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Résumé 

Les réseaux de dispositifs connectés connaissent une croissance 
exponentielle à travers le monde et les opérateurs de télécommunication 
sont chargés de gérer des réseaux vastes et complexes. Ainsi, il est 
nécessaire de disposer de systèmes intelligents et performants pour aider 
les ingénieurs dans la maintenance de ces réseaux. Les dispositifs, 
également appelés éléments de réseaux ou capteurs, rapportent en continu 
des indicateurs clés de performance (KPI) et utilisent les données associées, 
combinées à des modèles de détection des anomalies (DA) intelligents, pour 
prioriser la maintenance de production du réseau. 

Une anomalie est une observation ou un événement dans une série 
temporelle qui a une faible probabilité de se produire dans des circonstances 
normales. Par conséquent, la survenue d'anomalies est généralement 
accompagnée de symptômes qui peuvent perturber le fonctionnement d'un 
système sous-jacent. Les anomalies sont généralement rares et 
importantes ; elles sont rencontrées dans différents domaines tels que le 
contrôle du trafic réseau, la détection de fraudes, les dommages industriels, 
le traitement d'image, etc. La détection des anomalies est bien développée 
dans la littérature et plusieurs approches et méthodes ont été appliquées 
pour détecter de tels événements. Ces travaux impliquent différents 
domaines de recherche tels que l'apprentissage automatique, l'analyse de 
données, les statistiques paramétriques/non paramétriques, la théorie de 
l'information, la théorie spectrale, etc. Cependant, la majorité de ces 
approches et outils sont confrontés à des défis et à des lacunes de recherche 
de différentes natures qui sont difficiles à surmonter.  

Les principales lacunes de recherche auxquels sont confrontés les modèles 
de détection des anomalies les plus populaires peuvent être résumés 
comme suit : un temps d'entraînement relativement long ; l'incapacité à 
quantifier la contribution des différentes variables sous-jacentes à un 
comportement anormal lors de l'exploration dans un espace 
multidimensionnel ; l'incapacité à distinguer les anomalies des valeurs 
aberrantes qui ne sont pas causées par des dysfonctionnements du 
système; l'incapacité à hiérarchiser les anomalies détectées selon leur 
niveau de gravité et la difficulté de traiter des variables de différentes 
typologies (e.g., textuelles, catégorielles, numériques).  
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Pour surmonter ces limites, nous avons développé plusieurs approches 
(modèles/algorithmes) de détection des anomalies qui utilisent des données 
de différentes typologies et de nature diversifiée : probabiliste, statistique 
et apprentissage automatique. Nos différentes méthodes détectent les 
comportements anormaux, génèrent des scores d'anomalies, quantifient 
l’importance des variables sous-jacentes et constituent une première étape 
essentielle pour déterminer la cause fondamentale des anomalies 
détectées. 

Premièrement, nous proposons un nouvel algorithme de détection 
d'anomalies, appelé Abnormality Hyper-Cubic Algorithm (AHCA). 
L'algorithme est conçu pour être non supervisé, indépendant de la 
distribution des variables sous-jacentes, et il peut mesurer la contribution 
de chaque variable à un score d'anomalie global. De plus, il peut distinguer 
entre les vraies anomalies et les valeurs aberrantes qui ne sont pas causées 
par des dysfonctionnements du système. Le score d'anomalie est calculé 
dans un contexte multidimensionnel en se basant sur une approche 
probabiliste et géométrique ayant pour but d’isoler les anomalies dans des 
zones cubiques ayant une faible masse de probabilité. Ensuite, nous 
introduisons une mesure, aussi probabiliste, de l’importance et de la 
contribution de chaque variable à un comportement anormal. Enfin, la 
théorie de l’information, particulièrement l’entropie de Shannon, nous aide 
à décider si une observation avec un score d'anomalie élevé est une 
véritable anomalie ou une valeur aberrante.  

En résumé, l'algorithme AHCA présente plusieurs innovations par rapport 
aux algorithmes de détection d'anomalies existants. Il combine une 
approche probabiliste avec une topologie géométrique spécifique pour 
calculer un score d'anomalie pour chaque point de données. De plus, il 
montre l'importance de chaque variable sous-jacente dans le score global 
d'anomalie d'une observation, tout en préservant les corrélations entre les 
variables. De plus, c’est un algorithme qui aide à la discrimination entre 
anomalie et valeur aberrante. 

Deuxièmement, nous proposons une approche adaptée à la détection des 
anomalies en se basant sur des données catégorielles (des alarmes) 
provenant d’un réseau de télécommunication. Le modèle consiste à calculer 
et agréger quatre caractéristiques/signaux pour définir un score d’anomalie 
sur un certain intervalle de temps. Les caractéristiques sont : le nombre des 
alarmes ; le temps d’attente entre deux alarmes consécutives ; la fréquence 
de transition entre les alarmes (modèle markovien) ; la fréquence 
d’apparition historique des alarmes. 
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Le score d'anomalie final est obtenu en agrégant les caractéristiques 
précédemment calculées en utilisant une moyenne pondérée avec des poids 
optimisés suite à des interactions avec des experts du domaine (SME) et 
d'une approche de recherche en grille supervisée.  

Dans un troisième temps, nous nous concentrons sur les données textuelles 
qui sont une source d'information cruciale pour la performance des 
équipements d’un réseau de télécommunications. Ces données textuelles 
contiennent des informations sur les événements qui se produisent pendant 
le fonctionnement du système. L'objectif principal est de détecter un 
intervalle de temps présentant une forte probabilité de comportement 
anormal en se basant uniquement sur les données textuelles du système. 
Cette méthode est particulièrement utile lorsque les seules données 
disponibles sont les journaux système, ce qui est le cas dans de nombreuses 
applications réelles. 

La méthodologie se décompose en deux étapes principales : 1) Le 
prétraitement des données textuelles en utilisant des techniques de 
traitement du langage naturel (NLP) ; 2) Le regroupement des données 
textuelles à l'aide d'un nouvel algorithme de regroupement non supervisé 
qui tient compte des spécificités des données et évite une étape de 
vectorisation intermédiaire.  

Les trois principales contributions de cette méthode sont:  

1) L'adaptation d’un nouvel algorithme de regroupement à la structure 
des données textuelles en évitant la perte d’information due à une 
étape de vectorisation;  

2) l’extraction d’une structure optimale de l’espace de décision grâce à 
une technique de regroupement non supervisé pour obtenir un 
système de notation d’anomalie plus précis et homogène ;  

3) L’optimisation des hyper paramètres de l'algorithme proposé en 
utilisant une approche supervisée innovante qui prend en compte 
l'interaction avec les experts du domaine. 

Quatrièmement, nous proposons une nouvelle approche basée sur la théorie 
des valeurs extrêmes et des records pour la détection des anomalies. Cette 
approche se concentre sur le comportement des queues des variables sous-
jacentes, plutôt que sur l'ensemble de la distribution, et introduit un 
nouveau système de notation des anomalies capable de distinguer entre les 
événements rares et courants.  

Après une formalisation mathématique de la théorie des records adaptée à 
notre contexte, nous avons créé un outil de sélection de variables 



 8 

permettant de choisir celles ayant le plus d’importance pour être utilisées 
dans un algorithme de détection des anomalies. Notons que certaines 
approches de réduction de dimension classiques peuvent ne pas être 
adaptées à certains contextes d'application, en particulier lorsque l'accent 
est mis sur le comportement de la distribution des queues des variables. La 
méthode proposée est donc innovante et spécifiquement adaptée au cas de 
la détection des anomalies. Elle se concentre principalement sur le 
comportement des événements extrêmes, en particulier des records 
supérieurs, pour déterminer quelles variables doivent être sélectionnées. 

Ensuite, nous proposons un système de notation pour la détection des 
anomalies, applicable en une ou plusieurs dimensions. Ce système peut 
détecter objectivement les anomalies et suggérer des valeurs seuils pour 
les différentes variables (KPI) sans l'aide d'experts. 

Le système de notation proposé pour la détection des anomalies est un 
algorithme simple qui ne repose sur aucune distribution ou paramètre 
spécifique. Il est conçu pour être utilisé en tant que système en ligne pour 
détecter les anomalies avec une complexité de calcul minimale sans risque 
de sur apprentissage. De plus, le système peut estimer automatiquement 
la valeur seuil nécessaire pour classer les observations en tant 
qu'anomalies, assurant ainsi une performance optimale de l'algorithme.  

Les quatre modèles/algorithmes ont été testés sur des données réelles de 
télécommunications et ont démontré d'excellentes performances dans la 
détection d'anomalies avec des taux d'erreur très faibles. 

En conclusion, dans cette thèse, pour répondre aux limites des modèles de 
détection d'anomalies les plus populaires, nous avons proposé un nouveau 
modèle géométrique multidimensionnel probabiliste pour rechercher les 
comportements anormaux dans l'espace de données, générer des scores 
d'anomalie et quantifier les facteurs d'anomalie. Nous avons introduit 
également un algorithme pour générer un score d’anomalie final basé sur 
quatre caractéristiques dérivées des données historiques pour les données 
d'alarme. En outre, un algorithme pour aider à prétraiter les données 
textuelles, les regrouper en classes et étiqueter dynamiquement chaque 
classe comme une anomalie ou non a été développé. Enfin, nous avons 
proposé une méthode couplant la réduction de dimension et la détection 
des anomalies basée sur la théorie des records. Dans l'ensemble, cette 
thèse fournit des méthodes innovantes pour détecter et prioriser les 
anomalies dans les réseaux de télécommunications et propose des outils 
puissants pour l'analyse de données et la maintenance des réseaux. 
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In recent years, the rapid growth of the telecommunications industry has 
led to an unprecedented expansion of network infrastructures and an 
exponential increase in data traffic. The complexity of these network 
systems and the ever-increasing volume of data generated by users and 
applications have made it imperative for network operators to maintain a 
high level of service quality and reliability. As a result, the identification and 
resolution of network anomalies have become critical challenges for 
telecommunications operators worldwide. 
 
 
Anomaly detection is a fundamental process that involves the identification 
of unusual behavior or data patterns in networks, which might signal 
malicious activities, system failures, or other forms of network degradation. 
Traditional methods for anomaly detection, such as threshold-based and 
rule-based systems, have become less effective due to the limitations in 
scalability, adaptability, and accuracy when dealing with the dynamic and 
evolving nature of modern networks. 
 
 
Anomaly detection has become a crucial component in many fields, 
including cybersecurity, healthcare, finance, and manufacturing. The 
increasing complexity and scale of data generated in these domains have 
necessitated the development of more sophisticated techniques for 
identifying unusual patterns or outliers. This PhD research thesis aims to 
explore novel methods for anomaly detection, evaluate their effectiveness 
in various real-world scenarios, and contribute to the existing body of 
knowledge by addressing specific limitations in current approaches. 
 

1.1 Background and Motivation 
 
The importance of anomaly detection has grown exponentially with the rise 
of big data and the need to maintain high-quality datasets in various 
industries. Real-world problems that can be addressed through effective 
anomaly detection include fraud detection, network intrusion detection, 
fault detection in manufacturing processes, and early identification of 
disease outbreaks in healthcare settings. The potential impact of this 
research is significant, as advancements in anomaly detection can 
contribute to cost reduction, improved efficiency, and enhanced decision-
making in multiple domains. 
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In the following, the most popular application of anomaly detection in 
different domains: 
  
Fraud Detection: 
- Credit card fraud detection 
- Insurance fraud detection 
- Tax evasion detection 
 
Network Intrusion Detection: 
- Detecting unauthorized access 
- Identifying distributed denial-of-service (DDoS) attacks 
- Discovering malware activity 
 
Fault Detection in Manufacturing Processes: 
- Equipment malfunction identification 
- Quality control and defect detection 
- Predictive maintenance 
 
Early Identification of Disease Outbreaks: 
- Monitoring disease spread patterns 
- Detecting emerging epidemics 
- Identifying potential outbreaks from electronic health records 
 

1.2 Research Questions and Objectives 
 
The main research question guiding this thesis is: How can novel anomaly 
detection techniques be developed and applied to improve performance, 
scalability, and adaptability in diverse real-world scenarios? The objectives 
of the research are as follows: 
 

- Investigate the limitations of existing machine learning anomaly 
detection methods in handling large-scale, diverse, and dynamic 
datasets. 
 

- Develop novel techniques that address these limitations and 
demonstrate their effectiveness in a range of applications. 
 

- Evaluate the performance of the proposed methods against 
established benchmarks and state-of-the-art approaches. 
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To address the research question and objectives, a comprehensive and 
systematic approach will be taken. This section provides a more detailed 
overview of the three main objectives. 
 
 
Objective 1:  
 
Investigate the limitations of existing machine learning anomaly detection 
methods: 
 
The first objective of this research is to investigate the limitations of current 
machine learning-based anomaly detection methods. This will involve 
conducting a thorough literature review to identify and understand the 
common issues faced by researchers and practitioners in various fields 
when using these methods. The limitations of existing methods can include: 
 

• High dimensionality: As the dimensionality of a dataset increases, 
many existing methods become less effective in detecting anomalies. 
The curse of dimensionality is a known issue that makes it challenging 
for traditional distance-based methods to identify outliers in high-
dimensional spaces. 
 
 

• Dynamic data: In many real-world applications, data can be dynamic 
and constantly changing. Some existing methods are not well-suited 
for detecting anomalies in such situations, as they may require 
periodic retraining or adaptation to accommodate the evolving data 
distribution. 
 

 
• Noisy and imbalanced data: Anomaly detection methods can be 

sensitive to noisy or imbalanced data. Noisy data can lead to false 
positives, while imbalanced data can result in many false negatives 
due to the rarity of actual anomalies. 

 
• Scalability: As the volume of data continues to grow, the scalability 

of anomaly detection methods becomes increasingly important. Many 
existing methods may struggle to process large datasets efficiently, 
making it difficult to apply them in real-world scenarios. 
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Objective 2:  
 
Develop novel techniques that address these limitations: 
 
The second objective of this research is to develop novel anomaly detection 
techniques that address the limitations identified in Objective 1. This will 
involve: 
 

• Designing novel algorithms: To overcome the limitations of existing 
methods, new algorithms will be developed that can effectively detect 
anomalies in large-scale, diverse, and dynamic datasets. These 
algorithms will take into consideration the specific challenges 
identified in Objective 1 and will be designed to perform well in a 
variety of situations. 
 

• Leveraging advanced machine learning techniques: The proposed 
methods may involve the use of advanced machine or/and statistical 
learning techniques to enhance their ability to detect anomalies. 
These techniques can offer improved performance and adaptability 
compared to traditional methods. 

 
• Feature engineering and dimensionality reduction: To tackle the issue 

of high dimensionality, the proposed methods may involve feature 
engineering and dimensionality reduction techniques to simplify the 
data and make it more manageable. This can help improve the 
performance of the anomaly detection algorithms and reduce 
computational complexity. 
 

• Incorporating domain knowledge: Domain knowledge can be 
incorporated into the design of the proposed anomaly detection 
methods to improve their effectiveness in specific application areas. 
This can involve tailoring the methods to the unique characteristics 
and requirements of each domain, resulting in more accurate and 
robust detection of anomalies. 
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Objective 3:  
 
Evaluate the performance of the proposed methods: 
 
The third objective of this research is to evaluate the performance of the 
proposed methods against established benchmarks and state-of-the-art 
approaches. This will involve selecting appropriate datasets: To ensure a 
comprehensive evaluation, various datasets from different domains will be 
selected, representing diverse data characteristics and real-world 
challenges. These datasets may include both synthetic and real-world data, 
allowing for a thorough assessment of the proposed. 
 
 

1.3 Literature Review 
 
A comprehensive review of the existing literature on anomaly detection will 
be conducted, examining the various techniques used in different domains. 
This review will cover statistical, machine learning, and deep learning-based 
approaches, discussing their strengths, limitations, and potential for 
improvement. Additionally, the literature review will explore the specific 
challenges faced by anomaly detection in various industries, providing a 
context for the development of novel methods in this research. 
 
The literature review will be introduced gradually at the beginning of each 
chapter based on the developed methodology and the typology of the 
application data.  
 

1.4 Contributions and Novelty 
 
The key contributions of this thesis will be the development of novel 
anomaly detection methods, offering improvements in performance, 
scalability, and adaptability. These new techniques will address the 
limitations identified in the literature review and demonstrate their 
effectiveness in diverse applications. Furthermore, the research will 
contribute to the understanding of how different techniques perform under 
varying conditions and how they can be combined or adapted to optimize 
results. 
 
This thesis will introduce four novel anomaly detection algorithms and their 
contributions. 
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1.5 The importance of anomaly detection in 
telecommunication industry 
 

Telecommunication networks have become the backbone of modern 
society, enabling seamless connectivity and communication across the 
globe. Network telco operators are responsible for managing and 
maintaining the infrastructure that supports these networks, ensuring they 
remain reliable, secure, and efficient. One of the critical aspects of 
managing these networks is the detection and resolution of anomalies, 
which can lead to service degradation, system failures, or cyber threats. 
With the rapid advancement of technology and the increasing complexity of 
networks, the importance of utilizing machine learning algorithms for 
anomaly detection has become more evident than ever before. In the 
following sub-sections, we explore the reasons why telco operators are 
increasingly interested in adopting machine learning-based approaches for 
network anomaly detection. 
 

1.5.1 Limitations of Traditional Anomaly Detection Techniques 
 

Traditional anomaly detection techniques, such as threshold-based and 
rule-based systems, have several limitations in the context of modern 
telecommunication networks. These limitations include: 
 

• Scalability: As networks grow in size and complexity, the volume of 
data generated by the network also increases exponentially. 
Traditional methods struggle to keep up with this rapid expansion, 
leading to longer processing times and decreased accuracy in 
detecting anomalies. 
 

• Adaptability: Telecommunication networks are highly dynamic, with 
constantly changing network topologies and traffic patterns. Rule-
based and threshold-based techniques often require manual 
intervention to update rules and thresholds, making it difficult to 
adapt to these changes in real-time. 
 

• High False Positive and False Negative Rates: Traditional techniques 
may not always accurately distinguish between normal and 
anomalous behavior, resulting in false alarms or undetected threats. 
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1.5.2 Advantages of Machine Learning Algorithms for Anomaly 
Detection 

 

Machine learning algorithms offer several advantages over traditional 
techniques in addressing the limitations outlined above: 
 

• Scalability: Machine learning algorithms can handle large amounts of 
data, enabling them to scale with the growing network size and 
complexity. This is particularly important given the increasing 
adoption of 5G, IoT, and other emerging technologies that generate 
vast amounts of data. 
 

