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Nature of the problem (1/3)

JOB-SHOP

EMPLOYEE TIMETABLING

Get a feasible
production plan

Minimize
labor costs
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Nature of the problem (2/3) - Employee Timetabling
problem

Time horizon

Timetabling horizon H = δ · π where:

δ number of shifts
π duration time of a shift

Nota: it can modelize, for example, a three-shift system

Employee Timetabling Problem for a set E of µ employees

Ae set of machines employee e masters

Te set of shifts where employee e is available
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Nature of the problem (3/3) - Job-Shop problem

Job-Shop: Schedule a set J of n jobs on m machines

∀j ∈ J {Oji}i=1..m chain of operations of job j

machine mji ∈ {1 . . .m}
processing time pji

↪→ Notation ρjk : processing time of j on machine k
can not be interrupted
requires a qualified employee to use machine mji

Feasible production plan

A schedule for which all operations are completed before a given
scheduling completion time Cmax ≤ H.
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Nature of the problem (3/3)

Objective

Assigning at minimum cost employees to both machines and shifts
in order to be able to provide a feasible production plan
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Example (6 jobs - 4 machines - 15 employees)
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Motivation: Extension of work

Continuation of a work

Guyon, Lemaire, Pinson and Rivreau.
European Journal of Operational Research (March 2010)

Integrated employee timetabling and production scheduling
problem

Methods:
↪→ Decomposition and cut generation process

 Simplified production scheduling problem

Motivation for this new study:
↪→ Is the decomposition and cut generation process also
efficient with a harder production scheduling problem
(Job-Shop)?
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Motivation: Case treated in literature

Case treated in literature

Artigues, Gendreau, Rousseau and Vergnaud [AGRV09].
Computers and Operations Research (2009)

Aim: To experiment hybrid CP-ILP methods on an integrated
job-shop scheduling and employee timetabling problem

Methods:
↪→ CP with a global additional constraint corresponding to
the LP-relaxation of the employee timetabling problem

Our study : specific case of mapping activities - machines
↪→ 8 of the 11 instances of [AGRV09] can be used
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ILP model (1/4)

Binary decision variables

xeks = 1 iif employee e is assigned to the pair (machine k; shift s)

yikt = 1 iif job i starts its processing on the machine k at instant t
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ILP model (2/4)

Objective function

[P] min Θ =
∑

e∈E

∑
k∈Ae

∑
s∈Te

ceks · xeks

Employee Timetabling Problem specific constraints

∑
k /∈Ae

∑σ
s=0 xeks = 0 e = 1, . . . , µ∑

k∈Ae

∑
s /∈Te

xeks = 0 e = 1, . . . , µ∑
k∈Ae

(xeks + xek(s+1) + xek(s+2)) ≤ 1 e = 1, . . . , µ s = 0, . . . , σ − 3

xeks ∈ {0, 1} e = 1, . . . , µ k = 1, . . . ,m

s = 0, . . . , σ − 1
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ILP model (3/4)

Job-Shop scheduling problem specific constraints

∑dik−ρik
t=0 t · yikt + ρik ≤ Cmax i = 1, . . . , n k = mim∑dik−ρik

t=rik
yikt = 1 i = 1, . . . , n k = 1, . . . ,m∑rik

t=0 yikt +
∑Cmax

t=dik−ρik +1 yikt = 0 i = 1, . . . , n k = 1, . . . ,m∑t
u=rik +ρik

yilu −
∑t−ρik

u=rik
yiku ≤ 0 i = 1, . . . , n j = 1, . . . ,m − 1

k = mij l = mi(j+1)

t = ρik + pik , . . . , dil − ρil∑n
i=1

∑min(dik−ρik ,t)
u=max(rik ,t−ρik +1) yiku ≤ 1 k = 1, . . . ,m t = 0, . . . ,Cmax

yikt ∈ {0, 1} i = 1, . . . , n k = 1, . . . ,m

t = 0, . . . ,Cmax
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ILP model (4/4)

Coupling constraints

∑
e∈E xeks −

∑n
i=1

∑min(dik−ρik ,t)
u=max(rik ,t−ρik +1) yiku ≥ 0 k = 1, . . . ,m t = 0, . . . ,Cmax

s = bt/πc
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Solution methods

Three exact methods

MIP

Decomposition and cut generation process

0-1 Branch and Bound based on the work (or not) for each
pair (machine, shift)
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Outline

Underlying ideas

Splitting of [P] (by relaxing coupling constraints)

[Job − Shop] (non-coupling constraints; with variables yjkt)
[Employee] (non-coupling constraints; with variables xeks)

Fixing an assignment z̄ of worked and unworked pairs
(machine, shift)

Checking the feasibility of z̄ at two levels:

[Job − Shop] which is solved with a dedicated Job-Shop solver
[Employee] which is solved with an ILP solver

To avoid an exhaustive search:
↪→ z̄ is generated through a 0-1 Branch and Bound coupled
with a generation of

3 sets of initial cuts
feasibility cuts (generated all along the process)
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Probing initial cuts

What?

