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Abstract 

Two numerical models based on non-equilibrium and local equilibrium approaches 

respectively were developed to simulate hydrogen transport in porous metals, taking account 

of gaseous hydrogen trapping inside the micro-porosities. They were applied to the case of 

hydrogen permeation in a cast steel at room temperature. Numerical simulations revealed 

that the two models are equivalent under certain conditions. A parametric analysis was 

performed to explore the effect of external hydrogen fugacity, hydrogen solubility and 

porosity fraction on the hydrogen diffusion behavior. A comparison between experimental 

permeation data and the numerical results showed reasonable agreement considering no 

input parameter was adjusted. 
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1. Introduction 

Hydrogen embrittlement represents a critical problem for many steels and it can lead to 

loss of mechanical properties and failure in some cases [1–7]. Due to its small size, hydrogen 

atom can easily diffuse inside steels. However its diffusivity can be highly affected by 

microstructural defects known as “traps” such as voids, dislocations, grain boundaries, 

precipitates and interfaces [8,9]. Therefore, understanding hydrogen diffusion and trapping is 

a first step in the process of making steel more resistant to hydrogen embrittlement. 

Micro-porosity is usually present in near-net shape metallic parts obtained from 

solidification, as in casting or additive-manufacturing. This micro-porosity is due to volume 

shrinkage, as well as gas evolution during solidification [10,11]. In cast steels, depending on 

the process conditions, the volume fraction of porosities is usually of the order of some 10-3, 

with a porosity size in the micrometer range (see for example the porosity characterization 

proposed in [12]). Hydrogen is often present as an impurity in as-solidified metal parts. 

Because of the possible decomposition of water at the liquid metal surface, the presence of 

humidity in the environment, especially in industrial situations, can result in hydrogen uptake 

by the liquid metal [13]. In the particular case of cast steels, after cooling, hydrogen can be 

trapped in micro-porosities as gaseous hydrogen, which can assist the formation of “fisheyes”, 

a typical hydrogen-related defect [14]. Understanding the hydrogen diffusion and trapping in 

a steel containing micro-porosities is then of theoretical and practical interest. 

In a previous paper [12], experimental data showed that micro-porosity acts as a 

reversible trap for hydrogen and as a result, it reduces hydrogen diffusivity. This result was 

obtained based on the comparison between the electrochemical permeation results of forged 

(non-porous) and cast (porous) specimens obtained from the same low-alloy steel. In addition, 

it was shown that the majority of hydrogen present in the material was trapped in the 

porosity. In the present study, the aim is to develop a numerical model, which takes into 

consideration the role of the porosity in the hydrogen diffusion and trapping processes. 

Over the last decades, there has been an extensive effort to develop numerical models 

that are able to describe hydrogen diffusion and trapping. McNabb and Foster developed a 

general mathematical model that took into consideration the trapping effect in the hydrogen 

diffusion process [15,16]. Oriani reformulated their work and provided simpler equations that 
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are based on the assumption of local equilibrium between lattice and trapped hydrogen [17]. 

He has shown that the hydrogen apparent diffusion coefficient depends on the trap sites 

density and the trapping energy. Since then, many works [18–26] have proposed different 

approaches in order to simulate the hydrogen diffusion process with the presence of traps. All 

those studies focus on crystal defects only (dislocations, grain boundaries, etc.) and are based 

on the “effective medium” approach, where the traps are only characterized by a trap density 

(number of trapping sites per unit volume) and a trap energy. In this “effective medium” 

approach, the space distribution of traps is ignored and possible lattice hydrogen 

concentration gradients between traps are neglected (in other terms, the lattice hydrogen 

concentration is assumed locally homogeneous). These assumptions seem justified if the 

distance between traps is very small with respect to the specimen size. 

In the present work, the focus was set on one specific type of trap, which is the micro-

porosity. This porosity can store molecular hydrogen which can lead to hydrogen 

embrittlement as explained by the hydrogen pressure theory proposed by Zappfe [27]. It 

assumes that atomic hydrogen H diffuses through the material and recombines as molecular 

hydrogen H2 inside the cavities. As a result, the internal pressure rises as atomic hydrogen 

diffuses until reaching equilibrium between the lattice hydrogen and the hydrogen pressure 

within the cavity. The distance between micro-pores in a cast steel can be as high as several 

hundreds of micrometers as shown in [12]. It can be questioned whether the “effective 

medium” approach is still valid here as such inter-trap distances are not necessarily much 

smaller than a typical permeation membrane thickness.  

Models have been proposed in literature to determine the apparent diffusion coefficient 

of hydrogen in metals containing porosities [28–30]. With the assumption of a constant 

equilibrium between the molecular hydrogen trapped in the void and the surrounding 

hydrogen in the bulk, Chew [28] obtained, in the perfect gas approximation: 

 
𝐷𝑎𝑝𝑝 =

𝐷𝐿

(1 +
2𝑋𝑃

𝑅𝑇𝐾𝐻
√𝑃)

 

 

(1) 

 

with 𝐷𝑎𝑝𝑝 the apparent hydrogen diffusion coefficient, 𝐷𝐿 the lattice hydrogen diffusion 

coefficient, 𝑋𝑃 the volume fraction of porosity, 𝑅 the universal gas constant, 𝑇 the 

temperature, 𝐾𝐻 the hydrogen solubility (Sieverts’ constant) and 𝑃 the local hydrogen 
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pressure in the voids. Eq. (1) shows how the porosity fraction and the solubility are expected 

to affect hydrogen diffusion. It is to be noted that the factor of 2 in Eq. (1) should be replaced 

by a factor of 4, as there is a confusion in the original paper by Chew between the number of 

moles of molecular hydrogen and that of atomic hydrogen. 

More recently, numerical models based on “effective medium” approaches were 

developed to simulate hydrogen diffusion and trapping in metals containing porosities [31–

34]. Note that in those studies, the volume fraction and size of porosities were time-

dependent because of embrittling effects of hydrogen itself (blister formation [32,33]) or 

because of the plastic deformation imposed ([31,33]). Trapping in the porosities was 

addressed either using a local equilibrium approach (Sieverts’ law) [31,33] or a rate equation 

of hydrogen recombination/dissociation on the internal porosity surface [32]. It is to be noted 

that in those studies, hydrogen concentration is assumed homogeneous at the local scale, i.e. 

the existence of possible hydrogen concentration gradients in the vicinity of the porosities was 

ignored. In contrast, Zibrov et al. [35] introduced the quasi-stationary approximation to 

address the existence of a concentration gradient around the porosities. They applied their 

model to the case a periodic array of nanometric cavities in tungsten to simulate 

thermodesorption experiments. 