• Adaptability: Machine learning models can automatically learn from 
the data, adapting to changing network conditions and traffic patterns 
without requiring manual intervention. This ensures that the anomaly 
detection system remains effective even as the network evolves. 
 

• Improved Accuracy: By leveraging the power of advanced algorithms, 
machine learning techniques can better model complex relationships 
between network features, leading to more accurate anomaly 
detection and reduced false positive and false negative rates. 
 

1.5.3 Machine Learning Approaches for Anomaly Detection 
 
Machine learning techniques can be broadly classified into supervised, 
unsupervised, and reinforcement learning. Each of these approaches has its 
advantages and can be applied to different aspects of anomaly detection in 
telecommunications: 
 

• Supervised Learning: Supervised learning techniques are trained 
using labeled data, where the model learns to predict the output 
(anomaly or normal) based on input features. These techniques, such 
as Support Vector Machines (SVM) and Artificial Neural Networks 
(ANN), have shown promising results in detecting known anomalies 
in network traffic. 
 

• Unsupervised Learning: Unsupervised learning techniques do not 
require labeled data and instead identify anomalies based on the 
structure and patterns within the data itself. Techniques such as 
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clustering and autoencoders have been used to uncover previously 
unknown anomalies or to detect outliers in the data. 
 

• Reinforcement Learning: Reinforcement learning techniques optimize 
decision-making based on rewards and penalties received for different 
actions. These algorithms can be applied to dynamic network 
management tasks, such as adaptive traffic routing or resource 
allocation, to minimize the occurrence of network anomalies. 

 

As network telecom operators continue to face challenges in maintaining 
reliable and secure telecommunications infrastructures, the adoption of 
machine learning algorithms for anomaly detection becomes increasingly 
important. By leveraging the advantages of machine learning techniques, 
operators can enhance their services and customer experience, hence the 
importance of our research and methodologies for telecom operators.  
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Radio Access Networks (RANs) are essential components of modern 
telecommunication systems, enabling seamless connectivity between end-
users and core networks. The performance and stability of RANs are of 
utmost importance to ensure reliable and high-quality communication 
services. As network operators strive to maintain and optimize RAN 
infrastructure, it is crucial to have a comprehensive understanding of the 
various types of data generated within these networks. Specifically, the 
analysis of performance Key Performance Indicators (KPIs), alarms, and 
system logs can provide valuable insights into the overall health and 
functioning of the RAN. 
 
Performance KPIs are quantifiable metrics that provide an objective 
assessment of the RAN's performance, covering aspects such as availability, 
capacity, and quality of service. These KPIs are typically collected 
periodically and aggregated over specified time intervals to facilitate 
monitoring, troubleshooting, and optimization efforts. Examples of 
performance KPIs include call setup success rate, dropped call rate, and 
data throughput. 

Alarms, on the other hand, are generated by network elements within the 
RAN to indicate potential issues or failures. These alarms can be triggered 
by a variety of events, ranging from equipment malfunctions and 
configuration errors to external factors such as environmental conditions or 
network attacks. Timely detection and resolution of alarms are crucial in 
maintaining the integrity and availability of the RAN infrastructure. 

System logs (Syslogs) are event logs produced by network elements that 
record operational events and other relevant information. Syslogs provide 
a detailed view of network activity, offering insights into both normal and 
anomalous behavior. The analysis of syslogs can aid in identifying potential 
issues or inefficiencies, as well as assisting in troubleshooting and root 
cause analysis. 

In this chapter, we aim to provide a comprehensive analysis of the data 
generated from RAN networks, including performance KPIs, alarms, and 
syslogs. We will explore the characteristics of these data types, their 
interdependencies, and their significance in maintaining and optimizing RAN 
performance. Additionally, we will investigate the application of advanced 
data processing and analytics techniques, such as machine learning and big 
data platforms, to derive actionable insights that can contribute to the 
improvement of RAN operations and management. By developing a deeper 
understanding of RAN-generated data, network operators will be better 
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equipped to maintain a high level of service quality and reliability for their 
customers. 

 

2.1 Data Overview 
 

Here's some information on KPIs (Key Performance Indicators) and alarms 
in network communication data and flows, including what they are and how 
they work. 

In the field of network communication, KPIs are used to measure the 
performance of various network elements and systems. They are a set of 
quantifiable measurements that indicate how well a network element is 
functioning. KPIs can be used to monitor network performance, identify 
potential issues, and track progress toward performance goals. 

KPIs can vary depending on the network element or system being 
monitored. For example, KPIs for a router might include measures of 
latency, packet loss, and throughput. KPIs for a cellular network might 
include measures of call quality, handover success rates, and data transfer 
rates. Regardless of the specific KPIs being monitored, they are generally 
used to provide an overall picture of the performance of the network 
element in question. 

In addition to KPIs, network elements may also provide alarms when certain 
conditions are met. Alarms are used to indicate when something has gone 
wrong or when a specific threshold has been reached. For example, a router 
might generate an alarm when packet loss exceeds a certain threshold, 
indicating that there is a problem with the network connection. Alarms can 
be used to alert network administrators to potential issues so that they can 
take corrective action before the problem becomes more serious. 

Alarms can be generated by a wide range of network elements, including 
core and transmission elements. Core elements are typically used to route 
traffic across a network, while transmission elements are used to transport 
data over long distances. Both types of elements are critical to the overall 
performance of a network and can generate alarms when issues arise. 

Overall, KPIs and alarms are important tools for monitoring and maintaining 
network performance. By providing insight into how well network elements 
are functioning and alerting administrators to potential issues, they help 
ensure that networks operate efficiently and effectively. 
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Going deeper into the data, in cellular networks, cells are the basic units 
that provide radio coverage in a particular geographic area. Each cell is 
typically served by a base station or cell site, which transmits and receives 
radio signals to and from mobile devices within the cell. The size of each 
cell can vary depending on factors such as population density and terrain. 

Counters are a type of KPI that are used to track specific aspects of cellular 
network performance. They are typically associated with individual cells and 
can provide detailed information on factors such as call drops, handover 
success rates, and data throughput. Counters are often used to identify 
potential issues with a particular cell or set of cells and can be used to guide 
troubleshooting and optimization efforts. 

In addition to counters, cellular networks also generate large amounts of 
raw data that can be used to monitor and optimize network performance. 
This data can include information such as call logs, location data, and signal 
strength measurements. Raw data is typically collected by network 
elements such as base stations, switches, and routers, and can be 
processed and analyzed using specialized software tools. 

By monitoring and analyzing this data, network operators can gain insights 
into how their networks are performing and identify potential areas for 
improvement. For example, by analyzing call logs and location data, 
operators can identify areas of poor coverage and take steps to improve 
network performance in those areas. Similarly, by analyzing signal strength 
data, operators can identify potential interference sources and take steps 
to mitigate the impact of that interference. 

Overall, cells, counters, and raw data generated in network communication 
are critical tools for monitoring and optimizing network performance. By 
providing detailed insights into network performance, they help ensure that 
networks operate efficiently and effectively, and can help network operators 
to identify and address potential issues before they become more serious. 

Time series KPIs, counters, and raw data generated by network 
communication equipment can vary depending on the equipment vendor 
and the specific type of equipment being used. 

Different equipment vendors may have different approaches to how they 
measure and report on network performance. For example, one vendor may 
emphasize certain KPIs or counters over others, or may use different 
terminology to describe the same performance metrics. Additionally, 
vendors may use different algorithms or methodologies to calculate 
performance metrics, which can result in variations in reported values. 
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Furthermore, the specific KPIs, counters, and raw data generated by 
different types of network equipment can vary as well. For example, the 
KPIs and counters used to measure the performance of a base station in a 
cellular network may be different from those used to measure the 
performance of a router in a wired network. 

It is important for network operators to be aware of these variations and to 
ensure that they have a thorough understanding of the specific KPIs, 
counters, and raw data generated by the equipment they are using. This 
can help operators to monitor and optimize network performance, and to 
ensure that they are getting the most out of their equipment investment 
more effectively. 

 

2.2 Data value 
 

KPIs and counters are important in network communication because they 
provide valuable information on network performance and help network 
operators to identify potential issues and optimize network performance. 
Here are some specific reasons why KPIs and counters are important: 

• They provide insight into network performance: KPIs and counters 
provide a way to measure and monitor the performance of network 
elements and systems. By tracking performance over time, operators 
can gain insight into how the network is functioning and identify 
potential areas for improvement. 
 

• They help identify issues and troubleshoot problems: When network 
performance falls below a certain threshold, alarms and alerts can be 
triggered, indicating that there is an issue that needs to be addressed. 
KPIs and counters can help operators to quickly identify the source of 
the problem and take corrective action before the problem becomes 
more serious. 
 

• They can guide optimization efforts: By tracking performance metrics 
over time, operators can identify areas where network performance 
is suboptimal and take steps to optimize the network. This might 
involve adjusting network configurations, upgrading equipment, or 
implementing new technologies to improve network performance. 
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• They can help ensure quality of service: KPIs and counters can be 
used to track the performance of specific aspects of the network, such 
as call quality or data throughput. By ensuring that these metrics 
meet certain thresholds, network operators can help to ensure that 
their customers receive a high-quality experience when using the 
network. 

Here is a sample of KPIs generated by a real network and provided for our 
research: 

 

Columns are KPIs measured at 15 min level for each cell. More details for 
each column will be elaborated in each chapter based on its usage.  

We can plot each KPI to see its trend as a time series as the following: 
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2.3 Challenges 
 

There are several challenges that network operators may face when working 
with this data. We are dividing it into 2 categories, first one about general 
ones and then detailing one specific challenge about size of the data. Here 
we will start listing five challenges with their description: 

• Data integration: Network operators often use a variety of different 
equipment from different vendors, and each vendor may use different 
data formats and standards to report KPIs and counters. Integrating 
data from multiple sources can be challenging, and network operators 
may need to invest in specialized software or data integration tools to 
ensure that data can be easily accessed and analyzed. 
 

• Data visibility: With so much data being generated, it can be difficult 
to identify the most important KPIs and counters to monitor. Network 
operators need to prioritize their data monitoring efforts to focus on 
the metrics that have the greatest impact on network performance 
and user experience. 
 

• Data interpretation: Analyzing KPIs and counters requires expertise 
in both network communication and data analysis. Network operators 
may need to invest in training for their staff to ensure that they have 
the necessary skills to analyze and interpret this data effectively. 
 

• Network complexity: Modern networks are becoming increasingly 
complex, with a growing number of connected devices, applications, 
and services. This complexity can make it more difficult to identify the 
root cause of network performance issues, and can make it harder to 
optimize network performance. 
 

• Automation: As the volume of data generated by KPIs and counters 
continues to grow, it may become more difficult for human operators 
to analyze and interpret all of the data. Network operators may need 
to invest in automated tools and machine learning algorithms to help 
identify performance issues and optimize network performance. 

There are challenges associated with the size of the data generated by KPIs 
and counters in network communication. With the proliferation of connected 
devices and the growth of data-intensive applications, the amount of data 
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generated by network elements has increased exponentially in recent years. 
Here are some specific challenges associated with the size of this data: 

 

• Storage: The amount of data generated by KPIs and counters can be 
massive, and storing all of this data can be a significant challenge. 
Network operators may need to invest in large-scale data storage 
solutions, such as cloud-based storage or dedicated storage systems, 
to accommodate this data. 
 

• Processing: Once data has been stored, processing it can also be a 
challenge. Analyzing massive data sets can be computationally 
intensive, and network operators may need to invest in specialized 
hardware or software to process this data efficiently. 
 

• Data quality: With so much data being generated, it can be difficult 
to ensure that all of the data is accurate and of high quality. Network 
operators may need to implement quality control measures to ensure 
that data is accurate and usable for analysis. 
 

• Security: Storing and processing large amounts of data also raises 
security concerns. Network operators need to ensure that the data is 
stored securely and that it is only accessible to authorized personnel. 

Overall, the size of the data generated by KPIs and counters can pose 
significant challenges for network operators. However, with the right 
storage, processing, and security solutions in place, network operators can 
effectively leverage this data to optimize network performance and deliver 
a high-quality user experience. 

In summary, while the data generated by KPIs and counters can be 
extremely valuable for optimizing network performance, there are several 
challenges that network operators may face when working with this data. 
By investing in the right tools, technologies, and training, however, network 
operators can overcome these challenges and effectively leverage this data 
to improve network performance and deliver a better user experience. 
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2.4 Network Topology 
 

Network topology refers to the way in which devices are connected in a 
network. There are several main characteristics and types of network 
topologies, including: 

• Physical topology: This refers to the physical layout of devices and 
cables in the network. The physical topology can affect network 
performance and reliability. Here are some key details about physical 
topology: 

a. Devices: Devices in a physical network topology can include 
computers, routers, switches, hubs, and other network 
equipment. 

b. Cables: Cables are used to connect devices in the network. The 
type of cable used can affect the speed and reliability of data 
transmission. 

c. Connectors: Connectors are used to attach cables to devices. 
The type of connector used can affect the reliability and 
performance of the connection. 

d. Network interface cards (NICs): NICs are used to connect 
devices to the network. The type of NIC used can affect the 
speed and reliability of data transmission. 

e. Network layout: The physical layout of devices and cables can 
affect network performance and reliability. For example, if 
devices are spread out over a large area, data transmission 
speeds may be slower, and signal interference may be more 
likely. 

f. Network topology diagram: A network topology diagram is a 
graphical representation of the physical layout of devices and 
cables in a network. This can be used to plan and troubleshoot 
network configurations. 

g. Maintenance: Maintenance of physical network topology 
involves ensuring that cables, connectors, and devices are in 
good working condition, and replacing any components that are 
damaged or malfunctioning. 

 
• Logical topology: This refers to the way in which data is transmitted 

between devices in the network. The logical topology is independent 
of the physical topology and can be modified by network protocols. 
Logical topology is concerned with the way that devices and networks 
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communicate with each other, rather than how they are physically 
connected. Here are some key details about logical topology: 

a. Communication protocols: Communication protocols determine 
how data is transmitted between devices on the network. For 
example, the Transmission Control Protocol (TCP) is a common 
protocol used for transmitting data between devices. 

b. Network addressing: Network addressing refers to the way that 
devices on the network are identified. IP addressing is a 
common method used to identify devices on a network. 

c. Routing: Routing refers to the process of directing data between 
devices on the network. Routers are typically used to direct data 
between networks. 

d. Switching: Switching refers to the process of directing data 
between devices on the same network. Switches are typically 
used to direct data between devices on a LAN. 

e. Network topology diagram: A logical network topology diagram 
is a graphical representation of the way that data flows between 
devices on the network. 

 
• Scale: The scale of a network topology refers to the size of the 

network, in terms of the number of devices and the geographic area 
it covers. Network topology can vary greatly in scale, from a small 
LAN (Local Area Network) with just a few devices to a large WAN 
(Wide Area Network) spanning multiple cities or even countries. The 
scale of a network topology can impact its design and implementation, 
as well as its performance and management. Some of the key 
considerations for network topology at scale include: 

a. Scalability: The ability to add more devices and users to the 
network without significant performance degradation or 
management difficulties. 

b. Redundancy: The ability to provide backup connections and 
hardware to ensure continuous network operation, even in the 
case of equipment failures or network outages. 

c. Security: The need to protect the network and its data from 
unauthorized access, and to ensure the integrity and 
confidentiality of the data being transmitted. 

d. Management: The need to monitor and manage the network 
efficiently and effectively, including tasks such as performance 
monitoring, configuration management, and troubleshooting. 
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e. Cost: The cost of implementing and maintaining the network 
topology can vary greatly depending on its scale, and can be a 
significant factor in decision-making. 

 
• Fault tolerance: Fault tolerance refers to the ability of a network 

topology to continue functioning even in the presence of device 
failures or network disruptions. In the context of network topology, 
fault tolerance is a key consideration, especially for large-scale 
networks that support critical applications or services. Here are some 
common strategies used to achieve fault tolerance in network 
topology: 

a. Redundancy: Redundancy involves having duplicate or backup 
components, such as routers, switches, and servers, that can 
take over in the event of a failure. This helps ensure that the 
network continues to operate even if a component fails. 

b. Load balancing: Load balancing involves distributing network 
traffic across multiple devices, which helps ensure that no single 
device becomes overloaded and prone to failure. 

c. Automatic failover: Automatic failover is the process of 
automatically switching to a backup component when a primary 
component fails. This can be achieved through technologies 
such as clustering and virtualization. 

d. Monitoring and alerts: Regular monitoring of network 
components can help detect potential issues before they 
become major problems. Automated alerts can be set up to 
notify network administrators of issues, allowing them to take 
action before a failure occurs. 

e. Disaster recovery planning: In the event of a major failure or 
outage, having a disaster recovery plan in place can help 
minimize downtime and ensure that critical services can be 
restored as quickly as possible. 

 
• Performance: Performance refers to the speed and efficiency of data 

transmission in the network, which can be affected by factors such as 
network congestion and bandwidth limitations. A well-designed 
network topology can help ensure optimal network performance and 
can provide a reliable and responsive communication platform for 
users and devices. Here are some key factors that can impact network 
performance: 

a. Bandwidth: Bandwidth is the amount of data that can be 
transmitted over a network in a given time period. A network 
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with higher bandwidth can typically transmit more data in a 
shorter amount of time, which can result in better performance. 

b. Latency: Latency is the amount of time it takes for a packet of 
data to travel from one point in the network to another. Lower 
latency can result in faster network performance and better 
user experience. 

c. Network congestion: Network congestion occurs when too many 
devices or users are competing for the available bandwidth, 
which can result in slower network performance. Effective 
network design and management can help minimize congestion 
and ensure optimal performance. 

d. Network topology: The topology of a network can impact its 
performance, as certain topologies may be better suited for 
specific types of applications or use cases. For example, a mesh 
topology may be better suited for high-availability applications 
that require redundant connections, while a star topology may 
be more appropriate for small LANs. 

e. Quality of Service (QoS): QoS refers to the ability of a network 
to prioritize certain types of traffic over others, which can help 
ensure that critical applications or services receive the 
necessary bandwidth and performance. Effective QoS 
management can help ensure optimal network performance for 
all users and devices. 

