Solving an integrated Job-Shop problem with human resource constraints PMS'10 - Tours (France)

O. Guyon^{1.2}, P. Lemaire³, É. Pinson² and D. Rivreau²

¹ École des Mines de Saint-Étienne
² LISA - Institut de Mathématiques Appliquées d'Angers
³ Institut Polytechnique de Grenoble

April 26-28, 2010

O. Guyon, P. Lemaire, É. Pinson and D. Rivreau Job-Shop problem with human resource constraints 1/34

Table of contents

Introduction

- Problem
- Time-indexed ILP formulation
- Solution methods

2 0-1 Branch and Bound

- Outline
- Initial cuts
- Characteristics

- Experimental results
- Concluding remarks

Problem Time-indexed ILP formulation Solution methods

Plan

Introduction

Problem

- Time-indexed ILP formulation
- Solution methods

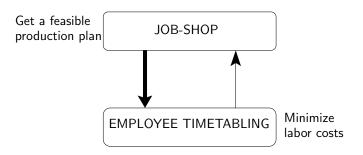
2 0-1 Branch and Bound

- Outline
- Initial cuts
- Characteristics

- Experimental results
- Concluding remarks

Problem Time-indexed ILP formulation Solution methods

Nature of the problem (1/3)



Problem Time-indexed ILP formulation Solution methods

Nature of the problem (2/3) - Employee Timetabling problem

Time horizon

- Timetabling horizon $H = \delta \cdot \pi$ where:
 - δ number of shifts
 - π duration time of a shift

Nota: it can modelize, for example, a three-shift system

Employee Timetabling Problem for a set E of μ employees

- A_e set of machines employee e masters
- T_e set of shifts where employee e is available

Problem Time-indexed ILP formulation Solution methods

Nature of the problem (3/3) - Job-Shop problem

Job-Shop: Schedule a set J of n jobs on m machines

- $\forall j \in J \ \{O_{ji}\}_{i=1..m}$ chain of operations of job j
 - machine $m_{ji} \in \{1 \dots m\}$
 - processing time p_{ji}
 - \hookrightarrow *Notation* ρ_{jk} : processing time of j on machine k
 - can not be interrupted
 - requires a qualified employee to use machine m_{ji}

Feasible production plan

A schedule for which all operations are completed before a given scheduling completion time Cmax \leq H.

Problem Time-indexed ILP formulation Solution methods

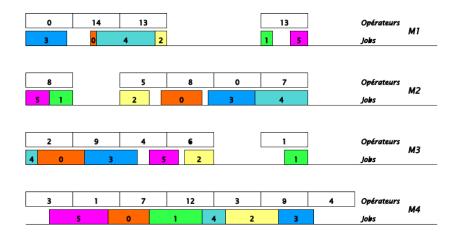
Nature of the problem (3/3)

Objective

Assigning at minimum cost employees to both machines and shifts in order to be able to provide a *feasible production plan*

Problem Time-indexed ILP formulation Solution methods

Example (6 jobs - 4 machines - 15 employees)



Problem Time-indexed ILP formulation Solution methods

Motivation: Extension of work

Continuation of a work

- Guyon, Lemaire, Pinson and Rivreau. European Journal of Operational Research (March 2010)
- Integrated employee timetabling and production scheduling problem
- Methods:
 - \hookrightarrow Decomposition and cut generation process
- ~ Simplified production scheduling problem
- Motivation for this new study:

Problem Time-indexed ILP formulation Solution methods

Motivation: Case treated in literature

Case treated in literature

- Artigues, Gendreau, Rousseau and Vergnaud [AGRV09]. Computers and Operations Research (2009)
- Aim: To experiment hybrid CP-ILP methods on an integrated job-shop scheduling and employee timetabling problem
- Methods:

 \hookrightarrow CP with a global additional constraint corresponding to the LP-relaxation of the employee timetabling problem

Our study : specific case of mapping activities - machines
→ 8 of the 11 instances of [AGRV09] can be used

Problem Time-indexed ILP formulation Solution methods

Plan

Introduction

Problem

• Time-indexed ILP formulation

Solution methods

2 0-1 Branch and Bound

- Outline
- Initial cuts
- Characteristics

- Experimental results
- Concluding remarks

Problem Time-indexed ILP formulation Solution methods

ILP model (1/4)