Some modelling at a more local scale was also conducted in previous studies [36–39]. 

However, these studies were limited to the case of a unique cavity embedded in a bulk of 

metal. In the their evaluation of trapping, Zibrov et al. [39] included both gaseous hydrogen 

and hydrogen adsorbed on the internal surfaces, the latter being justified by the nanometric 

size of the cavities. The interface condition was addressed by rate equations involving the 

three different types of hydrogen in the system (dissolved, adsorbed and gaseous). On the 

other hand, Sezguin et al. [36,37] have developed an original equation of state for gaseous 

hydrogen, able to cover a very wide range of pressure and temperature. These authors also 

pointed out the difficulty in ensuring mass balance when a concentration (i.e. Sieverts’ law) is 

imposed at the bulk-cavity interface. 

In the present study, two different numerical models are proposed in order to study 

hydrogen diffusion and trapping behavior in steel samples containing porosities. The first 

model is a 3D finite element model (FEM), where one or several porosities can be introduced. 

Each porosity is defined by its 3D coordinates and its geometry (only the spherical geometry 

was considered in this work). The model is based on a non-equilibrium hypothesis, i.e. a 
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hydrogen flux, at the bulk-porosity interfaces, newly developed for this work in the frame of 

non-equilibrium thermodynamics. This flux condition at the interface permits to ensure mass 

balance without any additional computation tricks. In addition, the 3D FEM model developed 

allows the local description of hydrogen concentration around the porosities, without the 

quasi-stationary approximation [35]. The second model is a 1D effective medium model based 

on a local equilibrium hypothesis at the bulk-porosity interfaces. This second model, which is 

far less computationally expensive, was developed for comparison purpose with the first one. 

It is to be noted that the mechanical effect of hydrogen pressure inside the porosity was not 

discussed in this study; the focus was only set on the diffusion and the trapping of hydrogen. 

In addition, the porosity fraction is considered constant, i.e. no void growth or shrinkage is 

considered here. The models developed were applied to the case of the well-known 

permeation experiment. Hydrogen permeation in a low-alloy cast steel (G20MN5) was 

simulated. The results are compared to permeation experiments from a previous study [12].  

 

2. Numerical models 

2.1. Theoretical background 

2.1.1. Equation of state (EOS) of gaseous hydrogen 

A recent EOS, developed by Sezgin [37], was used in this work (Eq.(2)). This EOS presents the 

advantage of covering a wide range of pressure and temperature. It is based on the Abel-

Noble model and real datasets from the National Institute of Standards and Technology (NIST). 

It is valid for temperatures above 200 K and pressures as high as 2000 MPa.  

 𝑃𝑣 =  𝑅𝑇 + 𝑃𝑏0 − 𝑃2𝛽 

 

(2) 

where 𝑃 is the pressure, 𝑣 is the molar volume, 𝑅 is the universal gas constant, 𝑇 is the 

temperature, 𝑏0 and 𝛽 are constants (𝑏0  =  1.4598 × 10−5 𝑚3. 𝑚𝑜𝑙−1 and 𝛽 =  1.955 ×

 10−15 𝑚3. 𝑚𝑜𝑙−1. 𝑃𝑎−1).  

2.1.2. Hydrogen fugacity 

The fugacity of a chemical element (usually noted 𝑓) is a thermodynamic function that 

represents its tendency to escape from a given phase to another [40,41]. The relationship 
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between the chemical potential of hydrogen µ and hydrogen fugacity 𝑓 at a constant 

temperature is:  

 
µ =  µ0 + 𝑅𝑇 𝑙𝑛 (

𝑓

𝑓0
) (3) 

 

where µ0 is the chemical potential of hydrogen at the reference pressure (generally 1 atm) 

and 𝑓0 is hydrogen fugacity at the reference pressure. 

By using and combining thermodynamic relationships, San Marchi et al. provided an 

expression (Eq.(4)) that relates hydrogen fugacity to the pressure [42]. 

 
𝑙𝑛 (

𝑓

𝑃
) = ∫ (

𝑣

𝑅𝑇
−

1

𝑃
) 𝑑𝑃

𝑃

0

 (4) 

 

2.1.3. Sieverts’ law 

The Sieverts’ law describes the equilibrium for the dissolution of diatomic gases in metals 

[43–45]. For hydrogen, the expression is given by Eq.(5) [46]: 

 𝐶𝐻 = 𝐾𝐻√𝑓 (5)  

 

where 𝐶𝐻 represents the concentration of atomic hydrogen dissolved in the material, 𝐾𝐻 is 

the Sieverts’ constant (hydrogen solubility) and 𝑓 is hydrogen fugacity. In this study, we refer 

to 𝐾𝐻 as “Sieverts’ constant” or “hydrogen solubility” indifferently. 

Sieverts‘ law can be demonstrated by expressing equilibrium between the respective chemical 

potentials of hydrogen in the solid phase (𝐻𝑆𝑜𝑙𝑖𝑑) and the gaseous phase (𝐻2). Eq.(6) 

represents the chemical reaction of the dissociation of H2 into hydrogen atoms. 