 

Some common types of network topologies include: 

• Bus topology (Figure I): In a bus topology, devices are connected to 
a single cable that acts as a backbone for the network. Data is 
transmitted to all devices on the network, and each device filters out 
data that is not intended for it. The bus network topology is a simple 
and widely used network topology. In a bus topology, all devices are 
connected to a single communication line, called a bus. The bus is 
typically a coaxial cable or twisted pair cable that serves as the main 
backbone for the network. In a bus topology, all devices on the 
network receive all data transmitted on the bus. Each device has a 
unique address, and when a device wants to send data, it broadcasts 
the data onto the bus. The other devices on the network then examine 
the address to determine whether the data is intended for them. If 
the data is not intended for a particular device, that device simply 
ignores it. The advantages of the bus topology include its simplicity 
and low cost. Because all devices are connected to a single 
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communication line, the topology is easy to set up and requires 
minimal cabling. However, there are also some disadvantages to the 
bus topology. One disadvantage is that the entire network can be 
affected if there is a break or fault in the bus. Because all devices rely 
on the bus for communication, a break in the bus can cause the entire 
network to fail. Another disadvantage is that the network can become 
congested if there are too many devices connected to the bus. This 
can lead to reduced performance and slower data transmission 
speeds. Overall, the bus topology is a simple and inexpensive network 
topology that can be effective for small networks with relatively few 
devices. However, it may not be the best choice for larger networks 
or those that require high levels of performance or fault tolerance. 

 

 

 

 
 
 

Figure I: Bus Topology Network 
 

• Star topology (Figure II): In a star topology, devices are connected 
to a central hub or switch. Data is transmitted through the hub, which 
manages data transmission to the appropriate devices. The star 
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network topology is another commonly used network topology. The 
hub or switch serves as a central point of connection for all devices 
and facilitates communication between them. In a star topology, each 
device has a dedicated connection to the hub or switch, which allows 
for individual communication between devices. When a device wants 
to send data, it sends the data to the hub or switch, which then 
forwards the data to the intended recipient. The advantages of the 
star topology include its simplicity, scalability, and fault tolerance. 
Because each device has a dedicated connection to the hub or switch, 
the topology is easy to set up and can be scaled easily by adding 
additional devices to the network. Additionally, if a single device or 
cable fails, the rest of the network remains unaffected, which makes 
the topology highly fault-tolerant. However, there are also some 
disadvantages to the star topology. One disadvantage is that the hub 
or switch can become a bottleneck for the network if it is not able to 
handle the amount of traffic being transmitted. Additionally, because 
each device has a dedicated connection to the hub or switch, the 
topology can require more cabling than other topologies, which can 
increase installation costs. Overall, the star topology is a versatile and 
reliable network topology that is well-suited for a wide range of 
applications. It is particularly useful for larger networks that require 
fault tolerance and scalability, and it is often used in enterprise and 
data center environments. 

Figure II: Star Topology Network 
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• Ring topology (Figure III): In a ring topology, devices are connected 
in a closed loop, with data transmitted in one direction around the 
loop. Each device acts as a repeater, amplifying and forwarding data 
to the next device. In a ring topology, each device is connected to 
two neighboring devices, forming a continuous ring of devices. In a 
ring topology, data is transmitted around the ring in a unidirectional 
manner, with each device receiving data from its upstream neighbor 
and forwarding data to its downstream neighbor. When a device 
wants to transmit data, it sends the data onto the ring, where it is 
transmitted from device to device until it reaches its intended 
recipient. One advantage of the ring topology is that it is a highly 
fault-tolerant topology. Because the devices are connected in a 
continuous loop, if one device or cable fails, the network can still 
function by rerouting data through the remaining devices on the ring. 
Additionally, because data is transmitted in a unidirectional manner, 
the topology can provide a high level of performance and reduce the 
risk of collisions and other communication errors. However, there are 
also some disadvantages to the ring topology. One disadvantage is 
that the topology can be difficult to scale, particularly for larger 
networks. Additionally, the topology can be vulnerable to 
performance degradation if there are too many devices on the 
network, as each device must forward data to its downstream 
neighbor to transmit data around the ring. Overall, the ring topology 
is a reliable and fault-tolerant network topology that is particularly 
useful for applications that require high levels of performance and 
fault tolerance. However, it may not be the best choice for larger or 
more complex networks. 



 41 

 

 
Figure III: Ring Topology Network 

 
• Mesh topology (Figure IV): In a mesh topology, each device is 

connected to multiple other devices, creating multiple paths for data 
transmission. This can provide high fault tolerance and network 
redundancy, but can be complex to manage. The mesh network 
topology is a type of network topology in which all devices are 
connected to every other device in the network.  In a mesh topology, 
data is transmitted between devices in a variety of different paths, 
depending on the specific routing algorithms used by the network. 
This provides a high degree of fault tolerance, as data can be rerouted 
around failed devices or connections. One advantage of the mesh 
topology is its high level of fault tolerance. Because every device is 
connected to multiple other devices, the topology can continue to 
function even if multiple devices or connections fail. Additionally, the 
topology can provide high levels of performance, particularly for 
applications that require a high degree of reliability or real-time 
communication. However, there are also some disadvantages to the 
mesh topology. One disadvantage is that the topology can be difficult 
to set up and manage, particularly for larger networks. Additionally, 
the topology can require many connections and devices, which can 
increase installation and maintenance costs. 
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Figure IV: Mesh Topology Network 
 

 

• Hybrid topology (Figure V): A hybrid topology is a combination of two 
or more topologies. For example, a network might combine a star 
topology with a bus topology, creating a hybrid star-bus topology. The 
goal of a hybrid topology is to combine the advantages of different 
topologies while minimizing their disadvantages. For example, a 
hybrid topology that combines the fault tolerance of a mesh topology 
with the simplicity of a star topology could provide a highly reliable 
and easy-to-manage network. One advantage of a hybrid topology is 
that it can provide a high degree of flexibility and customization. By 
combining different topologies, network designers can create 
networks that are optimized for their specific needs and requirements. 
Additionally, a hybrid topology can provide a high degree of fault 
tolerance, as multiple redundancy mechanisms can be implemented. 
However, there are also some disadvantages to a hybrid topology. 
One disadvantage is that the topology can be more complex to set up 
and manage, particularly for larger networks. Additionally, the 
topology can require a larger number of devices and connections, 
which can increase installation and maintenance costs. 
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Figure V: Hybrid Topology Network 

 

These are just a few examples of network topologies, and there are many 
other types that can be used depending on the specific needs of the 
network. The choice of topology depends on factors such as the number of 
devices, the geographic area of the network, and the required level of fault 
tolerance and performance. 

The choice of network topology depends on the specific needs and 
requirements of the network. There is no one "most used" topology that 
applies universally to all networks. 

That being said, some network topologies are more commonly used than 
others. For example, the star topology is a very popular choice for local area 
networks (LANs), as it provides a centralized point of control and is 
relatively easy to manage. The bus topology is also used in some LANs, as 
it is simple and inexpensive to set up, but it is less fault-tolerant than other 
topologies. 

In wide area networks (WANs), mesh topologies are often used to provide 
high levels of fault tolerance and redundancy. However, mesh topologies 
can be complex and expensive to set up and maintain. 

Ultimately, the choice of network topology depends on the specific needs of 
the network, and each topology has its own advantages and disadvantages. 
It is up to the network designer to choose the topology that best meets the 
requirements of the network. 
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All contribution of this thesis and methodologies are performed to be 
applicable on all above network topologies so we are not limited to any 
special cases.  
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Chapter 3: Anomaly Isolation 

Agents 

Abstract 
 
The Networks of connected devices are growing exponentially across the 
world and telecommunication operators are managing big, complex 
networks; thus, there is a need for intelligent and highly performing 
systems to support humans (network engineers) in network maintenance. 
Those devices, also called network elements or sensors, constantly report 
key performance indicators (KPIs) and utilize data on these combined with 
smart anomaly detection (AD) models to help prioritize production 
maintenance of the network. The main research gaps and challenges facing 
the most popular AD models, can be summarized as follows: a relatively 
long training time; unable to quantify the drivers of abnormal behavior 
when mining in a multidimensional space; unable to distinguish between 
anomalies and outliers that are not caused by system malfunctions; unable 
to prioritize detected anomalies by their severity level. To tackle these 
limitations, we propose a new geometrical multidimensional probabilistic 
model to search in the data space for abnormal behavior, generate anomaly 
scores and quantify anomaly drivers, which is a first and essential step to 
determining the root cause of detected anomalies. Furthermore, we propose 
a data-driven definition of an outlier score to be coupled with the anomaly 
score, to prioritize devices anomalies first and then tackle data observations 
that have a higher probability of being outliers. We also propose a sampling 
approach to speed up scoring newcomer observations, which gives our 
model the specificity of real-time intelligent systems. Our new model is 
tested on real-world data-set and compared with classical AD approaches. 
The results were reviewed by telecommunication network experts for 
validation, who concluded that our new approach works efficiently in 
detecting anomalies and identifying their drivers. 
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3.1 Introduction 
 

An anomaly is an observation or event in a time series that has a small 
probability of occurring under normal circumstances. Consequently, the 
occurrence of anomalies is generally accompanied by symptoms that may 
disturb the operation of an underlying system. Anomalies are usually rare 
and prominent; they are experienced in various domains such as network 
traffic [21], fraud detection [6], medical and public health [22], industrial 
damage [2], image processing [17], etc. The detection of anomalies is well-
developed in the literature, and several approaches and methods have been 
applied to detect such events. These works involve different areas of 
research such as machine learning [4], data mining [19], parametric/non-
parametric statistics [25, 24], information theory [16], spectral theory [20], 
etc. However, the majority of these approaches and tools face challenges 
and have research gaps of different natures that are difficult to overcome 
[8, 10]. Though not exhaustive, some of the faced challenges when using 
the most popular AD algorithms are listed as follows: 1) Some of the 
approaches are more adapted to supervised learning where one has 
historical labels about anomalies. Unfortunately, most of the AD problems 
are based on unsupervised data where no labels about anomalies are 
available. Thus, it remains up to the user to confirm the performance of a 
model with a subject matter expert. 2) Many approaches, such as 
variational auto-encoders [14, 5], make assumptions about the prior 
probability distributions of the different features or the corresponding latent 
space (in the case of dimension reduction), which are not always reasonable 
to consider. 3) Almost all approaches provide a global score about the 
abnormality of a given observation without giving more information about 
which of the underlying features contributes the most to that observation 
being abnormal [7]. 4) Nearly all AD algorithms lack the ability to 
distinguish between real anomalies and outliers that are not caused by 
system malfunction [9], which may lead to critical false positive alarms.  
 
A large number of studies have proposed models that help to overcome the 
first two challenges. The most popular unsupervised approaches are listed 
as follows: isolation forest [15, 23], deep auto-encoder [1, 11], and the 
density-based spatial clustering of applications with noise (DBSCAN) [13]. 
However, to the best of our knowledge, no anomaly detection algorithm can 
explicitly measure the contribution of each feature, observation by 
observation, or discriminate between real-abnormal behavior and outliers 
that are not caused by system malfunctions. Thus, these two challenges are 
considered the main research gaps in existing AD algorithms. Notably, 
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overcoming these gaps is the main motivation point of this chapter. The 
first contribution of this work is that we propose a new, unsupervised, and 
distribution-free anomaly detection algorithm that can be adapted to 
measure the contribution of each feature to the global anomaly score at the 
observation level. A second contribution is the ability of the proposed 
algorithm to discriminate between real anomalies and outliers, which is also 
a point that remains an open question in the AD field. For the first time, we 
present an algorithm that simultaneously overcomes the four challenges 
while showing significant computational advantages. In addition to the 
points, the proposed algorithm can prioritize detected anomalies and avoid 
considering all of them in the same basket, which is the case for classical 
AD models. Notably, the algorithm is built based on basic mathematical 
tools and objects that are easy to understand and manipulate without being 
obliged to create “black boxes” with a high level of complexity. 
 
On the other hand, the AD problem that we are attempting to solve can be 
seen in the context of machine learning (ML) recognition problems [3]. The 
proposed algorithm can be assigned to such a class of models based on the 
following criteria: 1) The algorithm has the aim of recognizing future 
abnormal behavior based on a learning process from historical behavior in 
the dataset; 2) The proposed model transforms the AD process from manual 
work to an entirely automated procedure ready to be used in an online 
learning mode; 3) The computational complexity of the underlying learning 
process proposed by the algorithm was optimized through a sampling 
approach in order to have the capacity of implementing such a model on 
machines of reasonable computational power. Hence, based on all of the 
previous standards, this chapter aimed to develop an ML recognition model 
for anomaly detection. 
  
In short, within the context of this work, an anomaly is an abnormal 
behavior in the data generated by a system when performing certain 
operations. Domain experts can add to data scientists’ dimensions: “
impact” and “significance” of an anomaly. The “impact” refers to how 
badly an abnormal behavior is affecting the underlying operations of a 
system. The “significance” refers to the level of impact of an anomaly on 
the underlying system, which can be measured by time (the longer, the 
worse), the impacted users or customers of a system, or the loss of 
opportunity for having the system streaming. One of the most important 
drawbacks we have observed in the existing unsupervised AD models is 
related to not considering domain experts’ interests by investigating the 
impact and significance. For example, nearly all of the AD models treat data 
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outliers as abnormal behavior. However, such anomaly types are likely 
insignificant and have a low impact. 
  
The main field of application of our method is detecting the abnormal 
behavior of different elements of a telecommunication network. Key 
performance indicators (KPIs) are generated by all of the elements of the 
network, and the number of such features describing the performance of 
the different services provided is massive, which makes the manual analysis 
of these observations extremely difficult or even impossible. In addition, 
detecting anomalies on the fly and without significant delays requires 
advanced correlation analysis and deep data mining on the generated data 
to identify hidden patterns and relationships. 
 
The chapter is organized as follows: Section 3.2 introduces the 
mathematical formalization of the algorithm in a simple one-dimensional 
case. In Section 3.3, the hyper-cubic approach for high dimensions is 
introduced. Some applications on real-world data and comparisons with 
classical anomaly detection models are shown in Section 3.4. Finally, we 
conclude the chapter. 
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3.2 One-dimensional abnormality score 
 

Let ℐ be a finite set of indexes. In this work, (Ω, ℱ, ℙ) is a probability space 
and for any 𝑖 ∈ ℐ, 𝑋! is a ℝ-valued random variable defined on Ω with a 
cumulative distribution function (CDF) 𝐹!(∙), and a probability density 
function 𝑓!(∙), with respect to the Lebesgue measure in ℝ. 
 
These random variables 𝑋!, 𝑖 ∈ ℐ have distinct distributions as they 
correspond to different KPIs. Without loss of generality, we start our 
formalization of an abnormality score by considering a simple case of one 
KPI represented by a real random variable 𝑋 with a CDF 𝐹(∙) and a pdf 𝑓(∙). 
A realization 𝑥 of 𝑋 is said to be abnormal with an abnormality score 𝜃 > 0 
if for a very small, predefined value 𝜀 > 0: 

ℙ[|𝑋 − 𝑥| < 𝜃] < 𝜀. 
 
A first challenge raise by the latter definition of an abnormality score is the 
difficulty of setting the value of 𝜃 and controlling it according to the behavior 
and the underlying distribution. To get past this problem, we propose the 
following method: 
for 𝜀 > 0 (very small) and ∀𝑛 ∈ ℕ∗, let: 

𝐴# = ?𝑥 ∈ Ω|ℙ @|𝑋 − 𝑥| <
1
𝑛B < 𝜀C. 

By construction, the sequence of sets (𝐴#)# is increasing and converging to 
a set covering all Ω, i.e., 

𝐴$ ⊆ 𝐴% ⊆ ⋯ ⊆ 𝐴# ⊆ ⋯, 
and, 

lim
#⟶'(

𝐴# = Ω. 
Note that the selection of the upper bound in the definition of the set 𝐴# is 
not restricted to $

#
. This upper bound can be substituted by any non-negative 

and decreasing function of 𝑛 to verify the increasing nested property for the 
sequence (𝐴#)#. 
 
Then, ∀𝑥	 ∈ 	𝛺, ∃𝑛(𝑥) 	∈ 	ℕ∗ such that 𝑥 ∈ 𝐴#(*)	𝑎𝑛𝑑	𝑥	 ∉ 	𝐴#(*),$. Therefore, 𝜃(𝑥) =
$

#(*)
	represents a measure of abnormality (abnormality score) for 𝑥. In other 

words, if 𝑥$ and 𝑥% are two realizations of the rv 𝑋, and 𝜃(𝑥$) > 𝜃(𝑥%), then 
one can say that 𝑥$ has a higher score with which to be considered as an 
abnormal observation. In other words, the pdf of the rv around this 𝑥	 shows 
much less density and the area under the pdf bounded by 𝑥 − 𝜃 and 𝑥 + 𝜃 is 
very small.	
 
So, for a very small given value of 𝜀, the rv 𝜃(𝑋) can be considered as a 
measure of abnormality for the realization of the underlying rv 𝑋. In 
addition, among all the possible forms of 𝜃(∙), we must determine the one 
that is best overall at highlighting the abnormal behavior. In other words, 
the aim is to find the function 𝜃∗(∙) verifying: 
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𝜃∗ = argmax
.∈ℱ!

𝐸[𝜃(𝑋)], 

where  ℱ. is the family of functions used as an upper bound in the definition 
of 𝐴# to verify the increasing nested property for the sequence (𝐴#)#. 
 
Notably, to implement the above algorithm, a predefined small value of 𝜀 is 
fixed and the step function is considered to be 𝜃 = $

#
 with 𝑛 = 1,… ,𝑁, where 

𝑁 is the total number of observations in the dataset. Then, the probability 
defined within the set 𝐴# is empirically computed by counting the number 
of observations among 𝑁 that fall within the corresponding interval. If, for 
an observation	𝑥, the condition 𝑥 ∈ 𝐴#(*)	𝑎𝑛𝑑	𝑥	 ∉ 	𝐴#(*),$ is not verified for all 
of the considered values of 𝑛, then we consider that the observation is in a 
dense area and cannot be considered abnormal. 
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3.3 Multi-dimensional abnormality hyper-cubic (AHCA): 
 
3.3.1 Abnormality score 
 
Now, in the same context, we suppose that we are dealing with 𝑚 = 𝐶𝑎𝑟𝑑(ℐ) 
KPIs modeled by 𝑚 real valued rv 𝑋! , 𝑖 = 1,… ,𝑚. In a similar way, a 
realization 𝑥 = (𝑥$, 𝑥%, … , 𝑥1) of 𝑋 = (𝑋$, 𝑋%, … , 𝑋1) is said to be abnormal with 
an abnormality score vector 𝜃 = (𝜃$, 𝜃%, … , 𝜃1), with 𝜃! > 0	∀𝑖 ∈ {1, 2, . . . , 𝑚}, if 
for a very small, predefined, value 𝜀 > 0:  

ℙ[|𝑋$ − 𝑥$| < 𝜃$, |𝑋% − 𝑥%| < 𝜃%, … , |𝑋1 − 𝑥1| < 𝜃1] < 𝜀.					(1) 
 
Accordingly, for 𝜀 > 0 (very small) and ∀𝑛 = (𝑛$, 𝑛%, … , 𝑛1) 	∈ ℕ1∗, let: 

𝐴# = ?𝑥 ∈ Ω1|ℙ @|𝑋$ − 𝑥$| <
1
𝑛$
, |𝑋% − 𝑥%| <

1
𝑛%
, … , |𝑋1 − 𝑥1| <

1
𝑛1
B < 𝜀C. 

