.e., nodes) must be connected: the resulting graph has to be a closed
network without the presence of isolated islands, as shown in Figure 1. Nevertheless, some
HEAs [145–147], Ni-based [148–153], Fe-based [154–157], and other [158–160] interesting
alloys were found in the scientific literature, but unfortunately, they were not included in
the current study simply because they were not also compared to other alloys present in
the database in identical experimental conditions.

It is possible to study the structure of the network (Figure 1) in terms of graph the-
ory. Even though there are several ways to identify the most important nodes inside a
network [161], the centrality degree provides some insight, if assumed that the network is
undirected as a first approximation. This parameter is defined as the total number of nodes
(alloys) connected to a particular one. In other words, it serves as an idea of which alloys
were used as major references for molten salt corrosion tests (Table 2) and the number of
alloys against which they had already been compared in the scientific literature.

Figure 2 shows the overall ranking determined by SR. The lower the score, the more
performant the alloy. (The best one is at the bottom of the chart). It is possible to see
that alloys with a face-centered cubic (FCC) structure (SS and Ni-based alloys) are almost
always ranked better than ferritic-martensitic (FM) steels and an HEA with a body-centered
cubic (BCC) structure: the top 20% alloys have an FCC structure.

Table 3 shows the best ten alloys according to SR. (The complete list is presented in
Appendix A). Even though almost all of them have a high content of NI, with the notable
exception of an FCC HEA, it is possible to identify different clusters according to their
chemical composition. The first group corresponds to Ni-rich alloys with a very high
content in Mo (15–18 wt.%), with also Cr (6–23 wt.%) (MoNiCr [16], VDM 59 [88,162],
Hastelloy C4 [162,163], and Hastelloy N [16,17,65,82,90,108,123,126,127,137,164–172]. The
second one corresponds to Ni-rich alloys with a high content in Al (~5–6 wt.%), Si and
Nb with a smaller amount of Cr and no Mo (N101 [39,173], N1 [56], N102 [39,173], and
N2 [56]). Other alloys are the FCC HEA Al0.1CoCrFeNi [174] and Kubota UCX [133], which
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might be considered as a third group in that they have in common a high Cr content (like
VDM 59, which is also rich in Mo). According to the literature, Mo would slow down
dissolution [18,175] and/or favor passivation [76], whereas Al would promote the slow
growth of a stable and protective layer of alumina (Al2O3) [55,176]. Cr would induce the
formation of a defensive oxide scale as well (chromia—Cr2O3), which seems somewhat
efficient in fluorides [177] but not in chlorides [74,178]. It is noticeable that even though SR
was not fed with any information regarding chemical composition, it seems able to identify
and deduce indirectly which elements should contribute the most to the alloy’s molten salt
corrosion performance starting from macroscopic measurements (i.e., the mass change or
corrosion rate).

Metals 2024, 14, x FOR PEER REVIEW 8 of 29 
 

 

alloys with a face-centered cubic (FCC) structure (SS and Ni-based alloys) are almost al-
ways ranked better than ferritic-martensitic (FM) steels and an HEA with a body-centered 
cubic (BCC) structure: the top 20% alloys have an FCC structure. 

 
Figure 2. Overall alloy rank analyzed in molten salt corrosion experiments. (The complete list of 
alloys with their chemical composition and individual score Si can be found in Appendix A of this 
manuscript). “Austenitic” stands for “austenitic stainless steels”. 

Table 3 shows the best ten alloys according to SR. (The complete list is presented in 
Appendix A) Even though almost all of them have a high content of NI, with the notable 
exception of an FCC HEA, it is possible to identify different clusters according to their 
chemical composition. The first group corresponds to Ni-rich alloys with a very high con-
tent in Mo (15–18 wt.%), with also Cr (6–23 wt.%) (MoNiCr [16], VDM 59 [88,162], Hastel-
loy C4 [162,163], and Hastelloy N [16,17,65,82,90,108,123,126,127,137,164–172]. The second 
one corresponds to Ni-rich alloys with a high content in Al (~5–6 wt.%), Si and Nb with a 
smaller amount of Cr and no Mo (N101 [39,173], N1 [56], N102 [39,173], and N2 [56]). 
Other alloys are the FCC HEA Al0.1CoCrFeNi [174] and Kubota UCX [133], which might 
be considered as a third group in that they have in common a high Cr content (like VDM 
59, which is also rich in Mo). According to the literature, Mo would slow down dissolution 
[18,175] and/or favor passivation [76], whereas Al would promote the slow growth of a 
stable and protective layer of alumina (Al2O3) [55,176]. Cr would induce the formation of 
a defensive oxide scale as well (chromia—Cr2O3), which seems somewhat efficient in flu-
orides [177] but not in chlorides [74,178]. It is noticeable that even though SR was not fed 

Figure 2. Overall alloy rank analyzed in molten salt corrosion experiments. (The complete list of
alloys with their chemical composition and individual score Si can be found in Appendix A of this
manuscript). “Austenitic” stands for “austenitic stainless steels”.

The next step was to learn the score inferred by SR as a function of alloy composition
using GP regression. In Table 4, the spectrum of the possible values for each chemical
species is displayed, characterized by its considerable breadth. The maxima indicate that
all alloys relying on a principal element are based on either Fe, Ni, or Co.
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Table 3. SR’s prediction of the top-ten alloys with their average chemical composition (in wt.%).