 
H2 ↔ 2H𝑆𝑜𝑙𝑖𝑑 

 

(6) 
 

The chemical potential of atomic hydrogen in the solid phase can be expressed as follows: 

 
µ𝐻

𝑆𝑜𝑙𝑖𝑑 =  µ𝐻
0 + 𝑅𝑇 𝑙𝑛 (

𝐶

  𝐶0
) 

 

(7) 
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where µH
0  is the standard chemical potential, 𝐶 is the H concentration and 𝐶0 is the H 

concentration at the standard state. In the same way, it is possible to define the chemical 

potential of molecular hydrogen: 

 
µ𝐻2

=  µ𝐻2

0 + 𝑅𝑇 𝑙𝑛 (
𝑓

𝑓0
) 

 

(8) 
 

where µ𝐻2

0  is the standard chemical potential of molecular hydrogen, 𝑓 represents the 

hydrogen fugacity and 𝑓0 is the hydrogen fugacity at the standard state. The chemical 

potential of the atomic hydrogen in the gaseous phase is equal to the half of the chemical 

potential of the molecular hydrogen: 

 
µ𝐻

𝑔𝑎𝑠
=  

1

2
µ𝐻2

 

 

(9) 
 

At equilibrium, the chemical potentials of hydrogen in the solid and in the gas are equal: 

 
µ𝐻

0 + 𝑅𝑇 𝑙𝑛 (
𝐶

  𝐶0
) =

1

2
µ𝐻2

0 + 𝑅𝑇 𝑙𝑛 √
𝑓

𝑓0
 

 

(10) 

 

Thus, the equilibrium hydrogen concentration in the solid phase can be expressed as: 

 
𝐶 =

  𝐶0

√𝑓0
× 𝑒𝑥𝑝 (

1

2
µ𝐻2

0 − µ𝐻
0

𝑅𝑇
) × √𝑓 

 

(11) 
 

which is the same expression as the Sieverts’ law (Eq.(5)), with 𝐾𝐻 =  
  𝐶0

√𝑓0
×  𝑒𝑥𝑝 (

1

2
µ𝐻2

0 −µ𝐻
0

𝑅𝑇
) 

which is the hydrogen solubility. 

2.2.  Non-Equilibrium Model 

2.2.1. Geometry of the model 

In order to simulate hydrogen permeation through a sample containing porosities, the 

FEM approach was used. The simulations were performed on a 3D geometry as presented in 

Figure 1 (a) where one of the simulation boxes used in this work is shown. It represents a steel 
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specimen with one porosity placed in the center. The simulation box has a length of 2 mm.  

Figure 1 (b) shows a cross-section view.  

 

Figure 1 : Simulation box containing one cavity in the center (a) in 3D and (b) cross-section view with the 
boundary conditions of permeation. 

2.2.2. Initial and boundary conditions 

A small initial hydrogen concentration was set in the bulk (0.01 mol/m3) as well as a 

small initial pressure inside the cavity (0.1 MPa). These non-zero initial conditions avoid 

numerical problems and it has been checked that they have no influence on the final results. 

On the right side of the box, as presented in Figure 1 (b), a zero concentration was 

imposed, which corresponds to the detection side of the permeation experiment. On the 

opposite side, a constant fugacity was imposed. This side corresponds to the charging side in 

the permeation test. Finally, a periodic boundary condition consisting of a zero hydrogen flux 

was imposed along the lateral sides. Note that because of these periodic boundaries, the 

elementary box simulated here is equivalent to a 3D network of cavities. 

At the bulk-cavity interface, atomic hydrogen can recombine into molecular hydrogen. 

The key of this model lies in defining the hydrogen flux at the bulk-cavity interface. In our case, 

it is possible to define this flux using the expression given in Eq.(12) which was developed by 

Pekar [47]. This is a general expression of the flux (reaction rate) of a chemical reaction 

between two components 𝐴 and 𝐵 based on a non-equilibrium thermodynamics approach: 

 
𝐽 = 𝑘1 × 𝑒𝑥𝑝 (−

µ𝐴
0

𝑅𝑇
) × [𝑒𝑥𝑝 (

µ𝐴

𝑅𝑇
) − 𝑒𝑥𝑝 (

µ𝐵

𝑅𝑇
)] (12) 

 

where 𝐽 represents the reaction flux, 𝑘1 is a kinetic factor, µ𝐴 and µ𝐵 are the chemical potential 

of component 𝐴 and 𝐵, respectively and µA
0  is the standard chemical potential of the 
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component 𝐴. In order to use this expression, we must first calculate the chemical potentials 

of hydrogen in the system. In our case, the chemical potential of atomic hydrogen at the 

bulk-cavity interface can be expressed as follows: 

 
µ𝐻

𝑏𝑢𝑙𝑘 =  µ𝐻
0 + 𝑅𝑇 𝑙𝑛 (

𝐶𝐼

  𝐶0
)  (13) 

 

where µH
0  is the standard chemical potential, 𝐶𝐼 is the H concentration at the interface and 𝐶0 

is the H concentration at the standard state. On the other hand, the chemical potential of 

atomic hydrogen inside the cavity is: 

 

µ𝐻
𝑐𝑎𝑣𝑖𝑡𝑦

=
1

2
µ𝐻2

0 + 𝑅𝑇 𝑙𝑛 √
𝑓

𝑓0
 (14) 

 

In order to obtain the hydrogen flux at the bulk-cavity interface, we use Eq.(12) and we 

substitute µ𝐴   by µH
bulk (Eq.(13)),  and µ𝐵 by µH

cavity
 (Eq.(14)). Consequently, the flux at the 

interface can be expressed as:  

 

𝐽𝐼 = 𝑘1 × 𝑒𝑥𝑝 (

1

2
µ𝐻2

0 − µ𝐻
0

𝑅𝑇
) × [𝑒𝑥𝑝 (

µ𝐻
0 −

1

2
µ𝐻2

0

𝑅𝑇
) ×

𝐶𝐼

𝐶0
− √

𝑓

𝑓0
] 

 

= 𝑘1 [
𝐶𝐼

𝐶0
− 𝑒𝑥𝑝 (

1

2
µ𝐻2

0 − µ𝐻
0

𝑅𝑇
) × √

𝑓

𝑓0
] 

(15) 

 

The final expression can be written in the form: 

 𝐽𝐼 = 𝑄 × [𝐶𝐼 − 𝐾𝐻 × √𝑓]  (16) 

 

where 𝐾𝐻 represents hydrogen solubility as explained earlier with 𝐾𝐻 =
  𝐶0

√𝑓0
×  𝑒𝑥𝑝 (

1

2
µ𝐻2

0 −µ𝐻
0

𝑅𝑇
) 

and 𝑄 =  𝑘1/𝐶0. In Eq.(16), the term in brackets is a concentration (mol/m3) and 𝑄, a kinetic 

factor, has the same unit as a speed (m/s). From the expression above, it can be understood 

that the orientation of the hydrogen flux at the bulk-cavity interface (inward or outward) 

depends on the hydrogen concentration at the interface and the hydrogen fugacity inside the 

cavity. If the hydrogen chemical potential is higher at the interface than inside the cavity (i.e. 
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𝐶𝐼 >  𝐾𝐻 × √𝑓), hydrogen from the bulk will enter the cavity and recombine into molecular 

hydrogen. In the opposite case (𝐶𝐼 < 𝐾𝐻 × √𝑓), hydrogen will quit the cavity and diffuse to 

the bulk. Finally, at equilibrium (𝐶𝐼 = 𝐾𝐻 × √𝑓), the flux is equal to zero. This expression 

assumes that the porosity act as a reversible trap, i.e. that hydrogen can quit without providing 

any additional energy from outside the system. This assumption is justified by the 

experimental data presented in our previous paper [12]. 