 
Note that sequence 𝐴# has the same properties as in the univariate case by 
considering 𝑛 + 1 = (𝑛$ + 1, 𝑛% + 1,… , 𝑛1 + 1). In addition, ∀ 𝑥 = (𝑥$, 𝑥%, … , 𝑥1) ∈ 
Ω1, ∃𝑛(𝑥) = ]𝑛$(𝑥), 𝑛%(𝑥), … , 𝑛1(𝑥)^ ∈ ℕ1∗ such that 𝑥 ∈ 𝐴#(*)	𝑎𝑛𝑑	𝑥	 ∉ 	𝐴#(*),$. 
So, in this case, the volume of the hyper-cube of 𝑚 edges of length 
2 × 𝜃$(𝑥) =

%
#"(*)

, 2 × 𝜃%(𝑥) =
%

##(*)
, … ,2 × 𝜃1(𝑥) =

%
#$(*)

, respectively, given by 
𝜃	(𝑥) = 21∏ 𝜃!(𝑥)1

!2$ , represents an abnormality score for 𝑥. 
 
The practical implementation of the AHCA scoring system is the same as 
the one described at the end of Section 3.3, with an adaptation to the multi-
dimensional context. 
 
3.3.2 Individual abnormality contribution 

 
To measure the contribution of each of the variables in a multi-dimensional 
context, one should be able to assess the individual effect of an rv 𝑋! , 𝑖 =
1,… ,𝑚 in making a realization 𝑥 = (𝑥$, 𝑥%, … , 𝑥1) more or less abnormal. In 
addition, while assessing the individual effect of each 𝑋!, one should 
consider the interaction with the other underlying variables, given that the 
assumption of a mutually independent rv is not always reasonable. 
 
To achieve such a target, let us recall that ∀ 𝑥 = (𝑥$, 𝑥%, … , 𝑥1) ∈ Ω1, one can 
compute an abnormality score 𝜃	(𝑥) = 21∏ 𝜃!(𝑥)1

!2$  based on the method 
described in Subsection 3.3.1. Then, by considering each of the 𝜃!(𝑥), 𝑖 =
1,… ,𝑚, one may compute the contribution of each variable 𝑋! by calculating 
the following quantity: 

𝐼𝑚𝑝!(𝑥) = 1 − ℙ[|𝑋! − 𝑥!| < 𝜃!(𝑥)].					(2) 
 
A variable 𝑋! less impacts the abnormality score of an observation 𝑥 when 
the component 𝑥! of 𝑥	 is in a dense area of the probability density function 
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of the rv 𝑋!, e.g., the probability ℙ[|𝑋! − 𝑥!| < 𝜃!(𝑥)] is high, and consequently, 
𝐼𝑚𝑝!(𝑥) is low and closer to zero. Then, by sorting the elements of the vector 
𝐼𝑚𝑝	(𝑥) = ]𝐼𝑚𝑝!(𝑥)^!2$,…,1 in a decreasing order, one will be highlighting the 
impact of each variable from the highest to the lowest on the abnormal 
behavior of 𝑥. 
 
Now, in the next subsection, we will suggest a method based on Shannon’s 
Entropy [18] and use the probability distribution of 𝐼𝑚𝑝	(𝑥) to help the user 
decide if an observation 𝑥, with a high anomaly score, is really an anomaly 
or can be considered as an outlier. Such a differentiation method, to the 
best of the authors’ knowledge, has not been presented in the literature 
before. 
 
From an implementation perspective, one should start by computing the 
abnormality score as described in Subsection 3.3.1. Next, each component 
𝜃!(𝑥) is used to compute in an empirical manner (as described in the one-
dimensional case in Section 3.2) ℙ[|𝑋! − 𝑥!| < 𝜃!(𝑥)], leading to 𝐼𝑚𝑝!(𝑥). 
 
3.3.3 Abnormality vs. Outliers 

 
Assuming that a given observation 𝑥 = (𝑥$, 𝑥%, … , 𝑥1) ∈ Ω1 has a high 
abnormality score 𝜃	(𝑥) and is likely to be an anomaly with a vector of 
feature importance 𝐼𝑚𝑝	(𝑥) = ]𝐼𝑚𝑝!(𝑥)^!2$,…,1. To decide if 𝑥 represents more 
an outlier than a behavioral abnormality, one needs to extract information 
about how much the distribution of importance is close to a uniform 
distribution. When it is reasonable to say that the abnormality contribution 
of the underlying variables is uniformly distributed, one can assume that 
such an observation is more likely to be an anomaly. Otherwise, when some 
variables contribute significantly more to the abnormal behavior, one can 
say that it is more an outlier observation than an anomaly. In summary, we 
are proposing a new way to measure the likelihood of having an outlier 
versus an anomaly under the following assumption: if only one rv is showing 
abnormal behavior, then there is a high probability of an outlier. On the 
other hand, if all variables are showing abnormal behavior, this is a sign 
that the probability of having an outlier is low. To do this, we start by 
transforming the vector of importance into a probability distribution by 
applying the following transformation: 

𝐼𝑚𝑝(𝑥)∗ = c
𝐼𝑚𝑝!(𝑥)

∑ 𝐼𝑚𝑝5(𝑥)1
52$

e
!2$,…,1

. 

 
Next, we compute Shannon’s entropy of the discrete probability 
distribution defined by 𝐼𝑚𝑝(𝑥)∗: 

ℋ(𝐼𝑚𝑝(𝑥)∗) = −g
𝐼𝑚𝑝!(𝑥)

∑ 𝐼𝑚𝑝5(𝑥)1
52$

𝑙𝑜𝑔%
𝐼𝑚𝑝!(𝑥)

∑ 𝐼𝑚𝑝5(𝑥)1
52$

1

!2$

. 
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Now, one can use ℋ(𝐼𝑚𝑝(𝑥)∗) as a goodness of fit score for a uniform 
distribution. In other words, when ℋ(𝐼𝑚𝑝(𝑥)∗) is closer to 𝑙𝑜𝑔%𝑚 than to zero, 
we can say that 𝑥 is more likely to be an anomaly than an outlier, as in this 
case, the contribution is more uniformly distributed across all the underlying 
KPIs instead of being concentrated and dominated by a few KPIs. Note that 
in our context, an outlier is an observation that is abnormal for a reason 
other than a malfunction of an element (e.g., a cell) in a network. To provide 
an example, a bad experimental measurement can be the cause of an 
outlier. Based on this new ranking of observations, users of this algorithm 
output can now classify occurrences of these random variables in a 2D space 
using the score of abnormality and the score of being an outlier. Then, 
domain experts can start investigating cases that are most likely anomalies 
and less likely outliers; the latter should be treated by other teams such as 
data quality teams. 
 
Then, in summary, from technical and methodological perspectives, the 
novel elements of AHCA with respect to state-of-the art AD algorithms are 
presented as follows: 1) Through the combination of the sequence of sets 
𝐴# and the corresponding empirical probability, AHCA is the first AD 
algorithm to consider a probabilistic approach applied to a particular 
geometric topology to compute an anomaly score for each data point. 2) 
AHCA has the ability to show the importance of each underlying variable in 
the global abnormality score of an observation through the computation of 
the function 𝐼𝑚𝑝	(𝑥), which presents the importance of the variables while 
preserving the correlations between them. 3) Finally, by applying Shannon’s 
entropy on the vector 𝐼𝑚𝑝(𝑥)∗ showing the importance probability 
distribution, AHCA has the novelty of discriminating between real-anomalies 
and outliers. 
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3.4 Application 
 
3.4.1 Data description 
 
Without loss of generality and as an application of our approach, we 
consider the data representing the observations of two particular KPIs 
describing the performance of one cell on a given network. These KPIs were 
selected by SMEs as the most informative drivers of abnormal behavior in 
a telecommunication network. Data were collected from a virtual 
telecommunication network during a period of time covering multiple traffic 
scenarios and congestion. Key performance indicators (KPIs) measure 
several performance aspects of cells like call success rates, handover 
success rates and other confidential KPIs. Data are aggregated by n minutes 
by cell and we assume that every time interval represents an occurrence of 
considered random variables. In this context, abnormal behaviors are 
described and characterized as follows: Anomalies are important events for 
network operation center (NOC) teams within operators since they indicate 
critical network failures in hardware or software that can lead to impacts on 
business, lost opportunities for service usage, and customer churn. 
 
Anomalies in part of a network might be small operation issues or major 
failures, and their consequences can be very costly for network operators 
since the impact of these anomalies can result in the total disruption of the 
network. As such, customers will be heavily impacted and may look at 
changing their network operators. Therefore, NOC teams must heavily 
prioritize seeking and rapidly detecting (proactively if possible) any 
anomalies and fixing them as soon as possible. In the next section the 
results of AHCA will be compared to two of the most popular anomaly 
detection models: Isolation Forest and Auto-Encoder. 
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3.4.2 Results and analysis 
 

 3.4.2.1 Comparative analysis with classical AD models 
 
This section aims to compare the anomaly scores generated by AHCA, after 
being implemented in Python, with other popular anomaly detection 
algorithms, and interpret and analyze the results with the help of 
telecommunication subject matter experts (SMEs). Note that the values of 
the KPIs were scaled in a way to get values between 0 and 1 before applying 
the algorithms. Scaling the features is important in our context as we are 
comparing measurements that have different units and are measured at 
different scales. Then, KPIs do not contribute equally to the analysis, 
whereas without scaling, they might end up creating a bias. 
 
First, the isolation forest anomaly detection model is applied. Figure I shows 
this in red. Notably, for Figures 1-5 𝑥 − axis and 𝑦 – axis designate the 
scaled values of the first and second considered KPIs, respectively. 
 

 

    
(a)100 most non-anomalous 

observations 
(b) 100 most anomalous 

observations 
 
Figure I: Anomaly scores based on Isolation Forest algorithm 
 
It’s clear that the non-anomalous observations are concentrated in the 
center of the region representing the interaction between the considered 
KPIs. Anomalous observations are located on the edge of the plot, except 
for the upper part of the plot. 
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Second, the auto-encoder (AE) anomaly detection model is applied. The 
results are represented in Figure II. 
 

 
(a)100 most non-anomalous 

observations 
(b) 100 most anomalous 

observations 
 
Figure II: Anomaly scores based on AE algorithm 
 
In our context, the results of the AE are not stable as the performance and 
the robustness of the algorithm depend on controlling a long list of 
hyperparameters with a risk of over-fitting. In addition to that, it is well 
known that deep machine-learning algorithms come with a high cost in 
terms of computational time. Then, this anomaly detection approach is not 
really adapted to our context where a fast and stable algorithm, performing 
in an online manner, is needed. In summary, AE was directly rejected by 
the SMEs. 
 
Finally, the results of AHCA, with a fixed 𝜀	 = 	0.001, are represented in Figure 
III, where one can see that the anomalies/outliers cover all the border of 
the scatter plot (191 observations out of 1649) without keeping any of the 
borderline points beyond suspicion, which was the case in the two previous 
models. 
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Figure III: Anomalous observations based on AHCA algorithm 
 
Then, a question arises here, among all these observations considered as 
anomalies, which are real anomalies and which are more outliers? 
 
To answer this question, one may require the help of SMEs to carry out a 
“manual analysis” of these observations and classify them. Another 
solution, completely automated and less time consuming, is to apply the 
approach described in Subsection 3.3.3. Then, the two-level discrimination 
of our dataset in normal/abnormal behavior and anomaly/outlier 
classification generates four possible scenarios that will be presented in the 
next subsection. 
 
 
3.4.2.2 Beyond AD: Innovative AHCA results 
 
In this subsection, the aim is to go beyond anomaly detection and show the 
ability of the proposed algorithm to provide results for both anomaly vs 
outlier discrimination and variable importance analysis. 
 
As a starting point, Figure IV shows four cases that should be considered 
by the expert: 1) High priority cases, showing the observations with high 
abnormality scores (above the empirical average) and a low probability of 
being outliers (below the empirical average), Figure IVa; 2) Medium-I 
priority cases, i.e., observations with high abnormality scores and a high 
probability of being outliers, Figure IVb; 3) Medium-II priority cases, i.e., 
observations with low abnormality scores and a low probability of being 
outliers, Figure IVc; and 4) Low priority cases, i.e., observations with low 
abnormality scores and a high probability of being outliers, Figure IVd. One 
can remark that the number of high priority cases among the observations 
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that are originally considered as anomalies is small, which is very 
reasonable in practice and a result commonly encountered by SMEs. 
 
 
 

 
 (a)  Anomalies with High Priority          (b) Anomalies with Medium-I Priority 

 
(a)  Anomalies with Medium-II Priority    (b) Anomalies with Low Priority             

 
Figure IV: Anomalies vs. outliers in different scenarios 
 
 
 
On the other hand, among the observations that were selected as high 
priority, we select some points to highlight the contribution of each of the 
underlying KPIs. The first observation in red in Figure Va shows that the 
anomaly is more due to the first KPI (on 𝑥-axis) then the second one (on 𝑦-
axis). The projection of the data points on each axis and the analysis of the 
probability density of each KPI around the selected point, based on the 
method described in Subsection 3.3.2, show that the contribution of the 
first KPI has a proportion of 65.4% and 34.6% for the second one. A second 
example is shown if Figure Vb; by applying the same analysis as for the first 
point we get a contribution of 52.6% for the first KPI and 47.4% for the 
second. So, in the second case, both KPIs almost equally contribute to the 
detected abnormality. 
 
Based on all these previous analyses, it is important to mention that AHCA 
can be seen also as a clustering algorithm that can be used not just for 
online AD but to classify a dataset into five different clusters, four for 
abnormal behaviors with different priority levels and a fifth one for normal 
observations. 
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(a) Anomaly with unequal 
underlying contributions 

(b) Anomaly with equal underlying 
contributions 

 
Figure V: Importance and contribution analysis of particular anomalies 
 
 
Based on all of these comparisons and analyses, Table I presents the 
capacity of the different algorithms to overcome the list of challenges listed 
in the Introduction. These challenges will be labeled in Table I as follows: 
“Challenge 1” for the model is adapted to unsupervised learning; “Challenge 
2” for the algorithm is distribution-free; “Challenge 3” for the model 
provides information about feature importance at the observation level; 
“Challenge 4” for the model has the ability to distinguish between real 
anomalies and outliers. AHCA overcomes all of the classical challenges of 
AD models, with the additional power of classifying the detected anomalies 
into four priorities instead of placing all anomalies into one basket, which is 
the case for classical AD models. 
 
 

Models Challenge 
1 

Challenge 
2 

Challenge 
3 

Challenge 
4 

Random Forest X X   
Auto-Encoder X X   

AHCA X X X X 
 
Table I: Comparison of different algorithms on the capacity to overcome 
challenges  
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3.4.3 Sampling method 
 
Notably, AHCA was designed in a way (see Section 3.3 for more details) to 
come complete with a computational complexity of order less than 
𝑂(𝑁% ×𝑚) where 𝑁 is the total number of observations already existing in 
the considered dataset and 𝑚 is the number of underlying variables i.e., 
dimension of the space. In fact, to compute the abnormality score of any 
new upcoming observation, one is not obliged to go through all the possible 
values of 𝜃 that are 𝑁. One stops at the largest value of 𝜃 verifying Equation 
(1). 
 
To reduce the computational complexity of the algorithm, especially in case 
of a high-dimensional dataset, we propose a sampling method adapted to 
the context of anomaly detection. Among all the observations 𝑥 =
(𝑥$, 𝑥%, … , 𝑥1), where 𝑚 is the number of variables, we start by selecting those 
verifying the following property: 

∃𝑗 ∈ {1, … ,𝑚}	such	that	𝑥5 ≤ 𝜇6% − 1.5𝜎6% 	or	𝑥5 ≥ 𝜇6% + 1.5𝜎6% , 
with 𝜇6% and 𝜎6% respectively representing the empirical mean and standard 
deviation of the variable 𝑋5. We denote the set of selected observations by 
𝑆 and 𝑐𝑎𝑟𝑑(𝑆) = 𝑁$ ≪ 𝑁. In a second step, and from the remaining 
observations, we select 𝑘𝑁$ observations from the kernel region of the data, 
i.e., verifying: 

∀𝑗 ∈ {1, … ,𝑚}	such	that	𝜇6% − 1.5𝜎6% ≤ 𝑥5 	≤ 𝜇6% + 1.5𝜎6% . 
 
This second set of observations is denoted by 𝑆7 and 𝑐𝑎𝑟𝑑(𝑆7) = 𝑘𝑁$. Then, 
the final sample that should be considered to apply the algorithm is 𝑆 ∪ 𝑆7 
with 𝑐𝑎𝑟𝑑(𝑆 ∪ 𝑆7) = (1 + 𝑘)𝑁$. Note that to fix the parameter 𝑘 one can work 
on minimizing the probability of having anomalies, detected by AHCA, 
among the observations of the sample 𝑆7. 
 
Hence, at the arrival of a new observation, and to compute the abnormality 
score of this new arrival, instead of applying the AHCA on all the observed 
instances, one can focus only on the ones belonging to 𝑆 ∪ 𝑆7. Thus, by 
applying this sampling method, the computational complexity of AHCA is 
significantly reduced to reach an order of less than 𝑂 ~](`1 + 𝑘)𝑁$^

% ×𝑚�. The 
application of this sampling permit to explore the AHCA has the advantages 
of working in a much faster way while preserving the important information 
in the dataset, which is linking anomaly detection to the extreme value 
theory. 
 
As an application of this sampling technique, we performed an anomaly 
detection analysis based on three selected KPIs and the results are given in 
the appendix of this chapter. Notably, based on all the previous application 
subsections, one can confirm that AHCA verifies all the criteria listed in the 
Introduction to be considered an ML recognition model for AD. In fact, AHCA 
is fully automated with an online learning mode that can classify 
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observations into four different classes of abnormal behavior and optimized 
on computational complexity level. In addition, this clustering capacity of 
AHCA is complete with the ability to identify the importance of the different 
underlying variables contributing to the final clustering representation. 
 