Alloy Cr Ni Fe Mo Al C Cu Si Mn W Co Ti Nb V Si

MoNiCr 6.77 74.81 0.7 17.41 0.005 0.001 0.01 0.162 0.059 0.0075 0.036 0.001 0.011 0.022 0

N101 12 76.92 0.11 - 5.8 0.06 - 2.04 - - 0.06 1.05 1.96 - 0.54

N1 12 77.38 0.05 - 6 0.05 - 2.03 - - - 0.49 2 - 0.65

N102 12.5 73.95 0.15 - 6.1 0.04 - 4.67 - - 0.06 0.53 2 - 0.94

N2 11.98 74.6 0.05 - 5.95 0.05 - 4.95 - - - 0.49 1.93 - 0.97

Al0.1CoCrFeNi 22.84 25.73 24.48 - 1.17 - - - - - 25.78 - - - 1.11

Hastelloy C4 16 65.105 1.5 15.5 - 0.005 - 0.04 0.5 - 1 0.35 - - 1.32

VDM 59 23 59.795 0.75 15.75 0.25 0.005 - 0.05 0.25 - 0.15 - - - 1.32

Kubota UCX 41.1 47.81 5.5 1.43 - 0.48 - 2.16 - - - - 1.52 - 1.33

Hastelloy N 7 73.105 2 16 0.125 0.06 0.175 0.5 0.4 0.25 0.01 0.125 - 0.25 1.35

Table 4. Minimum and maximum values for each chemical element in the database.

Element Cr Ni Fe Mo Al C Cu Si Mn W Co Ti Nb V

Min (wt.%) 0.125 0.125 0.05 0.175 0.005 0.001 0.01 0.03 0.005 0.0075 0.01 0.001 0.011 0.022

Max (wt.%) 41.1 79.62 99.345 28.5 10.7 5.17 3.5 5 27 26.1 51.7 3.15 5.125 1.16

Figure 3 shows the comparison between the overall score inferred by SR and the one
predicted by the GP, from which several distinct features can be observed. First, there is an
associated uncertainty along the horizontal axis, where certain alloys have been attributed
a different score by SR, although having somewhat close chemical compositions (e.g.,
Hastelloy N and MoNiCr from Table 3), implying that the GP model predicts similar values
of Si. Second, there is an uncertainty along the vertical axis, where those scores assigned
by SR are very similar to one another but very different from those predicted by GP due
to their different chemical composition. Third, there seems to be a cloud of data points
around a score of 3.5, which are mostly those alloys with an FM microstructure. Fourth,
it is interesting to see that according to SR, most austenitic steels and Ni-based alloys are
grouped in scores between 1.5 and 3, although the GP predicts that all alloys up to a score
of approximately 2.3 are purely Ni-based alloys, whereas the austenitic steels are mostly
grouped between scores of 2.3 and 2.8. Nonetheless, it is possible to see a fair agreement
between the scores by SR and GP.

However, the relatively high scatter indicates a potential error in predictions, but
the good overall agreement shows that the trends are correctly identified. Due to their
Bayesian nature, GPs provide an error estimate along with their predictions, inferred from
the data’s statistical analysis. This can be exploited to design alloys in a robust manner
by taking the predictive error into account. (This will be shown in the second case study.)
In any case, when designing alloys with complex characteristics, like corrosion resistance,
optimizing by following correct trends would still represent a potential improvement
compared to a complete absence of predictive tools. Works are currently ongoing toward
this objective of designing alloys for future molten salt nuclear reactors. In the meantime,
as exposed in the following section, the approach has also been applied to model the wear
resistance of hard-facing alloys, through the analysis of a smaller dataset with a different
network structure. The model has then been used to design new alloys by combinatorial
optimization, followed by experimental validation, to illustrate the ability of the method to
extract correct trends from a reduced and scattered pairwise comparative dataset and to
make reliable predictions.
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3.2. Case Study 2: Design of Wear-Resistant Hard-Facing Alloys
3.2.1. Current State of Wear-Resistance Data and Application of the Proposed Method

The prevention of wear on structural components can be achieved by depositing
coatings of so-called hard-facing alloys. Consequently, the part can globally keep its
bulk mechanical properties, including a good combination of strength, ductility, and
toughness, while the hard coating faces external contact stresses, avoiding surface abrasion
or erosion. Although the wear resistance of pure metals or solid solution alloys has
been found to correlate mainly to hardness, this is not the case when a superior wear
performance is to be obtained through complex microstructures [179]. In such cases,
specific testing must be undertaken. However, the material’s response to wear is, like in the
corrosion case, highly sensitive to the testing conditions. It has been shown that hard-facing
alloy performance is dependent on the experimental conditions, such as differences in
the chemical composition [180,181] and microstructure [182] of the alloy, the deposition
technique used to produce the coatings [183], the temperature [184], the atmospheric
humidity [185], and the experimental setup itself [186]. The latter can involve, for instance,
pin-on-disc, ball-on-disc, plate-on-plate, disc-on-disc geometries, etc. The counter material
can be identical to the tested one or be a very hard material, e.g., a ceramic or cermet. The
relative movement of both parts can be linear or rotary, with variable testing parameters
like friction velocity, contact force or pressure, total length of friction, absence or presence
of a lubricant, nature of the latter, etc. Thus, the measurement of wear itself is also different
across studies. Indeed, a wear rate is usually expressed by the unit length of friction,
but it can refer to a loss in mass or thickness, to the depth or the volume of the wear
track, etc. Therefore, the problem is of the same nature as for molten salt corrosion: it is
almost impossible to gather a significant dataset of materials tested in identical conditions.
However, in several literature sources [180–184,187–192], two or more alloys have been
characterized in the same manner, rendering possible a pairwise comparison strategy,
provided that some alloys are present in different sources, to allow a proximity ranking. The
so-obtained dataset is constituted of 15 Fe-based alloys, 14 Ni-based alloys, and 6 Co-based
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alloys. The resulting network is presented in Figure 4 in a similar way as in the previous
section. Several comments can be made: (i) with only 35 alloys, the size of the dataset
remains rather small; (ii) there is also a limited number of edges; (iii) Stellite 6 is by far the
most central alloy, i.e., the one most often used as a reference in the experimental studies,
which seems normal since it is probably the most popular hard-facing alloy, followed by
Norem 02, which is one of the most studied material as a potential Co-free replacement
for Stellite alloys in the nuclear industry (this will be explained later); and (iv) besides
such reference alloys, many materials have only been compared a few times. It is therefore
interesting to see on the one hand if such a network structure can be exploited by a pairwise
comparison algorithm and, on the other, if compositional trends can be learned by a GP to
build a statistical regression model, which may eventually be used to design new highly
performant alloys by combinatorial optimization.
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Figure 4. Graphical representation of the pairwise comparisons between the alloys studied in the
literature (blue: Ni-based alloys; black: Fe-based alloys; yellow: Co-based alloys). The size of nodes
is proportional to their centrality degree. Nodes labeled A and B correspond to Stellite 6 and Norem
02, respectively.