 

2.2.3. Equations 

The module of transport of diluted species [48] provided by Comsol was used to handle the 

process of hydrogen diffusion in the bulk governed by Fick’s law: 

 𝜕𝐶𝐵

𝜕𝑡
= 𝛻. (𝐷𝛻𝐶𝐵) 

 

(17) 

where 𝐶𝐵 is the bulk hydrogen concentration, 𝑡 is the time and 𝐷 is the bulk hydrogen diffusion 

coefficient. The amount of molecular hydrogen inside the cavity (number of moles 𝑛) was 

calculated using Eq.(18). 𝑆 corresponds to the internal surface of the void and the ½ factor is 

a stoichiometric coefficient issued from the chemical reaction in Eq.(6). 

 

𝑛 =
1

2
∫ ∫ 𝐽𝐼 𝑑𝑡 𝑑𝑆 

𝑡𝑆

 (18) 

 

Note that n in Eq.(18) is obtained from the interface flux JI calculated from Eq. (16). The cavity 

pressure is obtained from Eq.(19), which is one of the two zeros of Eq.(2).  

 

 
𝑃 =

(𝑏0 − 𝑣) + √(𝑏0 − 𝑣)2 + 4𝛽𝑅𝑇

2𝛽
 (19) 

 

where v the molar volume is obtained from 𝑣 = 𝑉𝑐/𝑛, with 𝑉𝑐 the cavity volume.  

Hydrogen fugacity can be obtained by combining Eqs. (2) and (4). At constant temperature, a 

simple function of pressure is obtained: 

 

 
𝑓 = 𝑃 × 𝑒𝑥𝑝 (

𝑃𝑏0 − 0.5 × 𝛽 𝑃²

𝑅𝑇
) (20) 
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A fully coupled resolution of Eqs. (16) to (20) was conducted to obtain the time variation of 

the different variables. The main macroscale result extracted is the permeation flux, i.e. the 

average flux through the entire exit surface of the permeation specimen. 

 

2.2.4. Meshing 

The model was meshed by tetrahedral elements generated automatically by Comsol 

software as presented in Figure 2 (a). A refinement of the meshing was done near the cavities. 

In order to verify the convergence of the numerical results, the hydrogen permeation flux is 

plotted as a function of the mesh size in Figure 2 (b). The elements size and the total number 

of elements are also presented in the same figure, showing no effect of the mesh size on 

results for the tested condition (one cavity). Furthermore, other simulations were performed 

by varying the cavity radius (from 4 µm to 100 µm) and the elements size was adapted to 

ensure the convergence of the results. 
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Figure 2: (a) Example of a simulation box used in this study (radius of the cavity: 78 µm); (b) Comparison 
between the permeation simulated curves obtained using different mesh sizes. 

2.3. Local equilibrium Model 

A simpler 1D model based on a local equilibrium hypothesis was developed in order to 

simulate permeation tests in shorter computation times. The main difference between the 

two models lies in the bulk/porosity interface condition. For the 3D model, a flux is calculated 

at the interface (Eq.(16)) allowing the description of the reaction H2 ↔ 2H𝑆𝑜𝑙𝑖𝑑. The model is 

then able to describe hydrogen diffusion and trapping inside the porosities even when the 

equilibrium is not achieved. The 1D model developed in the following only assumes an 

equilibrium condition at the bulk/porosity interfaces through the Sieverts’ law (Eq.(5)). In 

addition, it is based on an effective medium approach where the space distribution of 

porosities is not taken into account. 
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2.3.1. Geometry, boundary and initial conditions 

Figure 3 shows a schematic representation of the 1D simulation box with a length of 2 

mm. The sample was split along the thickness into 𝑘 equivalent elements. The number of 

elements is high enough to ensure the convergence of the calculations (𝑘 =  50). The porosity 

fraction in each element is the same and it is equal to the porosity fraction of the sample. 

 

Figure 3 : Schematic representation of the simulation box used in the local equilibrium model. 

The boundary conditions are presented in Figure 3. The first element corresponds to the 

charging side where the fugacity inside the porosity is equal to the fugacity of the charging 

medium and the bulk concentration is deduced from Sieverts’ law (Eq.(5)). The last element 

represents the detection side where the concentration was set to zero. These boundary 

conditions were maintained during the whole simulation. In addition, the initial hydrogen 

concentration was set to zero in elements 2 to 𝑘 − 1. 

2.3.2. Equations 

In each element, the bulk hydrogen concentration is constantly in equilibrium with the 

hydrogen fugacity trapped in the cavities as described by Sieverts’ law. This equilibrium is 

instantly established and only bulk hydrogen is able to diffuse from one element to another. 

The total hydrogen concentration 𝐶𝑇𝑜𝑡𝑎𝑙 in each element is the sum of bulk hydrogen 

concentration 𝐶𝐵 and hydrogen concentration in the porosity 𝐶𝑃 as expressed in Eq.(21).  