3.4.4 Advantages of the proposed algorithm 
 
Compared to classical anomaly detection models, the AHCA algorithm has 
several advantages: 
 

• No need to train a model on part of the data and test it on the 
remaining part. Instead, it is already an online learning process where 
each new arrival is tested for abnormal behavior without a risk of 
over-fitting and in the minimal time.  
 

• AHCA gives the user the capability of measuring the contribution of 
each variable of the decision space toward making a given 
observation more or less abnormal. This is, to the best of the authors’ 
knowledge, the first time that an algorithm has been able to prove 
the abnormality contribution of each variable on an observation level 
and not the overall feature importance, as for example, in the random 
forest approach. Quantifying these contributions can be seen as a 
starting point for a root cause analysis of an identified anomaly.  
 

• AHCA is distribution-free in the sense that we do not have to make 
prior assumptions about the underlying probability distribution of the 
different variables. All the probabilities can be computed in an 
empirical data driven way.  
 

• There are no assumptions about the interaction and the relationship 
between the variables of our decision space. So, the algorithm may 
fit any linear or non-linear decision space structure.  
 

• AHCA has only one hyper-parameter to control, which is 𝜀. Therefore, 
there is no need for complex hyper-parameter optimization 
techniques, meaning we are dealing with an algorithm with a low level 
of complexity.  
 

• Unique among anomaly detection algorithms, AHCA helps the user 
discriminate between an abnormal behavior in a decision space and a 
probable outlier. 
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3.5 Conclusion 
 
In this work, an anomaly detection algorithm, based on an approach 
coupling probabilistic and geometric principles, has been presented and 
shown to be more advantageous than other classical approaches on several 
levels. Without being exhaustive, the abnormality hyper-cubic approach is 
distribution-free and hyper-parameter-free; optimized in terms of time 
consumption; deals with data structures of high complexity (e.g., linear and 
non-linear correlations); well adapted to avoid the over-fitting 
phenomenon; has the ability to assess the abnormality contribution of each 
variable toward each observation and discriminate between abnormal 
behavior and outliers.  
 
Moreover, we applied the algorithm to real data in the field of 
telecommunication and the results were compared to other classical 
anomaly detection approaches. As the approach is unsupervised, the results 
were validated by experts who confirmed that AHCA outperforms other 
approaches. 
 
The authors intend to use the results of AHCA and try to develop a tool to 
help users with root cause analysis and even propose a solution to fix the 
anomaly. A second perspective is to study the exact probabilistic behavior 
of anomalies, based on extreme value theory–in particular, records theory–
by drawing inspiration from the work of Hoayek and Ducharme [12]. A third 
perspective would involve investigating the option of graph representation 
and classification for AD as a potential generalization of AHCA so that it 
could achieve the following: 1) Consider data of different typologies (e.g., 
categorical or textual) that can be represented in a graphical format; 2) Use 
AHCA to classify a whole time series as abnormal or not, which is an 
important scientific gap in the field of existing AD models that may also help 
in the detection of abnormal elements (e.g., cells or stations) in the network 
instead of only detecting an abnormal observation defined at a small-time 
interval.  
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Appendix: 
 
We also applied AHCA to the same dataset by considering three KPIs 
proposed by the SMEs, and we classified our detected anomalies–shown in 
red (with an 𝜀	 = 	0.01) in Figure VI–into four priority classes. The details of 
the different scenarios are shown in Figure VII. Notably, for Figures VI and 
VII, the 𝑥 − axis, 𝑦 − axis, and 𝑧 − axis designate the scaled values of the 
first, second, and third considered KPIs, respectively. 
 

 
Figure VI: Anomalous observations based on AHCA algorithm 
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(a) Anomalies with High Priority (b) Anomalies with Medium-I 

Priority 
 

  

 
(a) Anomalies with Medium-II 

Priority 
(b) Anomalies with Low Priority 

 
 

Figure VII: Anomalies vs. outliers in different scenarios 
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Chapter 4: Combining Numeric 

KPI and Categorical Alarm Data  

 

In the previous chapter, we have delved into the development of a novel 
algorithm for detecting anomalies based on numeric Key Performance 
Indicator (KPI) data, providing valuable insights into network performance 
and health. While this approach effectively utilizes numeric data, it does not 
consider the categorical data found in alarms, which also play a vital role in 
understanding network anomalies. In the following chapter, we will explore 
an anomaly detection approach that leverages alarm data. However, before 
we proceed, it is essential to establish a link between the two topics and 
explore the benefits of combining both numeric and categorical data for a 
more comprehensive analysis of telecommunication networks. 
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The Complementary Nature of Numeric KPIs and Categorical 
Alarms 
 

Although numeric KPIs and categorical alarms represent different types of 
data, they can be seen as complementary in the context of network anomaly 
detection. Numeric KPIs provide quantitative information on network 
performance and help operators assess service quality and efficiency. 
Meanwhile, categorical alarms offer qualitative insights into the network's 
current state, highlighting potential issues or failures that could disrupt 
network operations. 

Integrating these two data types allows operators to obtain a holistic view 
of network health, which can lead to improved decision-making and more 
effective anomaly detection. For instance, an unexpected spike in dropped 
call rate (a numeric KPI) might be better understood when correlated with 
a recent alarm indicating a faulty base station. By examining both data 
types simultaneously, network operators can identify the root cause of an 
issue more quickly and efficiently. 

Challenges in Combining Numeric KPIs and Categorical Alarms 
 

The integration of numeric KPIs and categorical alarms for anomaly 
detection comes with its own set of challenges. These challenges primarily 
stem from the inherent differences between the two data types and include: 

A. Data Preprocessing: Numeric KPIs and categorical alarms require 
different preprocessing techniques. While KPI data often needs 
normalization or scaling, alarm data needs to be encoded to be 
effectively used in machine learning algorithms. 

B. Feature Selection and Engineering: Combining both data types require 
careful consideration of relevant features to be used for anomaly 
detection. This involves selecting the most relevant KPIs and alarm 
attributes, as well as potentially creating new features that capture the 
relationships between the two types of data. 

C. Model Selection and Evaluation: Different machine learning algorithms 
have varying levels of effectiveness when working with mixed numeric 
and categorical data. Identifying the appropriate algorithms and 
evaluation metrics is crucial for ensuring the success of the combined 
approach. 
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Conclusion 
By linking numeric KPI-based anomaly detection with categorical alarm-
based detection, network operators can gain a more comprehensive 
understanding of their networks, leading to improved decision-making and 
more effective anomaly detection. In the following chapter, we will explore 
the development and evaluation of an anomaly detection approach focused 
on leveraging alarm data.  
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Chapter 5: Anomaly Detection 

Based on Alarms/Events Data 

 

Abstract 
 
Alarms data is a very important source of information for network operation 
center (NOC) teams to aggregate and display alarming events occurring 
within a network element. However, on a large network, a long list of alarms 
is generated almost continuously. Intelligent analytical reporting of these 
alarms is needed to help the NOC team to eliminate noise and focus on 
primary events. Hence, there is a need for an anomaly detection model to 
learn from and use historical alarms data to achieve this. It is also important 
to indicate the root cause of anomalies so that immediate corrective action 
can be taken.  In this chapter, we introduce a new algorithm to derive four 
features based on historical data and aggregate them to generate a final 
score that is optimized through supervised labels for greater accuracy. 
These four features reflect the likelihood of occurrence of events, the 
sequence of events and the importance of relatively new events not seen in 
the historical data. Certain assumptions are tested on the data using the 
relevant statistical tests. After validating these assumptions, we measure 
the accuracy on labelled data, revealing that the proposed algorithm 
performs with a high anomaly detection accuracy. 
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5.1 Introduction 
 
Anomaly detection is an aspect of data mining that has been the subject of 
research in many fields, such as telecommunications, information 
technology and finance.  
 
There are several definitions of anomaly in the literature. Hawkins [1] 
defines an anomaly/outlier as an observation, which deviates considerably 
from the remaining observations, as if generated by a different process. 
Dunning and Friedman [2] state that anomaly detection involves modelling 
what is normal in order to discover what is not. In general, anomalies are 
events with a special behaviour that is dissimilar to that of normal events, 
and it is expected that this behaviour would be detected by analysing 
underlying data. Therefore, there is an urgent need for intelligent 
algorithms to identify such abnormal behaviour.  
 
Anomaly detection improves data quality by deleting or replacing abnormal 
data. However, in certain cases, anomalies reflect an extreme event and 
can provide useful new knowledge. For example, the detection of such 
anomalies can prevent material damage and encourage predictive 
maintenance in the industrial field. It also has applications in several other 
areas such as health [3], cybersecurity [4], finance [5], natural disaster 
[6], and telecommunication [7]. 
 
Several methods have been proposed for detecting anomalies, each of 
which has its own strengths and weaknesses. Patcha and Park [8] reviewed 
all the known methods used for anomaly detection. Additionally, an 
overview of existing techniques covering several approaches is presented 
in [9] and [10]. 
 
Despite the large volume of literature on anomaly detection for numeric 
data e.g., time series, there is limited knowledge on the problem of 
abnormal behaviour in the context of categorical and structured textual 
data. 
 
In this chapter, we aim to design an anomaly detection algorithm in the 
context of alarms data (categorical data) in the field of telecommunication. 
In other words, in a given period of time, each network element of a 
telecommunication network generates a set of Key Performance Indicators 
(KPIs) and alarms that describe its behaviour. Alarms are typically 
categorical data with different characteristics (i.e., name, description, 
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severity of the event, start time, end time), triggered to indicate a certain 
event occurring on the network element. Based on this information, those 
intervals of time are detected that have a high probability/score of 
displaying abnormal behaviour. Alarms data is important in a real-world 
context when KPIs are unavailable and cannot be calculated or extracted. 
It should be noted that alarms are events that can start popping up on a 
certain network element at any time. Therefore, each alarm can be 
considered to be equivalent to a binary random variable that can appear at 
any time with a certain probability. 
 
Here, we propose an approach that introduces two new, innovative aspects. 
First, four features are calculated and aggregated to define events data 
during a certain interval of time; this includes the number of alarms, 
occurrence time, inter arrival time, transition frequency (Markovian model) 
and historical frequency. By combining this information, we compute an 
abnormality score which is, to the best of our knowledge, the first time that 
an anomaly detection algorithm has incorporated all the attributes of an 
event. In fact, in the majority of prior influential studies only a few of the 
previously cited attributes were considered. [11] consider just the 
Markovian component; in [12], a feature selection step is proposed prior to 
anomaly detection, which is a process that is associated with a high risk of 
loss of key information and requires significant effort for data labelling; [13] 
consider categorical data to be textual and vectorize it before the anomaly 
detection phase which is also associated with a high risk of loss of 
information. Second, the proposed algorithm enables users to extract local 
and focused information about one of the previously discussed features 
which may provide greater insight into the root cause of the anomaly (also 
known as anomaly fingerprint).   
 
In this chapter, we first describe the methodology used to build the 
abnormality score. We then present an application of the algorithm and 
analyze the results. 
 
 

5.2 Methodology 
 
We propose a semi-parametric scoring system that reflects the different 
behavioral aspects of a component of a network during a given interval of 
time using alarms data generated for that component. These aspects are 
(5.2.1) the number of alarms, (5.2.2) the inter-arrival time between alarms, 
(5.2.3) the transition probability of two consecutive alarms, and (5.2.4) the 
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historical frequency of an alarm. The calculation of the final score is 
demonstrated in Subsection 5.2.5 and the optimization of the model 
weights is shown in Subsection 5.2.6. Because alarms are generated from 
each network component, of which there are different types, we group these 
components by type when drawing inferences from the data to reduce 
volatility and heterogeneity in the calculated statistics. 

 

5.2.1 Number of Alarms 
 

It is a common practice in parametric statistics to assume a Poisson 
distribution while modelling the number of occurrences of a certain event 
during a fixed period. Therefore, under this assumption, we begin by 
estimating the rate parameter 𝜆 of the Poisson distribution by calculating 
the arithmetic average of the number of alarms across all the intervals for 
each different component type of the network. Therefore, if we have 𝐿  
different types of components in the network, 𝐿 different rate parameters 
𝜆$, … , 𝜆8 are estimated.  
 
Now, let 𝑁9 , 𝑙 = 1,… , 𝐿 denote the random variables (r.v.) indicating the 
number of alarms generated by a component of type 𝑙 ∈ {1, … , 𝐿} over an 
interval of time. Based on the previous assumption, 𝑁9 follows a Poisson 
distribution with rate parameter 𝜆9. Note that 𝔼(𝑁9) = 𝜆9 and it can easily be 
shown that the proposed estimator is a minimum variance unbiased 
estimator (MVUE) of 𝜆. Hence, if 𝑛 denotes the observed number of alarms 
in a fixed interval for a component of type 𝑙, the associated probability can 
be computed as shown in Equation (1). 

𝒫$9 = ℙ[𝑁9 = 𝑛] =
𝑒,:&𝜆9#

𝑛! 					(1) 

 
Hence, in order to standardize this probability and transform it into a score 
that reflects the number of alarms, and the fact that a higher-than-average 
score indicates a higher probability of abnormal behaviour, 𝑆$9 can be defined 
as:  

𝑆$9 = �
ℙ[𝑁9 = 𝑖𝑛𝑡(𝜆9)] − 𝒫$9

ℙ[𝑁9 = 𝑖𝑛𝑡(𝜆9)] − min
;<=>	?@@	ABC=><?@D

]𝒫$9^
, if	𝑛 ≥ 𝑖𝑛𝑡(𝜆9)

0,																																																																								otherwise
					(2) 

   
where 𝑖𝑛𝑡(∙) denotes the integer part of a real number. Then, a value of 𝑆$9 
close to one implies that the number of alarms indicates abnormal 
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behaviour in the specified interval. Note that 𝑖𝑛𝑡(𝜆9) represents the mode of 
a Poisson distribution of parameter 𝜆9. 
 

5.2.2 Inter-arrival time 
 
Using the same logic, we consider the intervals of time during which at least 
two alarms were detected for each type of component 𝐿. We also define the 
r.v. 𝑌9 representing the time between two consecutive alarms that occurred 
within the same interval of time. It is common to model such r.v. by an 
exponential distribution with rate parameter 𝜇9, which is estimated by 
calculating the inverse of the arithmetic average of the time between two 
consecutive alarms during all the intervals for each different component 
type of the network. Note that under the previous assumption, 𝔼[𝑌9] = 1 𝜇9� . 
Hence, if the number of alarms during an interval for a component of type 
𝑙 ∈ {1, … , 𝐿} is 𝑛 ≥ 2, an associated probability can be computed as shown in 
Equation (3). 

𝒫%9 = ℙ �𝑌9 ≤
∑ 𝑦5#,$
52$

𝑛 − 1 � = 1 − 𝑒,E
$ F&G H

∑ J%
'("
%)"
#,$ 				(3) 

 
Where 𝑦5 , 𝑗 = 1,… , 𝑛 − 1 denotes the time between alarms 𝑗 and 𝑗 + 1.   
 
Similarly, this probability can be standardized and transformed into a score 
to reflect that alarms occurring consecutively within a very short span of 
time are more likely to indicate abnormal behaviour, as shown in Equation 
(4). 

𝑆%9 =
max

;<=>	?@@	ABC=><?@D
]𝒫%9^ − 𝒫%9

max
;<=>	?@@	ABC=><?@D

]𝒫%9^ − min
;<=>	?@@	ABC=><?@D

]𝒫%9^
					(4) 

 
Here, a value of 𝑆%9  close to one implies that the time between consecutive 
alarms indicates abnormal behaviour in the specified interval.   

5.2.3 Transition probability 
 
In the same context as that of the inter-arrival time score, and based on all 
the observed alarms during all the intervals for a component of type 𝑙, we 
define the state space of alarms as 𝐸9 = {𝑎$, … , 𝑎K}, where 𝐾 denotes the 
number of unique observed alarms in component 𝑙. Subsequently, we 
empirically compute the transition probabilities, ∀𝑖, 𝑗 ∈ {1, … , 𝐾}, as shown in 
Equation (5).  
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𝑝L*L% = probability	of	observing		𝑎5 	after	𝑎! 					(5) 
 

Hence, we obtain a transition matrix in a similar manner to a Markov chain, 
that summarizes all the historical transitions that have occurred for each 
type of component. Then, to highlight abnormal behavior during a given 
interval, we identify the occurrence of transitions that are historically 
uncommon. Practically, if the number of alarms during an interval for a 
component of type 𝑙 is 𝑛 ≥ 2, where these alarms are elements of the state 
space 𝐸9 denoted by 𝑥$, … , 𝑥#, an associated probability can be computed as 
shown in Equation (6). 

𝒫M9 = min
N2$,…,B,$

𝑝L*2*+,L%2*+," 					(6) 

 
As described previously, the probability is standardized and transformed 
into a score to reflect that the alarms that occur consecutively and that have 
not occurred one after the other frequently in the past are more likely to be 
displaying abnormal behavior. This score is obtained as shown in Equation 
(7). 

𝑆M9 =
max

;<=>	?@@	ABC=><?@D
]𝒫M9^ − 𝒫M9

max
;<=>	?@@	ABC=><?@D

]𝒫M9^ − min
;<=>	?@@	ABC=><?@D

]𝒫M9^
					(7) 

 
Here, a value of 𝑆M9  close to one implies that during this interval, a non-
frequent transition is occurring, which is likely to be abnormal behaviour.   

5.2.4 Historical frequency 
 
Now, we consider the historical frequency of the alarms occurring during an 
interval. In other words, an alarm of a certain type that is historically 
infrequent is considered to be more critical and should be highlighted. In 
real world scenarios, given that access to big data can be limited, this 
attribute helps in identifying infrequent or non-occurring events in the 
network, especially high impact events that occur rarely. Then, for a 
component of type 𝑙 we consider the state space of alarms 𝐸9 = {𝑎$, … , 𝑎K}, 
and the historical frequency of each of these alarms is computed and 
denoted by 𝑓! , 𝑖 ∈ {1, … , 𝐾}.  
 
Further, to highlight abnormal behaviour during a given interval, we focus 
on the alarm with the lowest historical frequency among those that occurred 
during this interval, which are denoted by 𝑥$, … , 𝑥# ∈ 𝐸9, with 𝑛 ≥ 1. 𝒫O9 is first 
defined as shown in equation (8). 



 80 

𝒫O9 = max
P2$,…,#

1
𝑓P
					(8) 

 
This is derived using all the available historical intervals data. This is 
followed by standardization, where 𝒫O9 is transformed into a score quantity 
as shown in Equation (9). 