The method associating the pairwise comparison algorithm and a GP to produce a
predictive model of alloy performance as a function of composition is similar to the one
of the first case study. To illustrate a different possibility, the wear resistance rank is here
fitted by the GP instead of the score Si. The rank predicted by GP is plotted in Figure 5
against the one determined by SR.

Despite the small number of data points and a substantial dispersion, a fair agreement
is obtained, indicating that the model seems capable to capture compositional trends gov-
erning the wear resistance of alloys. The originality here is to incorporate this model
into an alloy design scheme by combinatorial multi-objective optimization, which is
described hereafter.
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3.2.2. Design of Superior Alloys: Objectives and Constraints in the Optimization Algorithm

Hard-facing alloys are, among others, used in the primary circuit of nuclear power
plants, as wear-resistant coatings on parts of valves and pumps, as well as on rod control
mechanisms. The most used material is Stellite 6, a Co-based alloy rich in Cr, hardened
by carbides. It presents a very good combination of corrosion resistance, wear resistance,
and ability to be deposited by welding-type processes. However, it suffers from a major
drawback: following wear during service, alloy particles are driven in the primary circuit,
and their Co is activated in the long-period 60Co radioactive isotope, which is at the origin
of a significant part of the radiation dose received by maintenance workers in nuclear
power plants and complicates future dismantling. Vast research has been made toward the
development of Co-free alloys, like Norem 02 [23] or Nitromaxx [23], with mixed results, so
the search for a better alternative is still ongoing. An approach is presented here to design
new Fe-based, Co-free hard-facing alloys via a multi-objective combinatorial optimization.
The latter was performed by a genetic algorithm [30], aiming among others at:

• Maximizing the wear resistance predicted by the new model described above, as-
sociating a pairwise comparison algorithm and GP regression; this corresponds to
minimizing the predicted rank. Nevertheless, to improve the robustness of the design
process, minimization was not performed on the mean predicted rank but on the
mean plus a standard deviation. Indeed, being statistical tools, GPs calculate the
predictive distribution of the model output so that its standard deviation can be seen
as a predictive error estimate. Doing so, a pessimistic rank is obtained, which should
better guarantee that the designed alloys will actually match the objective.

• Targeting a specific type of as-solidified microstructure since alloys will be deposited by
welding-type processes. It must be made of a metallic solid solution matrix reinforced
by hard phases such as carbides and/or borides, as in most existing hard-facing alloys.

• Maximizing the chromium content in the solid solution matrix (“free Cr”) to ensure
corrosion resistance.
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Microstructural features were predicted by computational thermodynamics, using
the “calculation of phase diagrams” (Calphad) software Thermo-Calc (version 2018, Stock-
holm, Sweden) along with the TCFE9 database for Fe-based alloys. The Scheil model was
employed, which is adapted to the simulation of as-solidified microstructures.

The genetic algorithm was configured to explore the compositional space of Table 5.

Table 5. Compositional space explored in alloy design (in wt.%). Iron is the balance element.

Element Cr Mn Mo V W Ni Nb Si C B N

Min 15 0 0 0 0 0 0 0 0 0 0

Max 40 5 3 3 10 5 3 3 5 2 1

Step 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.01 0.01 0.01

After different optimization runs, the algorithm produced hundreds of Pareto-optimal
alloys, presenting different trade-offs between, among others, predicted wear resistance
(rank) and corrosion resistance (free Cr). Among all designed materials, four alloys were
selected (hereafter named AS1, AS2, AS3, and AS4), exhibiting different compromises
between such characteristics. Their composition is given in Table 6.

Table 6. Composition of selected alloys (in wt.%). Iron is the balance element. Only a compositional
range is given for AS4 due to confidentiality issues.

