D. Rotureau and . Développement, Application à l'étude de dispositifs en configuration monochambre [3] G. Gadacz, « Développement d'une anode cermet N i-CGO pour une pile à combustible monochambre fonctionnant sous un mélange O 2 / C 3 H 8 Electric power and synthesis gas co-generation from methane with zero waste gas emission, Développement de piles à combustible en technologie planaire couches épaisses Thèse, Ecole des Mines de Saint-Etienne Thèse, Ecole des Mines de Saint-Etienne Minh et TPrinciples of operation », Science and Technology of Ceramic Fuel Cells High Temperature and Solid, pp.1792-1797, 1995.

M. Kuhn and T. W. , Single-chamber solid oxide fuel cell technologyfrom its origins to today's state of the art Solid oxide fuel cells: fundamental aspects and prospects, Electrochim. Acta Fuel Cell Handbook, vol.3, issue.45, pp.57-134, 2000.

E. , .. U. Yahiro, and K. Eguchi, Aral, « Electrical properties and reducibilities of ceria-rare earth oxide systems and their application to solid oxide fuel cell », Solid State Ion, pp.71-75, 1989.

J. Vanh-erle, T. Orita, T. Kawada, N. Sakai, H. Yokokawa et al., Effect of Gd (Sm) doping on properties of ceria electrolyte for solid oxide fuel cells [13] H . Inaba et H . Tagawa, « Ceria-based solid electrolytes -Review », Solid State Ion Appraisal of Ce 1-y Gd y O 2-y/ 2 electrolytes for IT-SO FC operation at 500C », Solid State Ion, Study on Gd 3+ and Sm 3+ co-doped ceria-based electrolytes Eguchi, K. Eguchi, et H . Aral, « O xygen ion conductivity of the ceria-samarium oxide system with fluorite structure17] S. Dikmen, P. Shuk, M. Greenblatt, et H . Gocmez, « H ydrothermal synthesis and properties of Ce 1-x Gd x O 2-delta solid solutions Mixed electrical conduction in the fluorite-type Ce, pp.1255-1258, 1988.

O. T. Gd-x, N. M. Ishihara, E. O. Sammes, . Yamamoto, Y. Chapter et al., Choi, « O xygen permeability of gadolinium-doped ceria at high temperature -Electrolytes », in High Temperature and Solid Oxide Fuel Cells ovel structured gadolinium doped ceria based electrolytes for intermediate temperature solid oxide fuel cells, Lowering the temperature of solid oxide fuel cells Minh et T Science and Technology of Ceramic Fuel Cells, pp.415-419, 1976.

M. Tagawa, K. Dokiya, T. Sasamoto, H. Inaba, and T. , « Electronic conductivity, seebeck coefficient, defect and electronic structure of nonstoichiometric La 1-x Sr x MnO 3 », Solid State Ion, pp.167-180, 2000.

H. Lv, Y. Wu, B. Uang, B. Zhao, K. Structure et al., 8 O 1.9 electrolyte SO FC operating below 600 degrees C(-delta) cathodes for solid oxide fuel cells », Solid State Ion, composite cathode for cermet supported thin Sm 0.2 Ce 0 Progress in understanding and development of, pp.1211-1216, 2006.

S. Ba, Z. Li, X. Lue, B. Uang, E. W. Wei et al., 5) Co (0.8) Fe (0.2) O (3-delta) -based cathodes for intermediate-temperature solid-oxide fuel cells: A review, Thermal, electrical, and electrochemical properties of Lanthanum-doped, pp.231-246, 2009.

. Chem, V. Solids, J. A. Dusastre, and . Kilner, « O ptimisation of composite cathodes for intermediate temperature SO FC applications », Solid State Ionics, « Electrode materials and reaction mechanisms in solid oxide fuel cells: a brief review, Ln 1-x Sr x CoO 3, pp.1707-1712, 1999.

V. Kharton, F. Figueiredo, L. , and E. , Dy) for the electrode of solid oxide fuel cells », Solid State Ion, pp.283-288, 1997.

A. Yaremchenko, A. Viskup, F. Carneiro, E. J. Marques, and . Frade, « Ceria-based materials for solid oxide fuel cells, J. Mater. Sci, vol.36, pp.1105-1117, 2001.