𝑆O9 =
𝒫O9 − min

;<=>	?@@	ABC=><?@D
]𝒫O9^

max
;<=>	?@@	ABC=><?@D

]𝒫O9^ − min
;<=>	?@@	ABC=><?@D

]𝒫O9^
					(9) 

 
Here, a value of 𝑆O9  close to one implies that a non-frequent alarm occurs 
during this interval, which indicates abnormal behaviour.  

 

5.2.5 Final score and individual contributions 
 
To obtain a final abnormality score for a given interval of time and for a 
particular component of the network of type 𝑙 ∈ {1, … , 𝐿}, the previously 
computed scores are aggregated as weighted average measures as shown 
in Equation (10). 

𝑆	9 =g𝑤!	𝑆!9
O

!2$

					(10) 

 
With 0 < 𝑤!	 < 1 and ∑ 𝑤!	O

!2$ = 1. 
 
The values of different weights are determined based on interactions with 
subject matter experts (SMEs) and a supervised grid search approach that 
will be discussed later. 
 
A value of 𝑆	9 close to one indicates that abnormal behaviour is being 
displayed during the specified interval and addressing this should be 
considered to be a priority for the SMEs. In addition, diagnostic information 
can be extracted from the four individual scores which may provide a 
starting point for the SMEs to analyse the root cause of the detected 
anomalies. This additional information is used to explain the derived score 
by specifying which alarms occurred, which inter-arrivals are low, which 
transitions are rare and which alarms have the lowest occurrence 
historically. 
 

5.2.6. Validation and optimization 
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After assigning a score to each of the intervals across all the components 
of the network, we validate the results by comparing our labels to the ones 
given by the SMEs (labels are determined by manual inspection of the data 
to identify occurrences of anomalies). From the scores obtained in 
Subsection 5.2.5, the labels are determined based on a predefined fixed 
threshold denoted by 𝑠, such that: 

𝑆9LQR9RS9 = ?1						𝑖𝑓	𝑆	
9 > 𝑠

0			Otherwise
					(11) 

 
 

The values of the weights in Subsection 5.2.5 and the value of the threshold 
𝑠 are determined based on a grid search process [14], where several 
scenarios/combinations of the underlying parameters are considered. The 
selected combination is the one with the best performance based on the 
accuracy of the confusion matrix that shows the degree of similarity 
between our labels and the SMEs labels, and the value of the Area Under 
the ROC Curve (AUC) [15]. Such optimization makes the algorithm similar 
to supervised ML models with the aim of maximizing the correlation 
between labels and features. This is a unique supervision method to 
replicate and learn human decisions. 

5.3 Application 
 
The methodology described in Section 5.2 is applied on real world data 
obtained from a virtual telecommunication network to identify intervals with 
a high probability of displaying abnormal behaviour. Data description, 
results and analyses, and the advantages of the proposed algorithm will be 
presented in Subsections 5.3.1, 5.3.2 and 5.3.3 respectively. 
 

5.3.1. Data description 
 
From a virtual telecommunication network, and for a given period, we 
consider alarms occurring on the different network elements over 30-
minute intervals with a sliding window step of 5 minutes. The concept of 
the sliding window is introduced to consider events (i.e., alarms) that 
overlap between two consecutive intervals. In addition, to assure that the 
different aspects of the methodology of Section 5.2 are applicable, we 
estimate the parameters of the underlying distributions—Poisson for 
counting alarms and exponential for inter-arrival time—separately on the 
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three types of components that are present in the network and are indexed 
as 𝑙 ∈ {1,2,3}. 
 
These alarms (categorical data) with their different levels of severity, e.g., 
critical, minor and major, occurring during a given interval indicate the 
occurrence of abnormal behaviour. Based on the abnormality score that is 
computed by the proposed algorithm, SMEs should prioritize intervention in 
such cases. 

 

5.3.2 Results and analysis 
 
We first estimate the parameters of the Poisson distribution 𝜆9 , 𝑙 ∈ {1,2,3}, and 
the exponential distribution 𝜇9 , 𝑙 ∈ {1,2,3},  for each type of component by 
applying the methods described in Subsections 5.2.1 and 5.2.2. For each 
type of component, all the available alarm occurrences across all the 
intervals are used. Note that only those intervals with at least two alarms 
are considered for the estimation of 𝜇9 because the exponential distribution 
models the time between two consecutive alarms (in minutes). Moreover, 
goodness-of-fit tests are conducted to test the feasibility of the assumption 
that the number of alarms and the time between two consecutive alarms 
are governed respectively by Poisson and exponential distributions. 
Pearson’s chi-squared test [16] is used for the goodness-of-fit test. The 
estimation results and the p-values of the statistical tests are represented 
in Tables 1 and 2 respectively. 
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Table 1.  Parameter estimation. 

Network 
element 

components 
𝝀𝒍 𝝁𝒍 

i=1 0.312 0.166 

i=2 0.158 0.201 

i=3 7.055 0.191 

 

 

Table 2.  Goodness of fit tests. 

 p-values 
Network 
element 

components 
Poisson Exponential 

i=1 0.98 0.84 

i=2 0.231 0.279 

i=3 0.785 0.871 

 

Table 2 shows that when the different types of components are considered 
separately, the assumption about the underlying distribution appears to be 
reasonable. Therefore, the parametric approach defined in Subsections 
5.2.1 and 5.2.2 can be relied upon to compute scores 𝑆$9 and 𝑆%9  for each 
interval for the different network elements. 
 
The third type of score is based on a transition matrix of the probabilities of 
different descriptions of alarms for a given type of component. To compute 
such a matrix, the empirical approach described in Subsection 5.2.3 is 
applied. Table 3 shows the transition matrix of alarm descriptions for the 
component of type 𝑙 = 3. 
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Table 3.  Transition matrix. 

 

Alarm 
Description 3(a) 3(b) 3(c) 3(d) 3(e) 3(f) 3(g) 3(h) 

3(a) 1 0 0 0 0 0 0 0 

3(b) 0 0.2 0 0 0 0 0 0.8 

3(c) 0 0 1 0 0 0 0 0 

3(d) 0 0 0 1 0 0 0 0 

3(e) 0 0 0 0 0 0 1 0 

3(f) 0 0 0 0 0 1 0 0 

3(g) 0 0 0 0 0 0 1 0 

3(h) 0 0.3 0 0 0 0 0 0.7 

 
 
 
As an example of how to read Table 3, we can say that for network element 
of type 𝑙 = 3, when at least two alarms occur during an interval, alarms of 
description 3(b) are followed by alarms of the same description in 20% of 
cases and alarms of description 3(h) in 80% of cases. 
 
Using these matrices and applying the method described in Subsection 
5.2.3, one can obtain the third score 𝑆M9  for each interval for the different 
network elements. 
 
The next step is to compute the historical frequency of each alarm 
description for a given type of component and to use these frequencies, as 
described in Subsection 5.2.4, to calculate the fourth score 𝑆O9  for each 
interval for different network elements. An example of these frequencies is 
shown in Table 4 for the network element of type 𝑙 = 1. Then, when an alarm 
of description 1(b) occurs during an interval and is observed to have a low 
historical frequency, then the interval is suspected to be displaying 
abnormal behavior. 
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Table 4.  Frequency table. 

Alarm 
Description Frequency 

1(a) 2248 

1(b) 10 

1(c) 8608 

1(d) 2324 

1(e) 862 

1(f) 17684 

1(g) 29 

1(h) 253 

1(i) 441 

1(j) 1348 

 

Now, for each component type 𝑙 ∈ {1,2,3} and for all the intervals, the final 
abnormality score 𝑆	9 can be computed by applying Equation (10) and by 
setting the initial values for the weights 𝑤! , 𝑖 = 1,2,3,4 (e.g., 𝑤! =

$
O
∀𝑖). In 

addition, to apply Equation (11), a threshold 𝑠 needs to be determined to 
label all the intervals with 1 if abnormal behaviour is taking place and 0 
otherwise. 
 
To optimize the choice of the underlying weights and threshold, the SMEs 
label a parallel and independent abnormal behaviour based on the same 
data for the same intervals. Then, based on a random grid search process, 
the parameters of the algorithm are optimized, for each component type, 
on two levels. First, among all the tested combinations of weights 𝑤! 
verifying 0 < 𝑤! < 1 and ∑ 𝑤!	O

!2$ = 1 we select the one with the highest AUC. 
Second, among all the threshold used to draw the optimal ROC curve, we 
select the one with the highest accuracy in terms of true positives and true 
negatives, i.e., we maximize the sum of the diagonal terms of the confusion 
matrix. Hence, we begin the grid search process by considering the 
following equation: 



 86 

𝑤∗ = argmax
U∈𝔇

𝐴𝑈𝐶(𝑤)					(12) 

where 𝑤 is a vector of weights 𝑤! , 𝑖 = 1,2,3,4  and 𝔇 is the set of all the 
considered combinations of weights during the first level of the grid search 
process. Once the optimal combination of weights 𝑤∗ is selected, we select 
optimal threshold by applying the following equation: 
 

𝑠∗ = argmax
W∈𝒯

]𝑇𝑃(𝑠) + 𝑇𝑁(𝑠)^					(13) 

where 𝑇𝑃(𝑠) and 𝑇𝑁(𝑠) denote the true positive and true negative labels 
respectively when the threshold 𝑠 is fixed. 𝒯 represents the set of all the 
considered thresholds during the second level of the grid search process. 
The construction of the sets 𝔇 and 𝒯 is done with collaboration and 
validation by the SMEs. Furthermore, we are not concerned by the 
phenomenon of overfitting because we are using the latter grid search 
process merely to optimize the selection of the underlying weights of 
different scores and the threshold based on a matching method with labels 
fixed by the SMEs.  
 
Considering network element of type 𝑙 = 1, Fig. 1 shows the optimal ROC 
curve with a maximum AUC of 0.975 corresponding to the vector of 
weights 𝑤∗ = (𝑤$∗ = 0.41, 𝑤%∗ = 0.29, 𝑤M∗ = 0.2, 𝑤O∗ = 0.1	) for intervals with at least 
two alarms (i.e., 𝑆%9  and 𝑆M9  are computable) and a vector 𝑤∗ =
(𝑤$∗ = 0.8, 𝑤%∗ = 0,𝑤M∗ = 0,𝑤O∗ = 0.2	) for intervals with less than two alarms. 
 

 

Figure 1.  Optimal ROC curve  
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Table 5 shows the optimal confusion matrix corresponding to a threshold of 
0.58. In other words, for components of type 𝑙 = 1, we will apply the 
following rule to label anomalous behaviour across all the intervals: 
 

𝑆9LQR9RS9 = ?1						𝑖𝑓	𝑆	
9 > 0.58

0									Otherwise
. 

 
In the following certain interpretations and metrics are discussed based on 
the confusion matrix: 
 

• True positive: 2521 intervals; False positive: 531 intervals. 
• True negative: 199513 intervals; False negative: 103 intervals. 
• Sensitivity: proportion of true positive among SMEs abnormal 

intervals: 2521 (2521 + 103)� = 0.961. 

• Specificity: proportion of true negative among SMEs non abnormal 
intervals: 199513 (199513 + 531)� = 0.997. 

• Accuracy: 
(2521 + 199513)

(2521 + 531 + 103 + 199513)§ = 0.997.  

 

 

 

 

Table 5.  Confusion matrix. 

 
                    SMEs                     
L                 Labels 
Predicted  
  Labels 
 

1 0 

1 2521 531 

0 103 199513 

 

Based on all the previous metrics computed after interactions with the 
SMEs, it is evident that the proposed algorithm is performing well with a 
high accuracy, and that we can rely on it to detect abnormal behaviour in 
future intervals. Furthermore, the algorithm is applied on online arriving 
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alarms data and intervals that have been declared as anomalous and 
validated by experts. Here, approximately 1% of the intervals under control 
were behaving in an abnormal way, which is very reasonable in practice and 
is commonly encountered by SMEs. In addition, the algorithm presented in 
this chapter has several advantages when compared to the classical 
anomaly detection approach. Most of these advantages will be enumerated 
in the next subsection. 

 

5.3.3 Advantages of the proposed algorithm 
 
Compared to popular anomaly detection models, the proposed algorithm 
has four main advantages: 
 

• Our algorithm is already adapted to be an online anomaly detection 
model applied directly to new arrivals for the purpose of highlighting 
abnormal behaviour. Hence, there is no need to train such a model 
on a sample and to test it on another because such a model has no 
risk of overfitting. 
 

• To the best of our knowledge, this is the first time that an anomaly 
detection algorithm, based solely on alarms categorical data, has 
successfully extracted diagnostic information from the four different 
components of the global score (i.e., 𝑆$9 , 𝑆%9 , 𝑆M9  and 𝑆O9) to help SMEs 
initiate root cause analysis of the detected anomalies.  
 

• The proposed algorithm has the ability to generate abnormality 
scores based solely on alarms data without any additional information 
about numeric KPIs, which is uncommon in the field of anomaly 
detection for telecommunication networks. 
 

• The interpretability of this model adds great value and is important 
for both developers and users.  
 

5.3.4 Test of independence between different type of alarms 
 
The algorithm proposed in this chapter assumes the existence of one family 
of alarms. In fact, if other families of alarms are available, our model can 
easily be generalized by proposing a weighted anomaly score for the 
different families of alarms. Additionally, we can consider the same 
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optimization process proposed in Subsections 5.2.6 and 5.3.2 to determine 
the values of the different weights. 
 
Further, to ensure the statistical independence between different families 
of alarms in terms of occurrence time we suggest an independence test. 
This is essentially a uniform distribution goodness-of-fit test using classical 
chi-squared test. Therefore, for alarms of family 𝒜, we test whether the 
occurrence times of such alarms, between two alarms of another family ℬ, 
are uniformly distributed. It is important to note that in order to apply such 
an approach, the intervals of time separating the occurrence of two alarms 
of the same family need to be normalized.   
 

5.4 Conclusion and Perspectives 
 
In this chapter, an innovative anomaly detection algorithm that solely uses 
structured alarms (categorical data) has been presented. The proposed 
model takes into consideration four different attributes extracted from 
alarms occurrence data to compute a global anomaly score. This can then 
be used to extract diagnostic information that helps SMEs in performing 
root cause analysis. Our algorithm is shown to be more advantageous than 
other existing anomaly detection models, when applied in the same context. 
 
Moreover, we applied the algorithm to real data in the field of 
telecommunication. The results were then validated by SMEs who provided 
positive feedback and found that our algorithm outperforms the previously 
used classical approaches. Users of such a model are also convinced by its 
output because it relies on the behaviour of historical data and generates 
real-time ranking of events occurring on a network component in terms of 
abnormality. 
 
A first perspective of this work is to mathematically formalize a 
model/algorithm using the extracted information from different sub-scores 
in order to enhance existing root cause analysis methods based solely on 
alarms data. A second perspective is to combine alarms data with other 
type of non-numeric features, e.g., textual data, to build a more complete 
anomaly detection approach that covers novel aspects that have not been 
addressed before. Such pioneering work can be initiated by drawing 
inspiration from [17]. 
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Chapter 6: Expanding the 

Anomaly Detection Horizon to 

Syslogs 

 
In the previous chapters, we have examined anomaly detection in 
telecommunication networks through the lens of numeric Key Performance 
Indicator (KPI) data and categorical alarm data. Both approaches have 
proven valuable in their respective domains; however, there is another 
crucial source of information that can further enhance our understanding of 
network anomalies: syslog data. Before diving into a new chapter dedicated 
to anomaly detection based on syslog data, we must establish a connection 
between the alarm-based approach and the upcoming syslog-based 
approach, demonstrating the benefits of incorporating this additional data 
source in our analysis. 
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The Role of Syslogs in Telecommunication Networks 
 
Syslogs are event logs generated by network elements, providing detailed 
information about operational events and activities occurring within the 
network. Syslog data is vital for understanding both normal and anomalous 
network behavior, as it contains granular information about network events 
that might not be captured in KPIs or alarm data. 
 
Incorporating syslog data into our anomaly detection framework can 
complement the insights derived from KPI and alarm data, offering a more 
comprehensive perspective on network health and performance. For 
instance, a series of syslogs indicating repeated login attempts on a network 
device might suggest an unauthorized access attempt not reflected in KPI 
or alarm data. 
 

Challenges in Integrating Syslog Data 
 
Integrating syslog data with KPI and alarm data presents several challenges 
due to the unique characteristics of this data source: 
 
a. Data Preprocessing: Syslogs are typically unstructured, consisting of text 
messages and event codes. Transforming this data into a structured format 
suitable for machine learning algorithms requires sophisticated 
preprocessing techniques, such as text mining and natural language 
processing. 
 
b. Feature Selection and Engineering: Syslog data may contain a large 
number of distinct events and attributes, necessitating careful feature 
selection and engineering to identify the most relevant and informative 
features for anomaly detection. 
 
c. Model Selection and Evaluation: Identifying machine learning algorithms 
capable of effectively handling the combination of numeric, categorical, and 
text data requires thorough experimentation and evaluation to ensure the 
best possible performance. 
 

Conclusion 
 
By incorporating syslog data into our anomaly detection framework, we can 
achieve a more comprehensive understanding of network anomalies, 
leading to more accurate and timely detection. In the next chapter, we will 
explore the development and evaluation of a novel approach to anomaly 
detection that leverages syslog data, ultimately enhancing our overall 
framework by considering all three data sources – numeric KPIs, categorical 
alarms, and text-based syslogs. 
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Chapter 7: Anomaly detection 

based on SysLogs textual data 

 

Abstract 
 
With the increase of network virtualization and the disparity of vendors, the 
continuous monitoring and detection of anomalies cannot rely on static 
rules. An advanced analytical methodology is needed to discriminate 
between normal events and unusual anomalies. In this chapter, we focus 
on logs data (textual data), which is a crucial source of information for 
network performance. Then, we introduce an algorithm, used as a pipeline 
to help with the pretreatment of such data, group it in patterns, and 
dynamically label each pattern into anomaly or not. Such tools will provide 
users and experts with continuous real-time logs monitoring capability, to 
detect anomalies and failures in the underlying system that can affect 
performance. The algorithm is illustrated by an application on real-world 
data.     
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7.1 INTRODUCTION 
 
System log is a hub containing all the information about the events taking 
place during system operation. In general, one talks about textual log 
messages when system log data has a structured textual format [1]. In the 
telecommunication field, the deployed logging infrastructure helps to store 
and aggregate logs produced by all the components of the network—e.g., 
cells, core, transport—in a continuous way. Having access to all these 
historic logs triggers a series of analyses and studies, improving the 
performance of the network and optimizing the whole industrial process, 
e.g., analysis of customer fulfillment [2].  
 