Alloy Cr Mn Mo W Ni Nb Si C B

AS1 25 2 0.2 0 1 1.1 0 1.2 1

AS2 22 0 0.2 0 0.3 1.1 0.6 1.2 1

AS3 21 2.2 0 0 6.7 2 0 0.45 0.7

AS4 15–25 <3 <5 <3 5–10 <3 <3 <1.5 <1.5

3.2.3. Experimental Validation of the Designed Alloys with Their Corresponding Rank

Selected alloys, along with two reference alloys (Norem 02 and the best alloy in
terms of wear resistance identified by SR from the database [23,181], hereafter called
“FeCrB”), were produced (300g ingots) by induction melting in a cold crucible. In agreement
with the industrial process foreseen for this kind of materials, alloys were studied in the
as-solidified state, with a microstructure similar to one of welded deposits. Specimens
were investigated by a set of microstructural characterization techniques, such as X-ray
diffraction, transmission electron microscopy (TEM), scanning electron microscopy (SEM)
with energy dispersive spectroscopy (EDS), and electron backscatter diffraction (EBSD). W
ear testing was undertaken at room temperature without lubricant using a rotary tribometer
with a ball-on-disc geometry, with a 6 mm diameter tungsten carbide ball and a disc of
the tested material polished with silicon carbide abrasive paper down to grade P1200.
The contact force was 8 N, and the relative ball-track velocity was 1.5 mm.s−1, for a total
track length of 150 m, with a wear track diameter of 16 mm. The worn volume was then
calculated as the product between the circumference and the cross-section area of the wear
track, determined by profilometry after observing the track from above with an optical
confocal microscope. (The cross-section area was averaged from eight locations around the
track.) The worn volume was then divided by the contact force and the total track length to
obtain the specific wear rate. In addition to in-house-produced alloys (AS1, AS2, AS3, AS4,
Norem 02, and FeCrB), a disc of commercially available Stellite 6 was tested in identical
conditions for comparison purposes. An in-depth analysis of the found microstructures
and their general properties can be found elsewhere [23].
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Wear resistance results are displayed in Figure 6, plotted as the measured specific wear
rate versus the wear rank resistance predicted by the model.
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Figure 6. Measured specific wear rate as a function of the robust wear rank predicted by the model
for reference alloys (Norem 02, Stellite 6, and FeCrB) and the newly designed alloys (AS1, AS2, AS3,
and AS4).

Although there is no simple relation between both quantities, the predicted trend is
satisfactory since the experimental measurements are in the same order as the predicted
wear rank. This demonstrates the applicability of the new modeling method associating a
pairwise comparison algorithm with a regression model. The best alloys are the already
reported alloy FeCrB and our new alloys AS1 and AS2, with measured wear rates well
below those of industrial alloys Stellite 6 and Norem 02. Alloy FeCrB performs slightly
better than alloys AS1 and AS2, but its predicted free Cr concentration (12.8 wt.%) is lower
than that of alloys AS1 (17.2 wt.%) and AS2 (15.9 wt.%), with an associated risk of lower
corrosion resistance. All three alloys (FeCrB, AS1, and AS2) are rather brittle, with an
experimental strain to failure around 3–4% in compression, rendering their application
somewhat risky. Conversely, all other alloys could be strained to at least 10% in compression
and appear more ductile, associated with a potentially safer use. Norem 02 is less resistant
to wear, but among the Fe-based alloys, it is the one with the highest free Cr concentration:
19.4 wt.% vs. 17.7 wt.% for AS3 and 15.3 wt.% for AS4. (Not being Fe-based, Stellite 6
cannot be directly compared on this criterion.) Both alloys AS3 and AS4 could therefore
be considered as interesting trade-offs compared to Norem 02, with a slightly reduced
corrosion resistance but a substantial gain in wear resistance between ~20% and ~40%.
Results are summarized in Figure 7 in terms of compromise between wear resistance and
potential corrosion resistance of Fe-based alloys.

Aiming for a low wear rate and a high free Cr concentration, all alloys shown in
Figure 7 would be Pareto-optimal except for AS4. Nevertheless, considering separately
brittle and ductile alloys makes all of them Pareto-optimal within their own category.
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4. Conclusions and Perspectives

In the present paper, a method is developed to exploit data on complex material
behaviors that are impossible to analyze with standard machine learning techniques. In
this respect, it cannot be compared to others and stands as a unique tool to tackle data in
which the comparative structure is the only exploitable feature. This method is here applied
to particular case studies: the corrosion of structural materials in molten salts and the wear
resistance of hard-facing alloys. A pairwise comparison algorithm—SR—is used to evaluate
the properties of pairs of alloys tested in identical conditions in a given study. By also
considering some common alloys but tested with different experimental setups by different
teams, an overall ranking between materials is deduced. At this first stage, no information
or data is needed on important characteristics, such as alloy composition, processing, or
microstructure: ranking is made on material performance only. As such, SR is able to infer
implicitly which elements contribute the most to the materials performance in each case
study. The obtained score—or rank—is then fitted as a function of alloy composition by a
GPs regression, as the data points are scarce and noisy.

For the first case—the resistance to corrosion by molten salts—a database is built from
alloys reported in the scientific literature. The dataset constitutes a rather dense network of
135 materials tested in 130 separate investigations (where at least two alloys are compared
in identical conditions), resulting in more than 4000 pairwise comparisons from which SR
is able to identify which constituents (e.g., Mo, Al, Cr, etc.) contribute the most to corrosion
resistance. Then, the score inferred by SR is fitted by a GP regression as a function of
14 compositional variables. There is a fair agreement between the actual and predicted
scores, and the model is able to reproduce some compositional trends that are expected
from a qualitative physical analysis (e.g., the role of the base element Fe or Ni and their
alloying constituents). Nonetheless, it is hoped that relevant interactions are also captured
and that a quantitative exploitation of such a model is possible.