Binary decision variables

- $x_{eks} = 1$ iif employee e is assigned to the pair (machine k; shift s)
- $y_{ikt} = 1$ iif job *i* starts its processing on the machine *k* at instant *t*

Problem Time-indexed ILP formulation Solution methods

ILP model (2/4)

Objective function

$$[P] \quad \min \Theta = \sum_{e \in E} \sum_{k \in A_e} \sum_{s \in T_e} c_{eks} \cdot x_{eks}$$

Employee Timetabling Problem specific constraints

$$\begin{array}{ll} \sum_{k \notin A_e} \sum_{s=0}^{\sigma} x_{eks} = 0 & e = 1, \dots, \mu \\ \sum_{k \in A_e} \sum_{s \notin T_e} x_{eks} = 0 & e = 1, \dots, \mu \\ \sum_{k \in A_e} (x_{eks} + x_{ek(s+1)} + x_{ek(s+2)}) \leq 1 & e = 1, \dots, \mu \quad s = 0, \dots, \sigma - 3 \\ x_{eks} \in \{0, 1\} & e = 1, \dots, \mu \quad k = 1, \dots, m \\ & s = 0, \dots, \sigma - 1 \end{array}$$

Problem Time-indexed ILP formulation Solution methods

ILP model (3/4)

Job-Shop scheduling problem specific constraints

$$\begin{split} \sum_{t=0}^{d_{ik}-\rho_{ik}} t \cdot y_{ikt} + \rho_{ik} &\leq C_{max} & i = 1, \dots, n \quad k = m_{im} \\ \sum_{t=r_{ik}}^{d_{ik}-\rho_{ik}} y_{ikt} = 1 & i = 1, \dots, n \quad k = 1, \dots, m \\ \sum_{t=0}^{r_{ik}} y_{ikt} + \sum_{t=d_{ik}-\rho_{ik}+1}^{C_{max}} y_{ikt} = 0 & i = 1, \dots, n \quad k = 1, \dots, m \\ \sum_{u=r_{ik}+\rho_{ik}}^{t} y_{ilu} - \sum_{u=r_{ik}}^{t-\rho_{ik}} y_{iku} &\leq 0 & i = 1, \dots, n \quad j = 1, \dots, m-1 \\ & k = m_{ij} \quad l = m_{i(j+1)} \\ & t = \rho_{ik} + p_{ik}, \dots, d_{il} - \rho_{il} \\ \sum_{i=1}^{n} \sum_{u=max(r_{ik}, t-\rho_{ik}+1)}^{\min(d_{ik}-\rho_{ik}, t)} y_{iku} &\leq 1 \quad k = 1, \dots, m \quad t = 0, \dots, C_{max} \\ & y_{ikt} \in \{0, 1\} & i = 1, \dots, n \quad k = 1, \dots, m \\ & t = 0, \dots, C_{max} \end{split}$$

Problem Time-indexed ILP formulation Solution methods

ILP model (4/4)

Coupling constraints

$$\sum_{e \in E} x_{eks} - \sum_{i=1}^{n} \sum_{u=\max(r_{ik}, t-\rho_{ik}+1)}^{\min(d_{ik}, -\rho_{ik}, t)} y_{iku} \ge 0 \quad k = 1, \dots, m \quad t = 0, \dots, C_{max}$$
$$s = \lfloor t/\pi \rfloor$$

Problem Time-indexed ILP formulation Solution methods

Plan

1 Introduction

- Problem
- Time-indexed ILP formulation
- Solution methods

2 0-1 Branch and Bound

- Outline
- Initial cuts
- Characteristics

- Experimental results
- Concluding remarks

Problem Time-indexed ILP formulation Solution methods

Solution methods

Three exact methods

- MIP
- Decomposition and cut generation process
- 0-1 Branch and Bound based on the work (or not) for each pair (machine, shift)