 𝐶𝑇𝑜𝑡𝑎𝑙 =  𝐶𝐵 + 𝐶𝑃 (21) 

Hydrogen diffusion, in each element and at each time step, is calculated using Fick’s law:  
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 𝜕𝐶𝑇𝑜𝑡𝑎𝑙

𝜕𝑡
= 𝛻. (𝐷𝛻𝐶𝐵) (22) 

 

where 𝐶𝑇𝑜𝑡𝑎𝑙 is the total hydrogen concentration, 𝐷 is the bulk diffusion coefficient and 𝐶𝐵 is 

the hydrogen bulk concentration. Note that, in the second term of the equation, 𝐶𝐵 is used 

instead of 𝐶𝑇𝑜𝑡𝑎𝑙. Equilibrium between bulk and trapped hydrogen is maintained at each time 

step. For a given 𝐶𝑇𝑜𝑡𝑎𝑙, the corresponding 𝐶𝐵  can be obtained from a set of equations 

composed of Eq.(2), (4), (5) and (21). It appeared that numerical solving of that system of 

equations was very time consuming. In addition, multiple zeros were obtained and the zero 

selection process was not easy to automate. For these reasons, we have opted for a pre-

calculated table of solutions which is composed of 𝐶𝑇𝑜𝑡𝑎𝑙 and the corresponding 𝐶𝐵 and 𝐶𝑃 

for a given porosity fraction. At equilibrium, for a given 𝐶𝑇𝑜𝑡𝑎𝑙, the possible values of 𝐶𝐵 and 

𝐶𝑃 are unique. The values of 𝐶𝐵 and 𝐶𝑃 corresponding to a given 𝐶𝑇𝑜𝑡𝑎𝑙 are extracted from the 

table of solutions using linear interpolation. Finally, it should be mentioned that the extracted 

permeation flux corresponds to the flux calculated at the interface of the (𝑘 − 1) element and 

the (𝑘) element. The model was implemented in a Matlab code using the “ode15s” function. 

 

 

2.4. Input Parameters 

The input parameters used in the numerical simulations are presented in table 1. The value of 

the fugacity was estimated using the work of Venezuela [49], which gives a relationship 

between hydrogen fugacity and the electrochemical over-potential for a 3.5NiCrMoV steel 

charged in a 0.1 M NaOH aqueous solution. In our electrochemical permeation tests, 

presented in our previous article [12], the over-potential was equal to -1.1V, which 

corresponds to a fugacity of 60 MPa. Furthermore, the hydrogen diffusion coefficient used in 

the simulations is the apparent diffusion coefficient of the forged sample (i.e. without 

porosity) calculated using the time-lag method based on the electrochemical permeation 

results [12]. The solubility coefficients are also taken from our previous work [12] and from 

literature as stated in Table 1. Finally, the porosity fractions were obtained by the hydrostatic 

weighing technique on cast samples in [12]. 

 

Table 1 : Input parameters used in the numerical simulations. 
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Parameter Values 

Solubility, 𝐾𝐻 (mol/(m3 x MPa0.5) [0.025 [36]- 0.711 [12]] 

Hydrogen fugacity of the charging medium, 𝑓 (MPa) 60 

Diffusion coefficient, 𝐷 (m²/s) 7.8 × 10-12 

Membrane thickness (mm) 2 

Temperature, 𝑇 (°C) 20 

Porosity volume fraction, 𝑋𝑃 (%) [0.02 - 0.4] 

Recombination/dissociation kinetic factor, 𝑄 (m/s) [10-9 – 10-3] 

 

3. Results and discussion 

3.1. Non-Equilibrium Model 

3.1.1. One cavity case - Effect of the kinetic factor 𝑄 

The aim of the first simulations was to understand the effect of the kinetic factor 𝑄 of 

Eq.(16) on the permeation behavior. This factor affects directly the flux of hydrogen at the 

bulk-cavity interface. Physically, it affects the reaction rate of the recombination of atomic 

hydrogen into molecular hydrogen. A one cavity simulation box was used (as presented in 

Figure 1) with a porosity fraction of 0.04% (cavity radius of 78 µm) and a solubility coefficient 

of 0.569 mol/(m3×MPa0.5). The side length of the numerical box is equals to 1 mm. Several 

simulations with different values of 𝑄 are given in Figure 4, showing the permeation curve 

(Figure 4 (a)) and the pressure evolution (Figure 4 (b)). The results obtained when no porosity 

is present are also shown. For very low values of Q (𝑄 ≤ 10−8 𝑚/𝑠), the permeation curves 

are the same as in the case without porosity. This is because the flux entering the cavity at any 

time is negligible compared to the permeation flux, so that the permeation curve is not 

significantly affected. For 𝑄 ≥ 10−7 𝑚/𝑠, the permeation curves deviate from the case 

without porosity from approximately 𝑡 ≥ 105𝑠, which corresponds to the time when the 

cavity pressure starts to rise. In this case, the flux entering the cavity is significant (in the 

transient regime) and affects the global permeation behavior. It is to be noted that for 𝑄 ≥

10−6 𝑚/𝑠, the results converge to a single solution, that does not depend on Q. This means 

that the hydrogen entry in the cavity is not governed any more by the kinetics of the surface 

reaction, but rather by the local hydrogen diffusion around the cavity. As shown in the next 

section, hydrogen concentration gradients exist in the transient state around the cavity, which 
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limit the flux entering the cavity. In the present work, we have chosen to conduct the 

simulations in the regime where local hydrogen diffusion is the limiting step. All the 

simulations presented later were performed with 𝑄 = 10−4 𝑚/𝑠. 

 

Figure 4 : Influence of the kinetic factor 𝑄 on (a) the permeation flux and on (b) the evolution in time of 
the pressure inside the one cavity model. 𝐾𝐻 = 0.569 𝑚𝑜𝑙/(𝑚3 × 𝑀𝑃𝑎0.5); 𝑋𝑃 = 0.04%. 
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3.1.2. One cavity case in the local diffusion-limited case 

Figure 5 presents the simulation results of a permeation test for a sample containing one 

cavity (red curve), with 𝑄 = 10−4 𝑚/𝑠 (local diffusion-limited regime). The other input 

parameters are the same as in the previous section. The permeation flux is presented in Figure 

5 (a). The case without porosity is also considered for reference. The time evolutions of the 

hydrogen concentration and flux at the bulk-cavity interface are shown in Figure 5 (b) and (c) 

respectively. Note that these values are averaged over the interface. Figure 5 (d) gives the 

time dependence of the cavity pressure. 