This final point is demonstrated in the second case study, the wear resistance of
hard-facing alloys. The pairwise network is much smaller than in the previous case study
(35 materials tested in 11 separate investigations for a total of 106 pairwise comparisons)
and presents a smaller number of ramifications. However, it is shown that the obtained
model can be exploited to make reliable predictions and, as such, be used to design new
performant alloys by combinatorial optimization, which is here performed via a multi-
objective genetic algorithm. At this stage, in addition to the machine learning model built
using SR and GP, the microstructure resulting from both composition and processing is
taken into account through thermodynamics using the Calphad software Thermo-Calc, e.g.,
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to aim for a certain type of solidification path and structure. Four new alloys have been
selected, elaborated, and compared in identical testing conditions to concurrent materials.
Some of the designed alloys display interesting trade-offs between several characteristics.
In any case, the better the predicted wear resistance rank, the lower the actual wear rate,
indicating that the new model is able to fit existing data and predict correct trends. This
notion of trends is fundamental in alloy design and central to the present approach. Indeed,
obtained models being based on comparative data that are, by nature, only comparable
within a given study but incomparable across different studies, their interpretability can
only be comparative itself. The inferred rank or score does not have any absolute physical
meaning, but compositional trends are correct. At best, when a prediction is made for a
new alloy, the user may try to find, among known alloys in the database, those that possess
similar ranks or scores. Looking at the published works where the associated data came
from, it could be possible to estimate the potential performance of the new alloy if it were
to be tested in those particular conditions.

As a final point, it would be interesting to develop a more homogeneous database—e.g.,
having every single pairwise comparison tested in identical conditions—and to incorporate
alloys in the analysis that present unique chemical compositions and microstructures (e.g.,
HEAs, intermetallics, and duplex steels, just to name a few). In fact, even if the method
proved to be able to tackle successfully incomplete datasets on complex characteristics
and although trends are exploitable, the level of scatter—hence uncertainty—remains
substantial. This, in the end, also calls for more standardized testing protocols and cross-
validation procedures between institutions [193–195]. Nonetheless, the method proposed
in this paper should be capable to analyze other complex materials characteristics, i.e.,
irradiation resistance, formability, hydrogen embrittlement, etc., and to accelerate the search
and design of alloys with superior properties.
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Appendix A. Ranking of the Alloys Tested Under Molten Salts Experiments

Alloy Cr Ni Fe Mo Al C Cu Si Mn W Co Ti Nb V Si

MoNiCr 6.77 74.81 0.7 17.41 0.005 0.001 0.01 0.162 0.059 0.0075 0.036 0.001 0.011 0.022 0

N101 12 76.92 0.11 - 5.8 0.06 - 2.04 - - 0.06 1.05 1.96 - 0.54

N1 12 77.38 0.05 - 6 0.05 - 2.03 - - - 0.49 2 - 0.65

N102 12.5 73.95 0.15 - 6.1 0.04 - 4.67 - - 0.06 0.53 2 - 0.94

N2 11.98 74.6 0.05 - 5.95 0.05 - 4.95 - - - 0.49 1.93 - 0.97

Al0.1CoCrFeNi 22.84 25.73 24.48 - 1.17 - - - - - 25.78 - - - 1.11

Hastelloy C4 16 65.105 1.5 15.5 - 0.005 - 0.04 0.5 - 1 0.35 - - 1.32

VDM 59 23 59.795 0.75 15.75 0.25 0.005 - 0.05 0.25 - 0.15 - - - 1.32

Kubota UCX 41.1 47.81 5.5 1.43 - 0.48 - 2.16 - - - - 1.52 - 1.33

Hastelloy N 7 73.105 2 16 0.125 0.06 0.175 0.5 0.4 0.25 0.01 0.125 - 0.25 1.35

SS 310HCbN 25 20.5 52.28 - - 0.07 - 0.75 1 - - - 0.4 - 1.37

GH 3535 6.94 70.95 3.93 16.6 0.18 0.53 - 0.32 0.5 0.05 - - - - 1.4

Incoloy 800HT 21 32.5 45.395 - 0.5125 0.08 - - - - - 0.5125 - - 1.41

Incoloy 825 (3) 22.69 42.574 26.84 3.28 - - 2.79 - 0.486 - - 1.34 - - 1.44

Hastelloy C2000 23 57.355 1.5 16 0.25 0.005 1.6 0.04 0.25 - - - - - 1.45

N103 20 66.355 0.05 - 6 0.05 - 5 0.005 - 0.04 0.5 2 - 1.47

Ni-26W-6Cr 5.86 66.123 0.54 1 - 0.037 - 0.14 - 26.1 - 0.2 - - 1.52

Hastelloy C22 22 57.28 3 13 - 0.005 - 0.04 0.25 3 1.25 - - 0.175 1.53

KhN62M 23.2 63.02 0.47 13 0.11 - 0.01 0.03 0.03 0.05 - 0.08 - - 1.54

Haynes 263 20 51.49 0.35 6 0.3 0.06 - 0.2 0.4 - 20 1.2 - - 1.55

SS S35140 21 26 48.575 1.5 - 0.05 - 0.375 2 - - - 0.5 - 1.57

Haynes 75 20 73.525 5 - - 0.075 - 0.5 0.5 - - 0.4 - - 1.58

Inconel 713LC 12 79.45 - - 5.9 0.05 - - - - - 0.6 2 - 1.64

Haynes 214 16 76.1 3 - 4.5 0.05 - 0.1 0.25 - - - - - 1.65
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Alloy Cr Ni Fe Mo Al C Cu Si Mn W Co Ti Nb V Si