Outline Initial cuts Characteristics

Plan

Introduction

- Problem
- Time-indexed ILP formulation
- Solution methods

2 0-1 Branch and Bound

Outline

- Initial cuts
- Characteristics

- Experimental results
- Concluding remarks

Outline Initial cuts Characteristics

Outline

Underlying ideas

- Splitting of [P] (by relaxing coupling constraints)
 - [Job Shop] (non-coupling constraints; with variables y_{jkt})
 - [*Employee*] (non-coupling constraints; with variables x_{eks})
- Fixing an assignment \bar{z} of worked and unworked pairs (machine, shift)
- Checking the feasibility of \bar{z} at two levels:
 - [Job Shop] which is solved with a dedicated Job-Shop solver
 - [Employee] which is solved with an ILP solver
- To avoid an exhaustive search:
 - $\hookrightarrow \bar{z}$ is generated through a 0-1 Branch and Bound coupled with a generation of
 - 3 sets of initial cuts
 - feasibility cuts (generated all along the process)

Outline Initial cuts Characteristics

Plan

1 Introduction

- Problem
- Time-indexed ILP formulation
- Solution methods

2 0-1 Branch and Bound

Outline

Initial cuts

Characteristics

- Experimental results
- Concluding remarks

Outline Initial cuts Characteristics

Probing initial cuts

What?

Test the obligation of work for each pair (machine k, shift s)

How?

- create a fictive job $j_{\rm f}$ that has to be processed on k over s for a duration of π
- solve [Job-Shop] with a dedicated Job-Shop solver
- if [Job-Shop] is unfeasible (\Leftrightarrow does not respect *Cmax*) :
 - j_f (\Leftrightarrow absence of work on (k, s)) can not be scheduled
 - an employee must be assigned to (k, s)

Result

- set of pairs (k, s) fixed to work
- cuts for [Employee] \Rightarrow $\sum_{e=1}^{\mu} x_{eks} = 1 \; \forall \; (k,s)$ fixed to work

Outline Initial cuts Characteristics

Capacitated cuts

Capacitated cut for machine k

Find a close lower bound b_k of the minimal number of worked shifts on k

How? b_k is the maximum of 3 valid lower bounds

- direct: number of pairs (k, s) fixed by probing
- 2 direct: $\left[\frac{\sum_{j=1}^{n} \rho_{jk}}{\pi}\right]$
- Six (by probing) the maximum number of schedulable fictive jobs

Result: Cuts for [Employee]

$$\sum_{e=1}^{\mu} \sum_{s \in \mathcal{T}_e} x_{eks} \ge b_k \quad k = 1, \dots, m$$

Outline Initial cuts Characteristics

Non-overlapping cuts

Non-overlapping cuts for each pair (machine k, shift s)

To ensure each feasible solution to get at most one employee assigned to (k, s)

Result: Cuts for [Employee]

$$\sum_{e \in E \mid (k \in A_e) \land (s \in T_e)} x_{eks} \le 1 \quad k = 1, \dots, m \quad s = 0, \dots, \delta - 1$$

Outline Initial cuts Characteristics

Plan

1 Introduction

- Problem
- Time-indexed ILP formulation
- Solution methods

2 0-1 Branch and Bound

- Outline
- Initial cuts

Characteristics

- Experimental results
- Concluding remarks

Characteristics (1/4)

Binary separation scheme

- right child: impose the same given pair (\bar{k},\bar{s}) to be worked

Exploration strategy

depth-first

Branching pair (machine \bar{k} , shift \bar{s})

- k: machine with a maximum gap between the number of shifts fixed (or which can still be fixed) to work and the lower bound LB_k of the minimum number of worked shifts on k
- \bar{s} : latest shift such that (\bar{k},\bar{s}) has not been fixed yet

Outline Initial cuts Characteristics

Characteristics (2/4)

Definition

Relaxed assignment
Assignment of pairs (k, s) such that each fixed pair (k, s) is fixed to its value and all the other ones are free

Strict assignment

Assignment of pairs (k, s) such that each fixed pair (k, s) is fixed to its value and all the other ones are imposed to be *unworked*

Evaluation

LP-relaxation of [*Employee*] for the *relaxed assignment*

Characteristics (3/4)

Implications rules

If the decision is: the pair (\bar{k}, \bar{s}) must be unworked We try to fix pairs (machine, shift) by:

- using probing techniques for each non-fixed pair (\bar{k},s)
- checking the respect of the lower bound $b_{\bar{k}}$ of the minimal number of worked shifts on \bar{k}

Elimination rules

A branching node can be pruned if one of these two conditions is fufilled:

- [*Employee*] with *relaxed assignment* is unfeasible (evaluation) or has a cost greater than the best current known
- Relaxed assignment is unfeasible for [Job Shop]