In Figure 5 (a), the fluxes of the two simulations start to rise at the same time (≈ 2×104 s). This 

means that, even in the one cavity case, a significant amount of hydrogen is able to travel 

across the specimen without interacting with the cavity. However, the 1 cavity simulation 

shows a change in slope at about 6x104 s and reaches the steady state later. These differences 

are due to the hydrogen-cavity interaction. The change in slope in Figure 5 (a) corresponds to 

the moment when the hydrogen uptake in the cavity becomes significant (Figure 5 (c) and (d)). 

The difference in time needed to reach the permeation steady state between the two 

simulations of Figure 5 (a) is related to the time needed to equilibrate the pressure in the 

cavity (Figure 5 (b), (c) and (d)). In the steady state (t > 5 106 s), the hydrogen concentration 

at the bulk-cavity interface and the cavity pressure are constant and obey the Sieverts’ law. 

This gives a zero net flux entering the cavity (Figure 5 (c)) as expected from Eq. (16). 
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Figure 5: (a) Comparison of the hydrogen permeation flux obtained by numerical simulation for a case 
without cavity (black curve) and a case with one cavity (red curve); (b) Average hydrogen concentration at the 

bulk-cavity interface; (c) Average hydrogen flux at the bulk-cavity interface; (d) Pressure inside the cavity. 𝐾𝐻 =
0.569 𝑚𝑜𝑙/(𝑚3 × 𝑀𝑃𝑎0.5); 𝑋𝑃 = 0.04%; 𝑄 = 10−4 𝑚/𝑠. 
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Figure 6 (a) shows the 1D concentration profiles of bulk hydrogen along a line intersecting the 

cavity at different times. The discontinuity in the profiles corresponds to the cavity, where the 

hydrogen bulk concentration is not defined. As soon as hydrogen reaches the cavity (dark blue 

curve), the concentration starts to rise at the interface. However it is to be noted that for the 

duration of the transient regime, steep concentration gradients are observed in the vicinity of 

the cavity, which is expected in a diffusion-limited regime. In the stationary regime (light blue 

curve), an almost linear profile is obtained throughout the specimen and the hydrogen 

concentration at the metal-cavity interface is constant. This concentration corresponds to the 

local equilibrium as described by Sieverts’ law (Eq.(5)), which indicates that the chemical 

potential of the hydrogen at the interface is in equilibrium with the chemical potential of the 

hydrogen cavity pressure. Figure 6 (b) represents hydrogen concentration 2D maps in a plane 

intersecting the cavity at different times. The lines plotted on the maps represent the local 

hydrogen fluxes. In the transient regime (t > 4.5 105 s), local concentration gradients and 

fluxes towards the cavity are evidenced. 



19 
 

 

Figure 6: (a) 1D hydrogen concentration profiles at different times along a line intersecting the cavity; (b) 
2D hydrogen concentration maps at different times in a plane intersecting the cavity. The lines shown in the 
maps represent the local hydrogen fluxes. 𝐾𝐻 = 0.569 𝑚𝑜𝑙/(𝑚3 × 𝑀𝑃𝑎0.5); 𝑋𝑃 = 0.04%; 𝑄 = 10−4 𝑚/𝑠. 

Figure 7 presents the effect of the hydrogen solubility (Sieverts’ constant KH) on the 

permeation curve. It is reminded here that hydrogen fugacity at the entry side is kept constant 

(60 MPa). Figure 7 (a) shows that the stationary flux increases with increasing solubility. This 

is in agreement with the Sieverts’ law (Eq.(5)) predicting that hydrogen concentration at the 

entry side increases linearly with solubility. It is shown in Figure 7 (b) that the time needed to 
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reach the permeation steady state is longer for smaller solubility constants. This can be easily 

understood as it will take more time to reach the steady state cavity pressure when the 

average bulk hydrogen concentration surrounding it is smaller. 

 

Figure 7 : Influence of the hydrogen solubility 𝐾𝐻 on the permeation flux. (a) Non normalized flux; (b) 
normalized flux. 𝑋𝑃 = 0.04%; 𝑄 = 10−4 𝑚/𝑠. 

 

3.1.3. Multiple cavity case with periodic network 
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In this section, the results were obtained from several simulations performed on boxes 

that have different numbers of cavities. The aim was to highlight the effect of the distribution 

of cavities on the permeation behavior. It should be noted that the porosity fraction was 

maintained constant at the same value (0.04%) for all the simulations in order to exclude the 

effect of the porosity fraction on the results. The same value of Q as in the previous section 

was used (𝑄 = 10−4 𝑚/𝑠). In order to keep a homothetic network of cavities, the box size, 

more particularly the side length, had to be modified in each case (the thickness was kept the 

same, i.e. 2 mm). Table 2 summarizes the geometric parameters and the different 

characteristics of the simulation boxes used in this work. All the numerical simulations were 

performed using the same solubility coefficient (0.569 mol/(m3×MPa0.5)). As an example, 

Figure 8 shows a simulation box containing 5 cavities of the same radius. 

 

Table 2: The characteristics and the geometric parameters of the 3D simulation boxes. 

 

 

Figure 8: Example of a 3D simulation box used in this study for the case with 5 cavities. The network of 
cavities is kept homothetic. 

Number of cavities 0 1 2 5 10 20 

Inter-cavity distance (mm) - - 1 0.4 0.2 0.1 

Cavity radius (µm) - 78 39 16 8 4 

Specimen thickness (mm) 2 2 2 2 2 2 

Side length (mm) 1 1 0.5 0.2 0.1 0.05 

Porosity fraction (%) 0.04 0.04 0.04 0.04 0.04 0.04 
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Figure 9 shows the influence of the number of cavities on the permeation flux. The 

hydrogen flux for all the simulations starts to rise at 2×104 s and then the increase of the flux 

becomes different from one case to another. The flux of the simulation without cavity 

increases faster than the others do because hydrogen diffuses without being trapped. By 

comparing the different curves, it is obvious, until 4×105 s approximately, that the slope 

decreases with increasing the number of cavities. Actually, the increase of number of cavities 

at constant porosity fraction increases the bulk-cavity interface area. Hence more interface 

area is available for hydrogen recombination. This increases the amount of hydrogen trapped 

in a given time increment. Thus, less hydrogen is available to diffuse and reach the detection 

side, which explains the slower increase in the hydrogen permeation flux. However, it was 

found that the number of cavities has no more effect on the permeation behavior for 

simulations with 10 cavities or more. On the other hand, after 4×105 s, there is a change in the 

permeation behavior. The simulation with one cavity reaches the steady state last. This is 

related to the surface-to-volume ratio of the cavities. In the 1 cavity case, this ratio is 

minimum, so that the time needed to fill the cavity is maximum and, as a result, the steady 

state is delayed. 