M. Augustin, ]. N. Chapter34, T. Minh, . Takahashi, and . Chapter, -Anode », in Science and Technology of Ceramic Fuel Cells Effect of anode porosity and pore size on electrochemical performance, High Temperature and Solid Oxide Fuel Cells, pp.149-171, 1995.
URL : https://hal.archives-ouvertes.fr/tel-00011357

W. Jung, E. Traversa, and E. D. Wachsman, « H igh-performance bilayered electrolyte intermediate temperature solid oxide fuel cells, Sm(Sr)CoO 3 cone cathode on, pp.1504-1507, 2009.

S. Chen, X. Chen, Z. Lue, N. Ai, X. et al., « Performance of an anode-supported SO FC with anode functional layers « Gradual internal reforming of methane: A demonstration », Solid State Ion Ahn, « Initialization of a methane-fueled single-chamber solid-oxide fuel cell with N iO plus SDC anode and BSCF plus SDC cathode Anode-supported thin-film fuel cells operated in a single chamber configuration 2T -I-12, Visco, et L. C. De Jonghe, « Single chamber fuel cells: Flow geometry, rate, and composition considerations, pp.825-830, 2004.

R. State-lett-morel, S. Roberge, T. W. Savoie, M. Meunier44, Y. et al., Temperature and performance variations along single chamber solid oxide fuel cells « Efficiency and fuel utilization of methanepowered single-chamber solid oxide fuel cells « Mixed-reactant, microtubular solid oxide fuel cells: An experimental study A solid oxide fuel cell with a novel geometry that eliminates the need for preparing a thin electrolyte film, Yoshida, et M. Sano, « A solid oxide fuel cell using an exothermic reaction as the heat source, pp.198-200, 2002.

]. T. Soc48, P. Suzuki, V. Jasinski, H. Petrovsky, E. F. Anderson et al., « Performance of a porous electrolyte in single-chamber SO FCs, J. Electrochem. Soc, vol.148, issue.152, pp.544-549, 2001.

«. H-ydrogen-solubility-in-pr51, ]. T. Ibino, S. Q. Wang, S. Kakimoto, M. et al., Sano, « O ne-chamber solid oxide fuel cell constructed from a YSZ electrolyte with a N i anode and LSM cathode », Solid State Ion, Single chamber solid oxide fuel cell constructed from an yttria-stabilized zirconia electrolyte », pp.363-367, 1998.

S. Lett53, ]. T. Ibino, A. , T. Inoue, J. Tokuno et al., Single-Chamber solid oxide fuel cells at intermediate temperatures with various hydrocarbon-air mixtures, Journal of The Electrochemical Society, vol.2, issue.147, pp.317-319, 1999.

T. H. Ibino, A. , T. Inoue, J. Tokuno, and S. Yoshida, A solid oxide fuel cell using an exothermic reaction as the heat source

]. T. Soc55, A. Ibino, K. Asano, M. Yano, and M. Suzuki, An intermediate-temperature solid oxide fuel cell providing higher performance with hydrocarbons than with hydrogen, Electrochem. Solid State Lett, vol.148, issue.5, pp.544-549, 2001.

«. Shao, S. M. , Z. Shao, J. Mederos, W. C. Chueh et al., « A high-performance cathode for the next generation of solid-oxide fuel cells « H igh power-density single-chamber fuel cells operated on methane « Anodesupported SO FC operated under single-chamber conditions at intermediate temperatures Anode supported single chamber solid oxide fuel cell in CH 4 -air mixture, Single-chamber micro solid oxide fuel cells: Study of anode and cathode materials in coplanar electrode design », Solid State Iondelta composite cathode materials for, pp.133-136, 2002.

S. Fcs, ». , J. Alloy, ]. T. Compd63, P. Suzuki et al., Role of composite cathodes in single chamber SO FC, J. Electrochem. Soc, vol.465, issue.151, pp.274-279, 2004.

. Tsiakaras, 5 Sr 0.5 Co 0.8 Fe 0.2 O 3-delta based cathode IT-SO FC -I. The effect of CO 2 on the cell performance, Phase stability of, pp.64-71, 2006.