Outline Initial cuts Characteristics

Characteristics (4/4)

If the current node has not been pruned

- We get the optimum $(\bar{x}^*, \bar{\theta}^*)$ for [Employee] that respects the strict assignment
 - if \bar{x}^* exists, we check if the *strict assignment* is feasible for [Job Shop]
 - if it is, UB is updated: $UB \leftarrow \bar{\theta}^*$
- If UB is not updated: we add a feasibility cut to [Employee]

Feasibility cut for [Employee]

- permits to eliminate solutions similar to $ar{x}^*$
- impose the work on at least one of the unworked pairs (k, s) of the *strict assignment*

• Cut :
$$\sum_{(k,s) \text{not fixed}} \sum_{e=1}^{\mu} x_{eks} \ge 1$$

Plan

1 Introduction

- Problem
- Time-indexed ILP formulation
- Solution methods

2 0-1 Branch and Bound

- Outline
- Initial cuts
- Characteristics

- Experimental results
- Concluding remarks

Experimental results Concluding remarks

Test bed

8 instances of [AGRV09]

Instance	n	т	μ	μ_{extra}	δ	π
ejs	6	4	25	10	8	8
ejs8X8	8	8	40	20	8	8
ejs10X10	10	10	50	20	10	10

Tools

- Computer programming language: Java except for [AGRV09] (C++)
- MIP solver: Ilog Cplex 12.1
- CP solvers (for [AGRV09]): Ilog Solver 6.7; Ilog Scheduler 6.7
- Job-Shop solver: Branch & Bound (*Carlier, Péridy, Pinson, Rivreau*)
- Processor: Intel Core 2 Quad Q6600 @ 2,40 GHz 3 GB RAM
- CPU time limit: 300 seconds

Experimental results Concluding remarks

Results: initial cuts

Impact of the initial cuts

	LP rela	xation of [P]	LP' relaxation of $[P]$ with initial cuts				
Instance	LP/Θ^*	Time	LP'/Θ^*	#cuts	Preprocess time	Total time	
ejs4	92.4%	0.2s	100.0%	43	0.0s	0.1s	
ejs9	87.3%	0.3s	94.6%	67	1.5s	0.3s	
ejs10	97.1%	0.5s	100.0%	50	0.4s	0.2s	
ejs $8 \times 8_1$	60.1%	1.6s	86.2%	94	9.5s	10.8s	
ejs $8 \times 8_2$	68.0%	2.5s	91.6%	103	7.9s	9.6s	
ejs $8 \times 8_3$	55.1%	1.6s	91.8%	93	4.6s	6.0s	
ejs $10 imes 10_1$	55.7%	11.4s	93.1%	158	17.4s	24.4s	
ejs $10 imes 10_3$	69.1%	18.1s	88.9%	164	218.8s	233.2s	

Experimental results Concluding remarks

Results: exact methods

Results of the exact methods

MIP		[AGRV09]		0-1 Branch and Bound					
						PreprocessingTotal#initial cut			
Instance	Θ^*	Θ	Time	Θ	Time	Θ	time	time	+ #cuts
ejs4	23	23	0.2s	23	0.9s	23	0.0s	0.0s	43 + 0
ejs9	24	24	11.4s	24	87.9s	24	1.5s	5.0s	67 + 44
ejs10	23	23	1.0s	23	3.5s	23	0.4s	0.6s	50 + 2
ejs $8 \times 8_1$	78	84	TL	78	64.8s	78	9.5s	37.8s	94 + 66
ejs $8 \times 8_2$	96	96	TL	96	98.9s	96	7.9s	43.3s	103 + 108
ejs $8 \times 8_3$	83	83	TL	83	29.7s	83	4.5s	9.0s	93 + 15
ejs $10 imes 10_1$	124	-1	TL	137	TL	124	17.5s	33.0s	158 + 31
ejs $10 \times 10_3$	95	-1	TL	150	TL	102	218.8s	TL	164 + 251

Plan

1 Introduction

- Problem
- Time-indexed ILP formulation
- Solution methods

2 0-1 Branch and Bound

- Outline
- Initial cuts
- Characteristics

- Experimental results
- Concluding remarks

Experimental results Concluding remarks

Concluding remarks

- Strong initial cuts (especially probing cuts)
- Interesting decomposition approach
- 0-1 Branch and Bound really competitive