 

Figure 9: Effect of the number of cavities on the hydrogen permeation flux. 𝐾𝐻 = 0.569 𝑚𝑜𝑙/(𝑚3 ×
𝑀𝑃𝑎0.5); 𝑋𝑃 = 0.04%; 𝑄 = 10−4 𝑚/𝑠. 
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Figure 10 shows the time evolution of the pressure inside the cavities for the simulation with 

10 cavities. The pressure stays very low at the beginning and then, when hydrogen atoms 

reach each cavity, the pressure starts to rise, but at different moment depending on the cavity 

position. The cavity near the charging side has the highest pressure and the cavity near the 

detection side has the lowest as it can be expected considering the boundary conditions. 

 

Figure 10: Time evolution of the pressure inside the cavities. 𝐾𝐻 = 0.569 𝑚𝑜𝑙/(𝑚3 × 𝑀𝑃𝑎0.5); 𝑋𝑃 =
0.04%; 𝑄 = 10−4 𝑚/𝑠. 

 

3.1.4. Multiple cavity case with random network 

Figure 11 shows the permeation curves (Figure 11 (a)) obtained for simulations boxes 

containing ten randomly distributed cavities. In case 1, the location of cavities is fully random, 

whereas in cases 2 and 3, the cavities are located closer to the entry side or to the exit side 

respectively (Figure 11 (b)). The case without porosity is also shown for comparison. The 

permeation behavior in the fully random case (case 1) is not significantly different from that 

obtained with a periodic network of cavities. In case 2, the trapping effect of porosity is slightly 
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increased with respect to case 1. This is because the amount of hydrogen trapped in the 

cavities is higher in case 2 (the average cavity pressure is higher as the cavities are located 

closer to the entry side). The same reasoning can be done for case 3 where the trapping effect 

is smaller when cavities are located closer to the exit side. 

 

Figure 11: Effect of the cavity space distribution on the hydrogen permeation flux: (a) the permeation 
curves; (b) distribution of cavities inside the simulation box. 𝐾𝐻 = 0.569 𝑚𝑜𝑙/(𝑚3 × 𝑀𝑃𝑎0.5); 𝑋𝑃 = 0.04%; 

𝑄 = 10−4 𝑚/𝑠. 

 

 

3.2. Local equilibrium model 

3.2.1. First results and comparison to the non-equilibrium model 

The equilibrium model was run using a constant porosity fraction of 0.04% and a solubility 

coefficient of 0.569 mol.m-3.MPa-1/2. Results are presented in Figure 12 and compared to the 

non-equilibrium model with 10 cavities.  

Figure 12 (a) presents the obtained permeation fluxes as a function of time using the two 

models. The red dashed curve corresponds to the result of the non-equilibrium model with 10 

cavities and the black curve corresponds to the result of the local equilibrium model 

simulation. Interestingly, the same permeation behavior was found in the two cases. This 

shows that the two models are equivalents when the non-equilibrium model is used with a 

sufficiently high number of cavities. For further confirmation of this conclusion, the pressure 
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profiles across the specimen at steady-state were also compared for the two models (Figure 

12 (b)). The same values of pressure are obtained, which confirms the equivalence between 

the two models when a large number of cavities is used in the non-equilibrium model. This is 

made possible by the larger bulk-cavity interface area and the smaller cavity volume, which 

facilitates the establishment of local equilibrium. This equivalence is an important point 

because the local equilibrium model is easier and simpler to use than the non-equilibrium 

model. In particular, the calculation time is incomparable. In the following, the local 

equilibrium model was used to study the influence of the porosity fraction, the solubility 

coefficient and the fugacity of the charging medium on the permeation behavior. 

 

Figure 12: Comparison between the non-equilibrium model and the local equilibrium model: (a) hydrogen 
permeation flux as a function of time and (b) steady state pressure profile in the cavities across the specimen 

thickness. 𝐾𝐻 = 0.569 𝑚𝑜𝑙/(𝑚3 × 𝑀𝑃𝑎0.5); 𝑋𝑃 = 0.04%; 𝑄 = 10−4 𝑚/𝑠. 

 

3.2.2. Porosity fraction effect 

Figure 13 (a) summarizes the results of various simulations performed with different 

porosity fractions. The porosity fraction vary from 0% to 0.4%. The solubility coefficient is still 

fixed to 0.569 mol.m-3.MPa-1/2.  

In Figure 13 (b), the time needed to reach 𝐽𝑚𝑎𝑥/2 is correlated to the porosity fraction. It 

shows that, under the conditions tested here, the diffusion time increases linearly with 

increasing the porosity fraction, which is in agreement with the expression of the apparent 

diffusion coefficient 𝐷𝑎𝑝𝑝 presented in Eq. (1). 
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Figure 13: (a) Influence of the porosity fraction on the hydrogen permeation flux; (b) Evolution of the time 
to reach 𝐽𝑚𝑎𝑥/2 as a function of the porosity fraction. 𝐾𝐻 = 0.569 𝑚𝑜𝑙/(𝑚3 × 𝑀𝑃𝑎0.5). 