SS 309 23 14 59.8 - - 0.2 - 1 2 - - - - - 1.66

Inconel MA754 20 78.15 1 - 0.3 0.05 - - - - - 0.5 - - 1.68

Haynes 25 20 10 1.5 0.5 - 0.1 - 0.2 1.5 15 51.2 - - - 1.68

Hastelloy G 22.25 45.1 19.5 6.5 - 0.025 0.75 0.5 1.5 0.5 1.25 - 2.125 - 1.72

Kubota KHR45 36.2 39.98 19.1 1.5 - 0.4 - 1.31 - - - - 1.51 - 1.75

N3 20.05 66.34 0.05 - 6.05 0.05 - 4.98 - - - 0.5 1.98 - 1.75

Multimet 21.25 20 30.38 3 - 0.12 - 0.5 1.5 2.5 19.75 - 1 - 1.80

Haynes 244 8 61.835 1 22.5 0.25 0.015 - - 0.4 6 - - - - 1.84

Haynes HR224 20 48.7 27.5 - 3.8 - - - - - - - - - 1.89

SS 310S 25 20.5 52.71 - - 0.04 - 0.75 1 - - - - - 1.93

Inconel 718 19 53.385 17 3.05 0.5 0.04 0.15 0.175 0.175 - 0.5 0.9 5.125 - 1.93

Hastelloy G35 33 57.225 1 8 0.2 0.025 - 0.3 0.25 - - - - - 1.96

Rene 41 19 52.39 2.5 9.75 1.6 0.06 0.25 0.25 0.05 - 11 3.15 - - 1.97

Haynes 282 20 56.865 0.75 8.5 1.5 0.06 - 0.075 0.15 - 10 2.1 - - 1.98

Hastelloy C 16 73.16 5.5 - - 0.04 - 0.05 0.5 4.75 - - - - 2.00

Inconel 601 23 61.35 13 - 1.35 0.05 0.5 0.25 0.5 - - - - - 2.02

Inconel 702 15.5 79.62 1 0 3.25 - - - - - - - - - -

Kaeri Super alloy 4 8 36 55.485 - - - - 0.25 0.25 - - - - - 2.07

ATI 332Mo 21.5 33 41.025 2.5 - 0.05 - 0.25 1.25 - - - 0.425 - 2.15

Kubota KHR35 22.8 35.96 36.6 1.47 - 0.39 - 1.31 - - - - 1.47 - 2.23

RA 333 25.5 45.5 17.085 3.25 - 0.04 - 1.125 1 3.25 3.25 - - - 2.23

Incoloy 825 21.5 42 29.475 3 0.1 0.025 2.25 0.25 0.5 - - 0.9 - - 2.23

Sanicro 25 22.5 25 43.15 - - 0.05 3 0.2 0.5 3.6 1.5 - 0.5 - 2.24

RA 330 19 35.5 42.71 - - 0.04 0.5 1.25 1 - - - - - 2.24

SS 304H 19 9.5 70.055 - - 0.07 - 0.375 1 - - - - - 2.25
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Alloy Cr Ni Fe Mo Al C Cu Si Mn W Co Ti Nb V Si

Hastelloy C276 15.5 57.28 5.5 16 - 0.005 - 0.04 0.5 3.75 1.25 - - 0.175 2.25

06KhN28MDT 23.5 27 42.22 2.75 - 0.03 3 0.4 0.4 - - 0.7 - - 2.31

Incoloy 20 20 33.75 37.22 3.5 - 0.03 3.5 0.5 1 - - - 0.5 - 2.32

Hastelloy S 15.75 64.39 1.5 15.25 0.3 0.01 0.175 0.475 0.65 0.5 1 - - - 2.33

Inconel 600 15.5 75.425 8 - - 0.075 0.25 0.25 0.5 - - - - - 2.34

Hastelloy B3 1.5 63.595 1.5 28.5 0.25 0.005 - 0.05 1.5 1.5 1.5 0.1 - - 2.35

Haynes 242 8 63.435 1 25 0.25 0.015 0.25 0.4 0.4 - 1.25 - - - 2.35

Hastelloy X 22 47.8 18 9 - 0.1 - 0.5 0.5 0.6 1.5 - - - 2.35

Haynes 188 22 22 1.5 - - 0.1 - 0.35 0.625 14 39.425 - - - 2.35

Inconel 617 22 52.2 1.5 9 1.15 0.1 0.25 0.5 0.5 - 12.5 0.3 - - 2.35

Haynes 230 22 56.7 1.5 2 0.3 0.1 - 0.4 0.5 14 2.5 - - - 2.35

Sanicro 28 27 32.03 34.705 3.5 - 0.015 1 0.5 1.25 - - - - - 2.35

Inconel 625 21.5 61.9 2.5 9 0.2 0.05 - 0.25 0.25 - 0.5 0.2 3.65 - 2.35

Incoloy 825 (2) 24.63 39.47 32.1 3.19 - - - - 0.498 - - 0.112 - - 2.35

SS 310N 26 23 47.55 - - 0.1 - 0.75 2 - - - 0.6 - 2.37

SS 316H 17 12 65.68 2.5 - 0.07 - 0.75 2 - - - - - 2.39

SS 304L 19 10 69.485 - - 0.015 - 0.5 1 - - - - - 2.43

SS 316 17 12 66.96 2.5 - 0.04 - 0.5 1 - - - - - 2.43

Nimonic 90 19.5 56.585 0.75 - 1.5 0.065 0.1 0.5 0.5 - 18 2.5 - - 2.44

SS 347H 18.5 11 68.27 - - 0.07 - 0.5 1 - - - 0.66 - 2.45

Hastelloy B 0.5 63.925 5 28 - 0.025 - 0.5 0.5 - 1.25 - - 0.3 2.46

Inconel 690 29 60.975 9 - - 0.025 0.5 0.25 0.25 - - - - - 2.48

Haynes HR160 28 34.95 1.75 0.5 - 0.05 - 2.75 0.5 0.5 30 0.5 0.5 - 2.48

SS 317L 19 13 62.985 3.5 - 0.015 - 0.5 1 - - - - - 2.49

OC4 13.96 25.03 51.759 1.98 3.55 0.101 0.51 0.14 1.97 0.95 - 0.05 - - 2.51
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Alloy Cr Ni Fe Mo Al C Cu Si Mn W Co Ti Nb V Si