Test the obligation of work for each pair (machine k, shift s)

How?

create a fictive job jf that has to be processed on k over s for
a duration of π

solve [Job-Shop] with a dedicated Job-Shop solver

if [Job-Shop] is unfeasible (⇔ does not respect Cmax) :

jf (⇔ absence of work on (k, s)) can not be scheduled
an employee must be assigned to (k, s)

Result

set of pairs (k, s) fixed to work

cuts for [Employee] ⇒
∑µ

e=1 xeks = 1 ∀ (k, s) fixed to work
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Capacitated cuts

Capacitated cut for machine k

Find a close lower bound bk of the minimal number of worked
shifts on k

How? bk is the maximum of 3 valid lower bounds

1 direct: number of pairs (k, s) fixed by probing

2 direct:
⌈∑n

j=1 ρjk

π

⌉
3 Fix (by probing) the maximum number of schedulable fictive

jobs

Result: Cuts for [Employee]

µ∑
e=1

∑
s∈Te

xeks ≥ bk k = 1, . . . ,m
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Non-overlapping cuts

Non-overlapping cuts for each pair (machine k, shift s)

To ensure each feasible solution to get at most one employee
assigned to (k, s)

Result: Cuts for [Employee]

∑
e∈E |(k∈Ae)∧(s∈Te)

xeks ≤ 1 k = 1, . . . ,m s = 0, . . . , δ − 1
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Characteristics (1/4)

Binary separation scheme

left child: impose a given pair (machine k̄, shift s̄) to be not
worked

right child: impose the same given pair (k̄, s̄) to be worked

Exploration strategy

depth-first

Branching pair (machine k̄, shift s̄)

k̄: machine with a maximum gap between the number of
shifts fixed (or which can still be fixed) to work and the lower
bound LBk of the minimum number of worked shifts on k̄

s̄: latest shift such that (k̄, s̄) has not been fixed yet
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Characteristics (2/4)

Definition

Relaxed assignment
Assignment of pairs (k, s) such that each fixed pair (k, s) is
fixed to its value and all the other ones are free

Strict assignment
Assignment of pairs (k, s) such that each fixed pair (k, s) is
fixed to its value and all the other ones are imposed to be
unworked

Evaluation

LP-relaxation of [Employee] for the relaxed assignment
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Characteristics (3/4)

Implications rules

If the decision is: the pair (k̄, s̄) must be unworked
We try to fix pairs (machine, shift) by:

using probing techniques for each non-fixed pair (k̄, s)

checking the respect of the lower bound bk̄ of the minimal
number of worked shifts on k̄

Elimination rules

A branching node can be pruned if one of these two conditions is
fufilled:

1 [Employee] with relaxed assignment is unfeasible (evaluation)
or has a cost greater than the best current known

2 Relaxed assignment is unfeasible for [Job − Shop]
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Characteristics (4/4)

If the current node has not been pruned

We get the optimum (x̄∗, θ̄∗) for [Employee] that respects the
strict assignment

if x̄∗ exists, we check if the strict assignment is feasible for
[Job − Shop]

if it is, UB is updated: UB ← θ̄∗

If UB is not updated: we add a feasibility cut to [Employee]

Feasibility cut for [Employee]

permits to eliminate solutions similar to x̄∗

impose the work on at least one of the unworked pairs (k, s)
of the strict assignment

Cut :
∑

(k,s)not fixed

∑µ
e=1 xeks ≥ 1
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Test bed

8 instances of [AGRV09]

Instance n m µ µextra δ π
ejs 6 4 25 10 8 8

ejs8X 8 8 8 40 20 8 8
ejs10X 10 10 10 50 20 10 10

Tools

Computer programming language:
Java except for [AGRV09] (C++)

MIP solver: Ilog Cplex 12.1

CP solvers (for [AGRV09]): Ilog Solver 6.7; Ilog Scheduler 6.7

Job-Shop solver:
Branch & Bound (Carlier, Péridy, Pinson, Rivreau)

Processor: Intel Core 2 Quad Q6600 @ 2,40 GHz - 3 GB RAM

CPU time limit: 300 seconds
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Results: initial cuts

Impact of the initial cuts

LP relaxation of [P] LP ′ relaxation of [P] with initial cuts
Instance LP/Θ∗ Time LP ′/Θ∗#cutsPreprocess timeTotal time

ejs4 92.4% 0.2s 100.0% 43 0.0s 0.1s
ejs9 87.3% 0.3s 94.6% 67 1.5s 0.3s

ejs10 97.1% 0.5s 100.0% 50 0.4s 0.2s
ejs8× 81 60.1% 1.6s 86.2% 94 9.5s 10.8s
ejs8× 82 68.0% 2.5s 91.6% 103 7.9s 9.6s
ejs8× 83 55.1% 1.6s 91.8% 93 4.6s 6.0s

ejs10× 101 55.7% 11.4s 93.1% 158 17.4s 24.4s
ejs10× 103 69.1% 18.1s 88.9% 164 218.8s 233.2s
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Results: exact methods

Results of the exact methods

MIP [AGRV09] 0-1 Branch and Bound
PreprocessingTotal#initial cuts

Instance Θ∗ Θ Time Θ Time Θ time time + #cuts
ejs4 23 23 0.2s 23 0.9s 23 0.0s 0.0s 43 + 0
ejs9 24 2411.4s 24 87.9s 24 1.5s 5.0s 67 + 44

ejs10 23 23 1.0s 23 3.5s 23 0.4s 0.6s 50 + 2
ejs8× 81 78 84 TL 78 64.8s 78 9.5s 37.8s 94 + 66
ejs8× 82 96 96 TL 96 98.9s 96 7.9s 43.3s 103 + 108
ejs8× 83 83 83 TL 83 29.7s 83 4.5s 9.0s 93 + 15

ejs10× 101124 -1 TL 137 TL 124 17.5s 33.0s 158 + 31
ejs10× 103 95 -1 TL 150 TL 102 218.8s TL 164 + 251
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Concluding remarks

Strong initial cuts (especially probing cuts)

Interesting decomposition approach

0-1 Branch and Bound really competitive
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