3.2.3. Hydrogen solubility effect 

Four different calculations have been performed in order to determine the influence of the 

solubility coefficient on the permeation behavior (Figure 14 (a)) while keeping the other 

parameters constant. It should be mentioned that the hydrogen concentration on the 

charging side was different from one case to another. Actually, as mentioned earlier, a 

constant fugacity of 60 MPa was applied on the charging side, thus the hydrogen 
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concentration varies when varying the solubility coefficient. As a result, the steady state flux 

was not the same for all the simulations. In order to make the comparison easier, the 

normalized flux 𝐽/𝐽𝑚𝑎𝑥  is plotted in Figure 14 (b). Results showed that increasing the solubility 

tends to decrease the permeation time. This is expected as the increase of hydrogen solubility 

reduces the trapping effect of porosity. Therefore, the hydrogen flux increases faster. In Figure 

14 (c), the time to reach 𝐽𝑚𝑎𝑥/2 is plotted with respect to the solubility coefficient. It indicates 

that the permeation time and the solubility coefficient have an inverse relationship, which is 

in agreement with Eq. (1).  
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Figure 14: Effect of the solubility coefficient on the hydrogen permeation flux (a) before normalization and 
(b) after normalization. (c) Evolution of the time needed to reach 𝐽𝑚𝑎𝑥/2 as a function of the solubility 

coefficient. 𝑋𝑃 = 0.04%. 
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3.2.4. Hydrogen fugacity effect 

In this section, the influence of hydrogen fugacity of the charging medium, i.e. at the entry 

side, on the permeation behavior was discussed. For all the simulations, the porosity fraction 

was equal to 0.04% and the solubility coefficient was equal to 0.569 mol/(m3×MPa0.5). Figure 

15 (a) shows the normalized permeation curves for different hydrogen fugacities. As it can be 

seen, the hydrogen flux rises faster and reaches the steady state earlier in the case of low 

fugacities compared to high fugacities. In order to better visualize this effect, the relationship 

between the time needed to reach 𝐽𝑚𝑎𝑥  / 2 and hydrogen fugacity is presented in Figure 

15 (b). The relationship indicates that the permeation time increases approximately as the 

square root of hydrogen fugacity. Once again, this conclusion is in concordance with the 

expression given in Eq. (1).  
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Figure 15: (a) Influence of hydrogen fugacity at the entry side on the permeation behavior ; (b) Evolution 
of the time needed to reach 𝐽𝑚𝑎𝑥/2 as a function of hydrogen fugacity. 𝐾𝐻 = 0.569 𝑚𝑜𝑙/(𝑚3 × 𝑀𝑃𝑎0.5) ; 

𝑋𝑃 = 0.04%. 

3.3. Comparison to the experimental data 

In a previous work [12], electrochemical permeation tests were conducted on a cast 

sample of low-alloy steel (G20MN5) with a porosity fraction of 0.04 ± 0.02% and a forged 

sample of the same steel in order to highlight the effect of the porosity in hydrogen diffusion 

and trapping. Hydrogen solubility in the forged material was also determined and it was found 

equal to 0.569 ± 0.142 mol/(m3×MPa0.5).  X-ray tomography measurements have also shown 

that the average cavity size and inter-cavity distance in the steel investigated were 7.6 µm and 

138 µm respectively. The latter implies that there were approximately 15 cavities along the 

thickness of the permeation specimen (2 mm). In that work, the experimental apparent 
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diffusion coefficient determined from the 63% time lag method for the cast (porous) and 

forged materials were 3.7 10-12 and 7.8 10-12 m²/s respectively. From the permeation curves 

calculated using the local equilibrium model and presented in Figure 13, an apparent diffusion 

coefficient was also determined using the 63% time lag method [8] for each porosity fraction 

investigated. Figure 16 compares these values of Dapp with those obtained from experiments 

[12]. The value of Dapp predicted by the model for a porosity fraction of 0.04 % (2.9 10-12 m²/s) 

is in good agreement with the experimental one (3.7 10-12 m²/s). Note that no input parameter 

of the model was adjusted. The model correctly predicts the decrease of the diffusion 

coefficient by a factor of 2 to 3 for a porosity fraction of 0.04 ± 0.02%. 

 

Figure 16: Apparent diffusion coefficient obtained from the local equilibrium model (extracted from the 
curves of Figure 13 (a)) for different porosity fractions (white circles) compared with the experimental values 
from [12] (black squares). Note the ± 0.02% error bar on the porosity measurement. The dotted line is only a 

guide for the eyes. 

 

4. Conclusions 

In this study, two numerical models have been proposed in order to simulate hydrogen 

permeation for a steel containing micro-porosity. These two models take into account the 

trapping of gaseous hydrogen in cavities. They are based on two different approaches: the 

first model is based on a non-equilibrium approach, where a reaction flux is considered at the 

bulk-cavity interface and the second model is based on a local equilibrium approach, between 

hydrogen dissolved in the bulk and gaseous hydrogen in the cavities. It should be mentioned 

that the second model is simpler and less time consuming compared to the first model. The 

numerical models were discussed in detail first and then the results were compared to the 
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permeation experimental data presented in a previous work. It is important to note that the 

two models were developed based on a refined EOS, which permits to perform simulations 

on a wide range of pressure [0, 2000 MPa]. The following main conclusions can be drawn: 

 For the non-equilibrium model, an expression of hydrogen flux due to the 

recombination reaction of atomic hydrogen into molecular hydrogen at the 

bulk-cavity interface was developed based on a non-equilibrium approach. The flux 

orientation (inward or outward) is controlled by the hydrogen concentration at the 

interface and hydrogen fugacity inside the cavity. A choice was made in this study to 

work in a diffusion-limited regime instead of an interface reaction-limited regime. 

 The permeation behavior across a simulation box containing one single cavity was 

studied in detail. The time evolution of cavity pressure, bulk-cavity interface 

concentration and permeation flux was found consistent. 

 The effect of the number of cavities and their location in the simulation box was 

studied. For a given porosity fraction, increasing the number of cavities results in 

larger bulk-cavity interface area and lower cavity volume, which facilitates local 

equilibrium. When the number of cavities is large enough, the non-equilibrium model 

gives the same results as the local equilibrium model. 

 A parametric study using the local equilibrium model was conducted. The permeation 

time was found to vary linearly with 𝑋𝑃 and 
1

KH
 where 𝑋𝑃  is the porosity fraction in 

the specimen and 𝐾𝐻 is the hydrogen solubility in the bulk material (Sieverts’ 

constant). In addition, it was found that the permeation time increases as the square 

root of hydrogen fugacity 𝑓𝐻2
 at the entry side. 

 Finally, a comparison between simulations and experiments from a previous study 

was made and showed a good agreement: the local equilibrium model correctly 

predicts the decrease of the diffusion coefficient by a factor of 2 to 3 for a porosity 

fraction of 0.04 ± 0.02%. 
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