SS 353MA 25 35 38.565 - - 0.035 - 0.65 0.75 - - - - - 2.51

Incoloy 800H 21 32.5 45.675 - 0.375 0.075 - - - - - 0.375 - - 2.57

Inconel X750 15.5 71.81 7 - 0.7 0.04 0.25 0.25 0.5 - 0.5 2.5 0.95 - 2.59

Incoloy 800 21 32.5 45.7 - 0.375 0.05 - - - - - 0.375 - - 2.67

SS 310 25 20.5 52.625 - - 0.125 - 0.75 1 - - - - - 2.71

SS 347 17 11 69.66 - - 0.04 - 0.5 1 - - - 0.8 - 2.73

SS 446 25 0.125 73.525 - - 0.1 - 0.5 0.75 - - - - - 2.73

Inconel 686 21 57.745 1 16 - 0.005 - 0.04 0.375 3.7 - 0.135 - - 2.75

SS HP40 26 35 33.45 0.5 - 0.55 - 2.5 2 - - - - - 2.76

SS 316L 17 12 66.985 2.5 - 0.015 - 0.5 1 - - - - - 2.77

SS 304 19 9.25 70.21 - - 0.04 - 0.5 1 - - - - - 2.79

20#steel 0.125 0.125 98.65 - - 0.205 0.125 0.27 0.5 - - - - - 2.81

Haynes HR120 25 35.85 33 1.25 0.1 0.05 - 0.6 0.7 1.25 1.5 - 0.7 - 2.87

SS 316Ti 17 12 66.735 2.5 - 0.04 - 0.375 1 - - 0.35 - - 2.87

Kaeri Super alloy 5 29 32 38.485 - - 0.015 - 0.25 0.25 - - - - - 2.9

SS 405 13 - 85.76 - 0.2 0.04 - 0.5 0.5 - - - - - 2.91

SS 410 12.5 - 86.425 - - 0.075 - 0.5 0.5 - - - - - 2.93

SS 1020 - - 99.345 - - 0.205 - - 0.45 - - - - - 2.94

AlCoCrFeNi 20.6 23.3 22.1 - 10.7 - - - - - 23.3 - - - 2.95

SS 321 18 10.5 69.56 - - 0.04 - 0.5 1 - - 0.4 - - 2.97

L 605 20 10 1.5 - - 0.1 - 0.2 1.5 15 51.7 - - - 2.98

Nippon HR6W 24.5 34.35 30 - - 0.1 - 1 1.5 8 - 0.2 0.35 - 3.02

SS 709 19.93 24.98 51.864 1.51 - 0.066 - 0.44 0.91 - - 0.04 0.26 - 3.02

Haynes 556 22 20 32.8 3 0.2 0.1 - 0.4 1 2.5 18 - - - 3.07

SS 317 19 13 62.96 3.5 - 0.04 - 0.5 1 - - - - - 3.08
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Alloy Cr Ni Fe Mo Al C Cu Si Mn W Co Ti Nb V Si

SS 15 15Ti 15.5 15.5 64.23 1.4 0.02 0.12 0.05 0.6 2 - 0.03 0.55 - - 3.11

Nitronic 50 22 12.5 57.32 2.25 - 0.03 - 0.5 5 - - - 0.2 0.2 3.12

OCT 14 35 46 - 3 - - - - - - 2 - - 3.14

SS 321H 17 10.5 70.63 - - 0.07 - 0.5 1 - - 0.3 - - 3.16

SS 330 19 36 43.395 - - 0.04 - 0.565 1 - - - - - 3.24

Vuelvas 7 28.7 1.81 57.17 1.04 - 3.93 - 0.28 6.5 - - - - 0.57 3.25

SS 430 14.94 - 84 - - 0.06 - 0.5 0.5 - - - - - 3.33

SS 1045 - - 98.79 - - 0.46 - - 0.75 - - - - - 3.37

X20 11.25 0.55 85.705 1 0.02 0.2 0.15 0.2 0.65 - - - - 0.275 3.38

P91 8.75 0.2 88.89 0.95 0.01 0.1 - 0.35 0.45 - - 0.005 0.08 0.215 3.39

Inconel 740H 24.5 49.1075 1.5 1 1.1 0.0425 0.25 0.5 0.5 - 18.5 1.5 1.5 - 3.40

Cr18Mn27Fe27.5Ni27.5 18 27.5 27.5 - - - - - 27 - - - - - 3.41

16Kh12MVSFBR 11 0.65 84.39 0.75 - 0.16 - 1.15 0.65 0.65 - - 0.3 0.3 3.43

Vuelvas 1 21 1.58 62.59 2.2 - 5.17 - 0.34 6.27 - - - - 0.85 3.44

T22 2.25 - 95.7 1 - 0.1 - 0.5 0.45 - - - - - 3.44

T23 2.25 - 94.99 0.175 0.015 0.07 - 0.25 0.35 1.6 - - 0.05 0.25 3.47

SS 253MA 21 0.17 65.655 11 - 0.075 - 1.7 0.4 - - - - - 3.48

T9 9 - 88.85 1 - 0.075 - 0.625 0.45 - - - - - 3.5

SS4130 0.95 - 97.82 0.2 - 0.305 - 0.225 0.5 - - - - - 3.5

VM12 11.5 0.25 83.95 0.3 - 0.1 - 0.5 0.3 1.5 1.6 - - - 3.53

Vuelvas 6 27.7 1.86 56.65 0.98 - 3.93 - 0.32 7.42 - - - - 1.14 3.59

T 11 1.2 - 96.97 0.5 - 0.1 - 0.79 0.44 - - - - - 3.61

Vuelvas 2 21.2 1.8 64.7 0.92 - 5.09 - 0.32 5.1 - - - - 0.87 3.64

SS 439 18 0.25 80.64 - 0.075 0.035 - 0.5 0.5 - - - - - 3.64

SS Q235A - - 99.015 - - 0.11 - 0.175 0.7 - - - - - 3.73
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Alloy Cr Ni Fe Mo Al C Cu Si Mn W Co Ti Nb V Si