In addition, a popular field in which textual logs are used is anomaly 
detection (AD), followed by a root cause analysis (RCA) of abnormal 
behavior that may occur in a system. Several machine learning and deep 
learning methods are used to this end (for a survey on these techniques, 
see [3]). In general, AD is a field of data science encountered in various 
areas of research, such as health [4], cybersecurity [5], finance [6], natural 
disaster [7], and telecommunication [8]. In fact, in the literature, one may 
find several definitions of an anomaly in a set of data. For example, Pang 
et al. [9] speak about anomalies as a novelty in a set of data or time series, 
and define it as an instance that significantly deviates from the majority of 
data instances. Ruff et al. [10] start by defining concepts of normality, and 
then explain that an anomaly is an observation not respecting some of these 
concepts. The most important point to keep in mind is that an anomaly, 
when it occurs, has a significant impact on the underlying process. Hence, 
it is crucial to develop machine learning (ML) and artificial intelligence (AI) 
algorithms to detect such outliers.  
 
Without being exhaustive, there are several algorithms and models for 
anomaly detection in the literature. A survey of existing methods that may 
be adapted to different contexts and problems, with various levels of 
complexity reflected by underlying data of diversified typologies (e.g., 
numeric, categorical), can be found in [11], [12] and [13]. However, to the 
best of authors’ knowledge, there are few research works dealing with 
detecting abnormal behavior in a system based solely on structured textual 
data. 
 
In this chapter, the aim is to build an AD algorithm based solely on system 
logs historical data for an application in the field of telecommunication. In 
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fact, for a fixed time window, different elements of a telecommunication 
network provide different types of indicators that help experts assess the 
system’s performance and describe the behavior of each element. These 
indicators include, among others, textual log messages collected and 
aggregated to keep track of all the events taking place with the 
corresponding characteristics (i.e., description, occurrence time, severity of 
the log). Using all these sources of information, the main goal is to detect 
an interval of time showing a high probability of abnormal behavior. Note 
that our work becomes of high interest when the only available data in a 
system is the logs, which is the case in many real-world applications. 
 
In this work, we start by a pretreatment of the textual logs data based on 
selected natural language processing techniques (NLP). In the second step, 
we cluster textual data based on a novel developed unsupervised clustering 
algorithm that considers the specificities of our data, without requiring an 
intermediate vectorization step. The aim of this second step is to extract 
homogeneous subfamilies of observations—an indicator that will be used in 
the final phase of assigning anomaly labels to each of the intervals. The 
main three contributions of the method that we are proposing are: (1) the 
new clustering algorithm is designed to be adapted to the structure of the 
textual data that we are dealing with, and to decrease, by as much as 
possible, the loss of information by avoiding transforming the raw textual 
data into numeric data through a vectorization process; (2) before blindly 
applying an anomaly detection model using vectorized data, an optimal 
structure of the decision space is extracted through an unsupervised 
clustering technique, which will lead to a more accurate and homogeneous 
abnormality scoring system; (3) an optimization of the underlying 
hyperparameters of the proposed algorithm is conducted based on an 
innovative supervised approach, taking into consideration the interaction 
with the experts of the domain, in order to improve the performance of the 
proposed AD method. 
 
This chapter is organized as follows. Section 5.2 describes the whole 
methodology used to get abnormality labels for each network element on 
different time intervals. An application of the method on real world data, 
followed by a discussion of the results, are then presented in Section 5.3. A 
conclusion closes the chapter. 
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7.2 Methodology 
 
The algorithm we are proposing uses a non-parametric approach, 
generating abnormality labels for each component of a telecommunication 
network during a fixed time interval using only system logs as underlying 
data. The different steps of the method are: (5.2.1) preprocess textual data 
based on common NLP rules; and (5.2.2) cluster using a novel unsupervised 
algorithm, then assign abnormality labels to selected clusters. As logs are 
generated from all network components, of which there are different types, 
we decided to deal with each type separately, while drawing inferences in 
order to reduce volatility and increase the model’s accuracy.  

 

7.2.1 Preprocessing textual data 
 
As the system logs we are dealing with use a structured textual data format, 
the first step is preprocessing the data based on certain NLP rules (for a 
review of NLP rules, see [14]). The idea behind preprocessing textual data 
is to reduce noise and artifacts that may have a negative influence on the 
quality of the algorithms and machine learning models that will be used in 
the next steps. In addition, the selection of rules that should be applied is 
fully adapted to the structure of our underlying data, and it was chosen 
based on discussions with subject matter experts (SMEs). The list of the 
rules that we are applying is as follows: 
 

• Remove timestamps and all time-related words (e.g., Jan, Feb, Mon) 
• Remove links, path strings, host names, and IP addresses (e.g., 

python-requests/2.6.0 CPython/2.7.5 Linux/3.10.0-
1062.1.2.el7.x86_64) 

• Remove symbols (e.g., @, [], /) 
• Make all characters lowercase (e.g., change ERROR to error) 
• Remove ‘words’ comprising only numbers 
• Remove two-characters ‘words’ (e.g., f1, c2, aa) 
• Combine ‘not_word’ and ‘no_such_word’ by “_” 
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Table I shows three examples of logs from the data, before and after 
applying the preprocessing rules. 
 
 

Original log message Cleaned log message 

sshd[36261]:%AUTH-2: 
rad_send_request: Invalid RADIUS 

response received 

Sshd auth rad_send_request 
invalid radius response 

received 

: %PFE-3: fpc0 daemon.err sensord: 
Error updating RRD 

file:/var/run/sensord.rrd: 
/var/run/sensord.rrd: 
/var/run/sensord.rrd: 
/var/run/sensord.rrd: 

/var/run/sensord.rrd: …. 

pfe sensord error updating 
rrd file 

Server contrail_webui/overcloudcfn-
cc-0.internalapi.nbg991 is DOWN, 

reason: Layer6 timeout, check 
duration: 2000ms. 2 active and 0 

backup servers left. 0 sessions active, 
0 requeued, 0 remaining in queue. 

server down reason timeout 
check duration active and 
backup servers sessions 

active requeued remaining 

TABLE I Logs preprocessing 
 

7.2.2 Clustering and structure extraction algorithm  
 

Due to the large number of logs continuously generated, it is nearly 
impossible to analyze the log messages as they are. Thus, after cleaning 
these messages, as described in the previous section, it is useful to reduce 
their complexity, using a clustering approach to highlight a hidden structure 
of the underlying space, by dividing it into subfamilies. 
 
There are many clustering algorithms adapted for system logs data 
proposed in the literature, with many concepts and specifications, 
depending on the practitioners’ objectives (for more details, see [15], [16] 
and [17]). Most of these methods start by converting text to numeric data 
(the ‘vectorization’ step), and then apply a classic clustering algorithm, such 
as K-means [18]. This may not fit our problem, however, as the volume of 
our data is huge, and its streaming behavior is highly complex. In addition, 
the algorithm that we are proposing bypasses vectorization step, because 
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such a step always generates a loss of information, which, in some cases, 
may be significant for the decision maker. In other words, contrary to the 
approach commonly found in the literature, we designed our own clustering 
and family extraction strategy, to avoid both simple frequency-based 
vectorization methods (e.g., TF-IDF [19]) and deep black box vectorization 
methods (e.g., word2vev [20]).  
 
Once we have the preprocessed textual data, the next step is to inject the 
cleaned logs data as an input into the algorithm, which we designed in a 
customized way, to fit our objectives, to be adapted to the structure of the 
underlying decision space, and to be validated by SMEs.  
 
Therefore, our novel algorithm consists of the following steps:  
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Step 1: Log lines are read line by line from a log file or log stream. The 
strings are then preprocessed (as described in Subsection 5.2.1) to remove 
certain artifacts, which have a negative influence on the quality of the 
clustering.  
 
Step 2: The first log line that is being read, denoted by 𝑙Y, always forms a 
new cluster with itself, and is considered the representative of the cluster. 
In general, a representative of a cluster 𝐶 in the set of clusters 𝒞 is denoted 
by 𝑐.  
 
Step 3: For each other log line 𝑙, a set of cluster candidates 𝒞9 ⊆ 𝒞 is 
selected, based on the lengths of 𝑐 and 𝑙 (note that 𝑙 denotes the most 
recent log line). A cluster 𝐶 is added to 𝒞9  if: 

 
 (|	𝑙	| − 𝑠|	𝑙	|) ≤ |	𝑐	| ≤ (|	𝑙	| + 𝑠|	𝑙	|)                           (1) 

where |	𝑙	| and |𝑐| represent the number of tokens in 𝑙 and 𝑐 respectively, 
and 𝑠 is a rate showing the maximum accepted length difference between 
logs. If Equation (1) is not verified by any of the cluster representatives, 
the log line 𝑙 forms a new cluster with itself as representative, and we repeat 
the algorithm for the next log starting from Step 3.  
 
Step 4: The most similar of the cluster candidates 𝒞9 is determined using a 
string metric distance based on tokens. For this, the cluster 𝐶 in 𝒞9 that 
minimizes the distance 𝑑(𝑐, 𝑙) is selected, where: 

 
 𝑑(𝑐, 𝑙) = 1 − #Z1QR[	\]	^\11\#	_\PR#W

`|^|×|9|
                           (2) 

Step 5: If this distance to the most similar representative c is not larger 
than a predefined threshold t, then l is allocated to 𝐶. Otherwise, the log 
line forms a new cluster with itself as representative, and we repeat the 
algorithm for the next log starting from Step 3. 
 
 
 
Note that the proposed algorithm makes the clustering by focusing on both 
the length of the logs (first criteria—see Step 3) and token similarity 
(second criteria—see Step 4). After finishing the training process and the 
construction of the different clusters based on a given historical set of data, 
isolated clusters of logs, with a number of observations less than a threshold 
𝒩, are considered abnormal clusters. On the other hand, in practice the 
algorithm will be applied in an online learning way, assigning each new 
arriving log to one of the predefined clusters (in the training phase) and 
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deciding about its abnormality. Finally, in the case that the algorithm fails 
to assign a new arriving log to the existing clusters, this log will be directly 
considered abnormal. In fact, the training phase and the definition of the 
underlying clusters is updated on a weekly basis, to take into consideration 
system updates of all types.  
 
In addition, the distance (normalized distance measure) proposed in Step 
4 may be replaced by any other distance, and can be considered as a 
hyperparameter of the method that needs to be optimized based on the 
global performance of the corresponding algorithm. Finally, the values of 
the thresholds 𝑠, 𝑡 and 𝒩 will be also optimized, using a grid search process, 
where the aim is to select the combination with the best performance, based 
on the accuracy of a confusion matrix showing how the algorithm’s labels 
fit those of the SMEs. So, for the optimization phase we are proposing a 
unique supervised method, learning human decisions and taking into 
consideration the interaction between the machine and the SMEs, in order 
to maximize the correlation between labels and logs. This whole 
optimization process is detailed in Subsection 5.3.2.  
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7.3 Application  
 
Now, we will be applying the method described in Section 7.2 on real-world 
data extracted by a virtual telecommunication network, with the aim of 
detecting time intervals during which there is a high probability of an 
abnormal behavior occurring. Data description will be the subject of 
Subsection 7.3.1, followed by the results and analysis in Subsection 7.3.2. 
Finally, advantages of the proposed algorithm will be presented in 
Subsection 7.3.3.  

 
7.3.1 Data description 
 
A set of the historical logs generated by the system (the virtual 
telecommunication network) is used to define the different clusters 
described in Subsection 7.2.2. Afterwards, these logs are aggregated to one 
minute as time dimension, and then a count of logs by cluster is completed 
every minute (this can be parametrized based on model usage 
requirements). 
 
On the other hand, to get better performance, and to ensure that the 
algorithm is applied on homogeneous data and the source of noise is 
reduced as much as possible, we optimize the hyperparameters of the 
method estimate separately, using the four component types present in the 
considered virtual network, which are indexed as 𝑘 ∈ {1,2,3,4}.  
 
These logs, with their different characteristics and time intervals, will detect 
moments and intervals that should be prioritized by the SMEs because of 
their high abnormal behavior probability. 

 
7.3.2 Results and discussions 
 
For each type of component, after getting the different clusters and 
identifying abnormal ones based on the algorithm described in Subsection 
7.2.2, we move on to showing the distribution of logs over the different 
clusters for every minute, using the per-minute aggregated data. The 
number of log occurrences for each of the different cluster IDs is then 
represented in a table, using the format of Table II, which shows an 
example of the adopted representation for the component of type 𝑘 = 1. 
Note that, based on the proposed algorithm, we get nine different log 
clusters for the type 1 component, and clusters 2, 5 and 7 are considered 
abnormal, because at the end of the training process the number of 
observations in these clusters is less than the threshold 𝒩. 
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Intervals 

Aggregated 
by one minute 

Cluster 1 Cluster 2 … Cluster 9 

1 0 0 … 1 

2 0 2 … 0 

3 0 0 … 3 

4 3 0 … 1 

5 2 0 … 5 

6 0 0 … 0 

7 3 0 … 0 

⋮ ⋮ ⋮ … ⋮ 

  
TABLE II Logs distribution over clusters 
 
Then, based on Table II, one can say that, for a component of type 1, 
interval 2 is showing an abnormal behavior, given that logs of cluster 2 are 
detected in this interval. Hence, such an interval can be labeled abnormal 
based on the proposed algorithm. 
 
Now, we move to work on the optimization of the different threshold of the 
algorithm. To do this, SMEs start labeling abnormal intervals independently, 
by looking to the same dataset that the algorithm is using. Next, using a 
grid search technique [21], the optimal thresholds are selected, by applying 
the following optimization: 

 
(𝑠∗, 𝑡∗,𝒩∗) = argmax

(W	,_ 	,𝒩 	)∈𝔇
]𝑇𝑃(𝑠 	, 𝑡 	,𝒩 	) + 𝑇𝑁(𝑠 	, 𝑡 	,𝒩 	)^ (3)    

𝑇𝑃(𝑠 	, 𝑡 	,𝒩 	) and 𝑇𝑁(𝑠 	, 𝑡 	,𝒩 	) denote the true positive and true negative 
labels, respectively, for a given combination of thresholds (𝑠 	, 𝑡 	,𝒩 	). 𝔇	 
represents the set of all the considered combination thresholds that will be 
used for the grid search process. The structure of the set 𝔇 is constructed 
following collaboration with and validation from the SMEs. 

 
Table III shows the confusion matrix corresponding to the vector of optimal 
thresholds (𝑠∗ = 0.1, 𝑡∗ = 0.25,𝒩∗ = 85), retrieved by a grid search process.  
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                    SMEs                     
L                 Labels 
Predicted  
  Labels 
 

1 0 

1 322 45 

0 52 5,387 

 
TABLE III Confusion matrix 
  
Key metrics that help assess the quality of the proposed algorithm are then 
extracted from the confusion matrix table. These are shown below. 
 

• True positive: 322 observations (i.e., intervals) 
• False positive: 45 observations 
• True negative: 5,387 observations 
• False negative: 52 observations 
• Sensitivity: proportion of true positives among SMEs’ abnormal 

intervals: 322 (322 + 52)� = 86.1% 

• Specificity: proportion of true negatives among SMEs’ non abnormal 
intervals: 5,387 (5,387 + 45)� = 99.2% 

• Accuracy: proportion of well detected intervals  
														(322 + 5,387)

(322 + 45 + 52 + 5,387)§ = 98.3% 

 
Thus, the validation of the algorithm’s results with the SMEs’ confirms that 
the proposed methodology is reliable and is detecting anomalies with a high 
credibility. In the next subsection, we further discuss the specificities of our 
algorithm.  

 
7.3.3 Particularities of the methodology 
 
The algorithm that we are proposing in this chapter, to detect abnormal 
behavior in a telecommunication network based on system logs, has several 
particularities not found in similar, state-of-the-art methods: 
 

• To the best of our knowledge, this is the first time an anomaly 
detection model has been developed based solely on textual log data, 
without passing through a vectorization phase and so avoiding loss 
of information. 
 

• The method is adapted to online learning, where abnormal behavior 
is easily and quickly detected among new arrivals. 
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• Our algorithm is nonparametric and distribution-free, in the sense 

that the user is not obliged to make assumptions about the 
underlying probabilistic distribution of the decision space and the 
related parameters that need to be estimated. 
 

• The proposed algorithm can generate abnormality labels based solely 
on log data, without any additional information about numeric KPIs, 
which is uncommon in the field of anomaly detection for 
telecommunication networks. 
 

• As the data is not vectorized, the model has high level of 
interpretability and helps both developers and users to use it, with 
the aim of extracting information about the root cause of a detected 
anomaly.  
 

• The proposed algorithm takes into consideration both the length of 
logs and token similarity, as criteria from which to extract the 
structure of the underlying space. 

 

7.4 Conclusion and perspectives 
 
In this work, a new anomaly detection algorithm, using solely textual log 
data provided by a telecommunication network, has been introduced. The 
algorithm comprises several phases: (1) preprocessing textual data based 
on an adapted pipeline; (2) unsupervised similarity and clustering analysis, 
made directly on textual data, without the need of vectorization phase; (3) 
definition of abnormal clusters based on three key thresholds, each 
optimized using a specific supervised approach that takes into consideration 
an interaction with SMEs. 
 
An application of the algorithm on real-world data has been presented. The 
results show a good performance, based on several metrics calculated from 
a confusion matrix. In addition, we have received positive feedback from 
the SMEs regarding several aspects of the algorithm, particularly the 
simplicity of its usage and the interpretability of its results. 
 
Finally, we suggest two main avenues of further research, based on this 
work: (1) The clusters we are generating may be used as input features for 
another machine learning algorithm, in order to calculate an abnormality 
score, instead of having a binary decision about anomalous intervals; (2) 
Propose an aggregation method to combine the decision of the proposed 
algorithm with others developed using numeric data [22] and 
categorical/events data [23], in such a way as to produce one global 
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abnormality score for each time interval in a telecommunication network. 
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Chapter 8: From whole 

distribution approach to a tail 

distribution approach 

The previous three chapters highlight various challenges in existing 
anomaly detection models and propose novel algorithms to address them. 
In this chapter, we will discuss the importance of these proposed 
approaches and their linkage to the next chapter, which proposes a new 
method based on record and extreme value theory for anomaly detection. 