C. Zhang, Y. Lin, R. Ran, Z. Shao, M. Felberbaum et al., « Improving single-chamber performance of an anode-supported SO FC by impregnating anode with active nickel catalyst, Influence of anode thickness on the electrochemical performance of single chamber solid oxide fuel cells Advances in Solid Oxide Fuel Cells II, pp.269-274, 2009.

S. S. Amer-ceramic, T. W. Savoie, B. Morel, M. Meunier, R. Roberge69-]-x et al., Catalytic activity of N i-YSZ anodes in a single-chamber solid oxide fuel cell reactor « Coplanar electrodes design for a single-chamber SO FC -Assessment of the operating parameters, Recent advances in single-chamber fuel-cells: Experiment and modeling », Solid State Ion Meunier, et D. Therriault, « Experimental study of current collection in single-chamber micro solid oxide fuel cells with comblike electrodes, pp.37-45, 2006.

H. Ibino and «. , Single-chamber SO FCs using dimethyl ether and ethanol, J. Electrochem

]. B. Soc73, A. Buergler, E. L. Grundy, and . Gauckler, « Thermodynamic equilibrium of single-chamber SO FC relevant methane-air mixtures, J. Electrochem. Soc, vol.154, issue.153, pp.865-870, 2007.

Y. , D. G. Goodwin, S. Modeling-of-single-chamber, ». Fcs-with-hydrocarbon-fuels, J. Electrochem et al., Performance and ageing of an anode-supported SO FC operated in single-chamber conditions « Fabrication and evaluation of a N i/ La 0.75 Sr 0.25 Cr 0.5 Fe 0.5 O 3-delta co-impregnated yttria-stabilized zirconia anode for single-chamber solid oxide fuel cells Catalytic activity and performance of LSM cathode materials in single chamber SO FC Segarra, « Intermediate temperature single-chamber methane fed SO FC based on Gd doped ceria electrolyte anddelta as cathode A solid oxide fuel cell with a novel geometry that eliminates the need for preparing a thin electrolyte film, Morin, et M. Meunier, « O perating conditions of a single-chamber SO FC Evaluation of the actual working temperature of a single-chamber SO FC », pp.207-217, 2002.

Z. Wang, B. Lue, X. Wei, K. Uang, W. Chen et al., « A rightangular configuration for the single-chamber solid oxide fuel cell, A62 Int. J. Hydrog, 2004.

M. Kuhn, T. , M. Meunier, and D. Therriault, [83] I. Riess, « O n the single chamber solid oxide fuel cells Vengallatore, « Fabrication and testing of coplanar single-chamber micro solid oxide fuel cells with geometrically complex electrodes, J. Power Sources Journal of Power Sources, vol.36, issue.177, pp.3147-3152, 2008.

. Electrochem, Z. P. Soc, S. M. Shao, J. Ahn, P. D. Ronney et al., « A thermally self-sustained micro solid-oxide fuel-cell stack with high power density Effect of electrolyte thickness on the performance of anode-supported ceria cells », Solid State Ion « Reduced-temperature solid oxide fuel cells fabricated by screen printing, 90] Van der Pauw, « A method of measuring the resistivity and H all coefficient on lamellae of arbitrary shape », Philips technical review, pp.325-330, 1958.

E. J. Siebert, T. Souquet, I. Matsui, A. Minoru, Z. Mineshige et al., « Electrochemical properties of ceria-based oxides for use in intermediate-temperature SO FCs », Solid State Ion, Electrolchimie des solides, pp.647-654, 1994.

T. H. Ibino, A. , T. Inoue, J. Tokuno, S. Yoshida et al., « A low-operating-temperature solid oxide fuel cell in hydrocarbon-air mixtures « Enhanced performance of a single-chamber solid oxide fuel cell with an SDC-impregnated cathode, Single chamber solid oxide fuel cells with integrated current-collectors », Solid State Ion, pp.2031-2033, 2000.

. Lacorre, Structural and transport characteristics of the LAMO X family of fast oxideion conductors, based on lanthanum molybdenum oxide La 2 Mo 2 O 9, J. Materials Chemistry, vol.11, pp.119-124, 2001.