T92 8.75 0.2 88.015 0.45 0.02 0.1 - 0.5 0.45 1.25 - - 0.065 0.2 3.74

A516 - - 98.39 - - 0.31 - 0.275 1.025 - - - - - 3.74

OCI 14 12 63.5 - 2.5 - 3 - 5 - - - - - 3.9

T24 2.4 - 95.36 1 0.01 0.1 - 0.3 0.5 - - 0.08 - 0.25 3.91

Vuelvas 5 29.7 1.94 53.85 3.25 - 4.1 - 0.4 5.6 - - - - 1.16 3.92

A1 - - 98.7 - - 0.27 - 0.1 0.93 - - - - - 3.97

Vuelvas 3 22.52 1.68 62.945 2.47 - 4.65 - 0.32 4.8 - - - - 0.615 4.13

T5 5 - 93.85 0.55 - 0.075 - 0.075 0.45 - - - - - 4.16

T12 0.15 0.15 98.265 0.3 - 0.16 0.15 0.175 0.65 - - - - - 4.27

Vuelvas 4 30.48 1.96 53.12 3.3 - 4.29 - 0.42 5.9 - - - - 0.53 4.31

SB450 - - 99.045 - - 0.28 - 0.225 0.45 - - - - - 4.44

Appendix B. Ranking of the Alloys Tested Under Wear Experiments

Alloy Fe C Cr Mn Mo V W Co Ni B Nb Si N Rank

Yoo-0,6B 76.6 1.73 19.94 - - - - - - 0.71 - 1.02 - 1

Yoo-0,3B 77.7 1.74 19.32 - - - - - - 0.34 - 0.9 - 2

Alloy S3/S21 (70/30) 0.93 1.76 29.45 0.52 1.65 - 8.75 53.24 2.08 0.7 - 0.93 - 3

Colmonoy 88 3.95 0.84 14.8 - - - 17.37 - 55.95 3.18 - 3.91 - 4

APM 2311 70.5 2 26 0.5 - - - - - - - 1 - 5

Stellite 12 2 1.8 29 - - - 8.5 54.20 3 - - 1.5 - 6

Tribaloy T400 - 0.1 8.5 - 28.5 - - 60.30 - - - 2.6 - 7

Yoo-1B 76.64 1.72 19.65 - - - - - - 1.05 - 0.94 - 8

Colmonoy 6 Laser 3.8 0.73 14.56 - - - - 0.09 73.17 3.37 - 4.28 - 9

Yoo-2B 75.82 1.72 19.54 - - - - - - 2 - 0.92 - 10

NOREM A 56.9 1.2 26 5.5 2 - - - 5 - - 3.4 - 11
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Alloy Fe C Cr Mn Mo V W Co Ni B Nb Si N Rank

Elmax 76.6 1.7 17 0.3 1 3 - - - - - 0.4 - 12

Colmonoy 83 1.4 2 20 - - - 34 - 40.2 1 - 1.4 - 13

Tristelle TS-2 36 2 35 - - - - 12 10 - - 5 - 14

NOREM 02 59.7 1.23 25.1 4.4 2.03 - - - 4.13 - - 3.23 0.18 15

Nelsit 59.97 0.03 18 2 3 - - - 10 - - 7 - 16

Stellite 21 3 0.25 27 1 5.5 - - 59.25 2.5 - - 1.5 - 17

NOREM 01 55.28 1 25 9.3 2 - - - 4.02 - - 3.3 0.1 18

Stellite 6 2.01 1.2 29 0.13 1.5 - 4.5 59.02 1.8 - - 0.84 - 19

Yoo-0B 77.03 1.64 20.34 - - - - - - 0.01 - 0.98 - 20

NOREM 04 46.73 1.05 24.81 12 1.96 - - - 8.05 - - 5.17 0.23 21

AI 1236 2.86 1.58 9.56 - - - 25.92 - 55.13 2.15 - 2.8 - 22

Tribaloy T200 - - 11 - - - - 61.75 20 - 6.5 0.75 - 23

NoCo-M2 55.95 0.9 25 5 2 - - - 8 - - 3 0.15 24

Everit 50 67.7 2 25 0.9 3.5 0.5 - - - - - 0.4 - 25

Colmonoy 5 4.6 0.5 12.6 - - - - - 75.8 2.5 - 4 - 26

Nucalloy 453 3 0.85 10 - - - 2 - 78.35 0.5 - 5.3 - 27

Tribaloy T700 - 0.08 16 - 32 - - 1.5 47.02 - - 3.4 - 28

Deloro 40 2.5 0.45 10 - - - - - 82.25 2.5 - 2.3 - 29

Deloro 50 4 0.6 13 - - - - - 75.4 3 - 4 - 30

Inconel 625 1 0.05 21 9 - - - 68.95 - - - - 31

Nucalloy 488 5.5 0.3 17.5 - - - 1 - 67.9 1 - 6.8 - 32

Tribaloy T700 + 10% Fe 10 0.08 16 - 32 - - 1.5 35.02 - - 5.4 - 33

Tribaloy T700 + 5% Fe 5 0.08 16 - 32 - - 1.5 41.02 - - 4.4 - 34

Tribaloy T700 + 15% Fe 15 0.08 16 - 32 - - 1.5 29.02 - - 6.4 - 35
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