Shape diagrams for 2D compact sets - Part I: analytic convex sets. Australian Journal of

Abstract : Shape diagrams are representations in the Euclidean plane introduced to study 3-dimensional and 2-dimensional compact convex sets. Such a set is represented by a point within a shape diagram whose coordinates are morphometrical functionals defined as normalized ratios of geometrical functionals. Classically, the geometrical functionals are the area, the perimeter, the radii of the inscribed and circumscribed circles, and the minimum and maximum Feret diameters. They allow thirty-one shape diagrams to be built. Most of these shape diagrams can also been applied to more general compact sets than compact convex sets. Starting from these six classical geometrical functionals, a detailed comparative study has been performed in order to analyze the representation relevance and discrimination power of these thirty-one shape diagrams. The purpose of this paper is to present the first part of this study, by focusing on analytic compact convex sets. A set will be called analytic if its boundary is piecewise defined by explicit functions in such a way that the six geometrical functionals can be straightforwardly calculated. The second and third part of the comparative study are published in two following papers [19, 20]. They are focused on analytic simply connected sets and convexity discrimination for analytic and discretized simply connected sets, respectively.
Type de document :
Article dans une revue
The Australian Journal of Mathematical Analysis and applications, 2010, 7 (2), Article 3 ; pp. 1-27
Liste complète des métadonnées

Littérature citée [28 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00550949
Contributeur : Andrée-Aimée Toucas <>
Soumis le : mardi 18 janvier 2011 - 17:48:06
Dernière modification le : jeudi 11 janvier 2018 - 06:21:23
Document(s) archivé(s) le : mardi 19 avril 2011 - 02:30:20

Fichier

SR-AJMAA-7-1-orig.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00550949, version 1

Citation

Séverine Rivollier, Johan Debayle, Jean-Charles Pinoli. Shape diagrams for 2D compact sets - Part I: analytic convex sets. Australian Journal of. The Australian Journal of Mathematical Analysis and applications, 2010, 7 (2), Article 3 ; pp. 1-27. 〈hal-00550949〉

Partager

Métriques

Consultations de la notice

116

Téléchargements de fichiers

153