Chapter three proposed a new geometrical multidimensional probabilistic 
model that addresses the challenges of long training times and the inability 
to quantify the drivers of abnormal behavior when mining in a 
multidimensional space. The proposed model searches for abnormal 
behavior in the data space, generates anomaly scores, and quantifies 
anomaly drivers. Additionally, the chapter proposed a data-driven definition 
of an outlier score to prioritize devices anomalies and a sampling approach 
to speed up scoring newcomer observations. 

Chapter four proposed an algorithm that derives four features based on 
historical alarms data to address the challenge of a long list of alarms 
generated almost continuously. These four features reflect the likelihood of 
occurrence of events, the sequence of events, and the importance of 
relatively new events not seen in the historical data. The proposed algorithm 
is optimized through supervised labels for greater accuracy. 

Chapter five introduced an algorithm that addresses the challenge of 
continuous monitoring and detection of anomalies using logs data. The 
proposed algorithm helps with the pretreatment of logs data, groups it in 
patterns, and dynamically labels each pattern into anomaly or not. This 
approach provides continuous real-time logs monitoring capability to detect 
anomalies and failures in the underlying system that can affect 
performance. 
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The proposed approaches in these three chapters address the challenges in 
existing anomaly detection models used for telecommunication networks. 
They improve the efficiency and accuracy of anomaly detection, help 
network engineers prioritize network maintenance tasks, and assist in 
detecting anomalies and identifying their drivers. The proposed methods 
can be applied to different types of data and can aid network engineers in 
maintaining networks efficiently. 

The following chapter will propose a new approach based on record and 
extreme value theory for anomaly detection. This approach focuses on the 
behavior of the tails of underlying variables, rather than the entire 
distribution, and introduces a novel anomaly scoring system that can 
distinguish between rare and common events. This approach has several 
advantages over current state-of-the-art models and is demonstrated by 
implementing it on a real-world dataset. 
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Chapter 9: Record theory for 
Anomaly detection & 
information selection 
 
 

The proliferation of interconnected devices is rapidly expanding globally, 
and, as a result, telecommunication operators are responsible for managing 
intricate and expansive networks. Consequently, there is a need for 
advanced and efficient systems to aid network engineers in maintaining 
these networks. Devices, which can also be referred to as network 
elements, continuously transmit essential performance data known as key 
performance indicators. By utilizing data derived from these metrics and 
implementing intelligent anomaly detection models, the devices can assist 
in determining the optimal production maintenance schedule for the 
network. As anomaly detection models deal with extreme events, this study 
proposes a method of reducing dimensions by focusing on the behavior of 
the tails of underlying variables, rather than the entire distribution. In 
addition to that, an anomaly scoring system, also based on records theory, 
is proposed, which has several advantages over current state-of-the-art 
models. The effectiveness of this approach is demonstrated by 
implementing it on a real-world dataset.   
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9.1 Introduction 
 

Identifying anomalies in a time series refers to identifying observations that 
differ from the typical pattern of the other observations. Such anomalies 
are uncommon and significant as they can have an impact on the underlying 
system that generates the time series. It is crucial to quickly and accurately 
detect these abnormal behaviors to ensure the proper functioning of the 
upstream system (Chandola et al., 2009). Anomaly detection is a research 
topic that is encountered in various fields such as industry (Zhou et al., 
2020), cybersecurity (Rashid et al., 2022), healthcare (Sabic et al., 2021), 
environment (Vangipuram et al., 2020), and telecommunication (Kamel et 
al., 2023; Ali et al., 2020). 
 
Various research areas, including machine learning (ML) (Alvi et al., 2022), 
statistical learning (Sha et al., 2015), game theory (Huang et al., 2019), 
and graph theory (Akoglu et al., 2015) have contributed to the development 
of current state-of-the-art anomaly detection algorithms and models. 
 
The literature has addressed several questions and challenges related to 
anomaly detection. One such challenge is the ability to generate 
abnormality scores in an unsupervised context, where auto-encoder (AE) 
neural network models are the most widely used approach. Another 
challenge is detecting abnormal behavior without making any assumptions 
about the probabilistic distribution of the underlying random variables, 
which is addressed by using random-forest–based models. However, there 
are still many challenges that cannot be tackled by traditional anomaly 
detection models and require innovative approaches. 
 
This chapter aims to address several research gaps in anomaly detection. 
First, it proposes a dimension reduction method that is adapted to abnormal 
and extreme events for dealing with large datasets. This method uses 
records theory (see Sections 6.2 and 6.3 for details) which is a branch of 
extreme value theory to develop a variable selection methodology that 
focuses on the behavior of the tails of the underlying variables rather than 
the whole distribution, as in classical dimension reduction methods like 
principal component analysis and AE. Second, this work uses records theory 
to propose an abnormality scoring system that can be used in one or 
multidimensional datasets. This system generates a density distribution of 
the scores and uses a grid search process to minimize classification errors 
and set a threshold value for the underlying variables above which an 
observation is considered abnormal. This threshold can be communicated 
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to subject matter experts (SMEs), and, to the best of the authors’ 
knowledge, this is the first algorithm to propose an anomaly threshold for 
each considered variable. Third, the proposed anomaly detection algorithm 
is adapted to online learning modes and is optimized in terms of 
computational complexity, despite being coupled with a variable selection 
method. Finally, the proposed approach provides initial information about 
the root cause of a detected anomaly. 
 
In summary, the main objective of this chapter is to develop a 
comprehensive methodology that enables users to detect anomalies in time 
series data while addressing the challenges associated with this task. 
 
The proposed method is primarily designed to detect abnormal behavior in 
different elements of a telecommunication network. These network 
elements generate numerous key performance indicators (KPIs), and the 
sheer number of features that describe the performance of the different 
services provided is enormous, making manual analysis of these 
observations challenging, if not impossible. In addition, the ability to 
identify irregularities in real time with minimal delays requires the utilization 
of sophisticated correlation analysis and extensive data mining techniques 
to reveal concealed patterns and associations within the generated data. 
 
The rest of this chapter is structured as follows. Section 9.2 provides an 
introduction to records theory. Section 9.3 presents the mathematical 
formalization of the most popular models in records theory and how they 
are adapted to the current context. Section 9.4 describes the use of records 
theory for variable selection. Section 9.5 shows how records theory is used 
to generate abnormality scores in one and multidimensional datasets. 
Section 9.6 demonstrates some real-world applications. Finally, Section 9.7 
concludes the chapter. 

 

9.2 Records, an Introduction 
 

The study of records in a time series as a field of extreme value theory can 
be traced back to Chandler’s work in 1952. Since then, there have been 
numerous developments in this field, including the works of Arnold, 
Nevzorov, and their collaborators during the 1980s and 1990s. Initially, 
researchers focused on the classic case in records theory, which assumes 
that the random variables (RV) are independent and identically distributed 
(IID). However, this case did not fully capture the complexity of multiple 



 121 

datasets, so researchers began to explore cases where the observations are 
independent but not identically distributed. Eventually, they even 
considered the most general case where neither the independence 
assumption nor the assumption of identical distribution holds. 
 
Data are found in the form of records across various fields that use 
statistics, such as sports (Yang, 1975), climate change (Wergen and Krug, 
2010; Wergen, 2013), risk assessment of diseases (Khraibani et al., 2015), 
financial markets (Hoayek et al., 2018), and satellite imagery (Jabbour et 
al., 2021). 
 
It is worth noting that there is a greater interest in records when they are 
the only available values in a particular time series. Since records are a part 
of popular culture, they are usually kept in easily accessible places, such as 
the Guinness World Records. 
 
In simpler terms, a record is a result in a given series of events that exceeds 
anything seen before. Therefore, a new record is always something 
remarkable and attracts attention, whether it is associated with positive or 
negative news. 
 
Our research applies records theory to solve two challenges related to 
anomaly detection in an industrial context. The first challenge is to reduce 
the dimensionality when dealing with a large number of time series to detect 
abnormal behavior. The second challenge is to develop an innovative ML 
model that efficiently and accurately detects anomalies using the principles 
of records theory, which aims to model extreme values. 
 

9.3 Mathematical Formalization 
 
We start by considering the probability space (Ω, ℱ, ℙ). Here, 𝑋 denotes a 
real RV with a cumulative distribution function (CDF) 𝐹(∙) and a density 
function 𝑓(∙). We assume that the space (Ω, ℱ, ℙ) has good properties to 
define an infinite sequence {𝑋_ , 𝑡 ≥ 1} of IID RVs, which are independent 
copies of 𝑋. When the index 𝑡 represents time, then we are dealing with a 
time series having an IID underlying distribution. An observation 𝑋_ is 
considered an upper record at time 𝑡  if it is higher than all previous 
observations, that is, 𝑋_ > max(𝑋$, … , 𝑋_,$). In this chapter, we focus on upper 
records, but lower records can be defined similarly, by multiplying the time 
series by “–1”. As time progresses, another important sequence of RVs can 
be defined: the sequence of record values {𝑅#, 𝑛 ≥ 1} and the sequence of 
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occurrence time of records {𝐿#, 𝑛 ≥ 1}. In other words, 𝐿# is the occurrence 
time of the 𝑛_d record, which is 𝑅# = 𝑋8'. 
 
In most applications of records theory, the available data consists of a 
sequence of pairs {(𝑅#, 𝐿#), 𝑛 = 1,… ,𝑁e}, where 𝑇 represents the current time 
(i.e., length of the time series) and 𝑁e is the total number of records in 
{𝑋_ , 𝑡 = 1,… , 𝑇}.  
 
In addition to the previously defined sequences, one can also define the 
sequence of record indicators {𝛿_ , 𝑡 = 1,… , 𝑇}, where: 

𝛿_ = ³1	if	𝑋_	is	a	record
0											otherwise

.										(1) 

Note that 𝛿$ = 1 because the first observation is always a record, which is 
called a trivial record. 
 
We will demonstrate later, in this section, that based solely on the sequence 
of record indicators, we can extract significant information about the overall 
behavior of the records in a time series. Note that it is straightforward to 
remark that: 

𝑁e =g𝛿_

e

_2$

. 

The stochastic properties of sequences of record values have been widely 
studied in the case where 𝑋_ are IID RVs (Arnold et al., 2011; Nevzorov, 
2001). Many of these properties are distribution-free, meaning that they do 
not depend on the choice of the underlying distribution of the observations. 
The most important results in the IID context are: 
First, ∀𝑡 ≥ 1, 𝛿_ are mutually independent and follow a Bernoulli distribution 
with parameter 𝑃_ =

$
_
, which is called the record rate at time 𝑡. In other 

words, ℙ[𝛿_ = 1] = $
_
, which is the probability of observing a record at time 𝑡, 

and 𝔼[𝛿_] =
$
_
. It is worth noting that: 

lim
_→'(

𝑃_ = 0.										(2) 

Therefore, one can conclude that records are more likely to appear among 
the first observations. In addition, the expected number of records until 
time 𝑇 is given by: 

𝔼[𝑁e] =g𝔼[𝛿_]
e

_2$

,	

													= g
1
𝑡

e

_2$

.											(3) 
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Moreover, Arnold et al. (2011) found that records tend to become more 
spread out over time a 𝑡 or 𝑛 increases. However, this was not always the 
case in practice. For example, advancements in technology are causing 
sports records to occur more frequently than what is expected under the 
IID assumption. As a result, more complex models have been developed to 
better predict records beyond the classical IID case. These models can be 
grouped into two families based on their level of complexity, which we will 
discuss in the next two subsections. 
 

9.3.1 Independent but Not Identically Distributed Observations 
 
First, consider the case where underlying observations are independent but 
not identically distributed. In this context, two common models are used: 
  

• Linear drift model (LDM), introduced by Ballerini and Resnick in 1985, 
formalized by: 

𝑋_ = 𝑌_ + 𝜃𝑡,										(4) 
where 𝑌_ , 𝑡 ≥ 1 is a sequence of IID RVs and 𝜃 > 0 is a parameter that 
needs to be  estimated. 

 
• Yang record model, initially introduced by Yang (1975) and later 

developed by Nevzorov (1988). This model is considered more 
suitable for the independent but not identically distributed context 
and in most cases, it is more generalized than the LDM. The Yang 
model can be represented by the following formula: 

𝑋_~𝐹(∙)g. ,											(5) 
where 𝜌_(𝑡 ≥ 1) are real constants ≥ 1 and 𝐹(∙)	 is a CDF of a particular 
underlying distribution. In this chapter, we will focus on a specific 
parametrization of the Yang model, in which 𝜌_ = 𝛾_, with 𝛾 	 being a 
parameter that needs to be estimated and is ≥ 1. This formalization 
is interesting because it has the structure of a proportional hazard 
model, which is commonly used in survival analysis to model various 
datasets (Hoayek et al., 2017). In addition, each 𝑋_ represents the 
maximum value obtained from 𝜌_ observations that are generated 
simultaneously and independently at time 𝑡 from the same underlying 
RV 𝑌 of CDF 𝐹(∙)	. Then, 

𝑋_ = max]𝑦$, 𝑦%, … , 𝑦g.^.										(6) 
 
Based on the fact that the underlying RV 𝑌 is independent, it can be 
demonstrated that the record rate at time 𝑡 is expressed as follows: 
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𝑃_ = ℙ[𝛿𝑡 = 1] =
𝜌_

∑ 𝜌P𝑡
𝑘=1

,	

𝑃_ =
𝛾_

∑ 𝛾P𝑡
𝑘=1

=
𝛾_(𝛾 − 1)
𝛾(𝛾_ − 1) .										(7) 

 
In this case 𝑃_ will be denoted as 𝑃_(𝛾). 
Thus, 

lim
_→'(

𝑃_(𝛾) = lim
_→'(

(𝛾 − 1)

𝛾 ~1 − 1 𝛾_� �
=
𝛾 − 1
𝛾 .										(8) 

 
Therefore, in the Yang model, the probability of having new records 
in the long term does not decrease. As a result, a time series 
exhibiting this type of behavior can be considered more volatile and 
unstable compared to the classical IID case. 
 
Despite its usefulness in various applications, the Yang model cannot 
be utilized in practice without first estimating the parameter 𝛾. To do 
this, Hoayek et al. (2017) proposed an estimation method based on 
maximizing the following Log-Likelihood function that was constructed 
using solely the observed sequence of indicators: 

Log 𝐿(𝛾) =Logℙ[𝛿1, … , 𝛿𝑇; 𝛾].										(10) 
         
         Then, by solving, 

d Log 𝐿(𝛾)
d𝛾 = 0,											(11) 

we get our estimator which is denoted by 𝛾¹. In addition, also based 
on the work of Hoayek et al. (2017), one can show the asymptotic 
behavior of 𝛾¹ which is also distribution-free: 

(𝛾¹ − 𝛾)

º𝐼e,$(𝛾)
⟶ 𝑁(0,1),										(12) 

Here, 𝐼e,$(𝛾) represents the Fisher information associated with the 
previous likelihood. Therefore, by understanding the asymptotic 
behavior of our estimator, we can conduct further inferential analysis 
such as constructing confidence intervals for a given asymptotic risk 
of error level 𝛼. 
 
Additionally, in the same context, Nevzorov (1988) demonstrated that 
record indicators are mutually independent, regardless of the choice 
of the underlying distribution 𝑌. Thus, it can be concluded that the 
stochastic process {𝛿_}_h$ is a Bernoulli process with parameter 𝑃_. 
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Using this property, we can obtain the expression of the expected 
value and variance of the number of records: 

𝔼[𝑁!] ='𝔼[𝛿"]
𝑇

𝑡=1
='𝑃"

𝑇

𝑡=1
,										(13)	

	𝕍[𝑁𝑇] = g𝕍[𝛿𝑡]
e

_2$

=g𝑃𝑡

e

_2$

(1 − 𝑃𝑡) = 𝔼[𝑁𝑇] −g 𝑃𝑡%
e

_2$

.										(14) 

 

9.3.2 Dependent and Not Identically Distributed Observations 
 

Another level of complexity arises when we consider the scenario where 
underlying observations are dependent and not identically distributed. In 
this context, the most prevalent record model is the discrete-time random 
walk model (DTRW) introduced by Majumdar and Ziff (2008). The 
underlying observations in this model can be formalized as follows: 

𝑋_ = 𝑋_,$ + 𝜂_ ,										(15) 
where the increments 𝜂_ are drawn from a continuous distribution in an IID 
way. 
 
In the context of DTRW, the record rate at time 𝑡 can be expressed as: 

𝑃_ = ℙ[𝛿𝑡 = 1] = ¾
2𝑡

𝑡
¿ 2−2𝑡.										(16) 

Majumdar and Ziff (2008) demonstrated that 𝑃_ asymptotically approaches 
zero in the DTRW model, though at a slower rate than it does for the IID 
case. Therefore, it can be concluded that in terms of long-term record 
probability, the DTRW model lies somewhere between the classical IID 
model and the Yang model. Additionally, it is worth noting that the majority 
of the results on DTRW are distribution-free. 
 
Figure I provides a comprehensive overview of the behavior of record rates 
for different record models. Note that in Figure I, without any loss of 
generality, the parameter 𝛾 of the Yang model is assumed to be equal to 
1.2. 
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Figure I: Record rates for different record models for a time series of length 
100.  
 

9.3.3 Record Model Selection 
 
Selecting the appropriate model to explain the record behavior of a time 
series involves performing a sequence of statistical tests. 
  
Before considering non-IID models, we begin by testing whether the 
underlying observations of the time series in question are generated from 
an IID sequence. We do this by considering the null hypothesis: 
𝐻Y:	Records	are	generated	from	an	IID	underlying	sequence	of	observations. 
 
To perform this first test, we use the fact that under 𝐻Y, Arnold et al. (2011) 
showed that: 

𝒩e =
𝑁e − log 𝑇
ºlog 𝑇

⟶ Standard	Gaussian	Distribution	𝑁(0,1).										(17) 

 
Therefore, 𝒩e can be viewed as the statistic used in the test. In practice, if  
𝒩e > 𝑞$,m, where 𝑞$,m is the (1 − 𝛼)_d quantile of 𝑁(0,1), then the IID model 
is rejected, and we should consider one of the models outside the classical 
case. 
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The next step is to establish a statistical test for the Yang model. Assuming 
the Yang model hypothesis, we create an RV referred to as the inter-record 
time (i.e., the time between two consecutive records), which is defined as: 

Δ8' = 𝐿#'$ − 𝐿#, 𝑛 ≥ 1.										(18) 
 
Hoayek et al. (2017) showed that in a Yang model Δ8' follow a geometric 
distribution asymptotically. Therefore, we can use this result to construct a 
goodness of fit test for the Yang model. The null hypothesis for this test is 
that the inter-record time observations fit a geometric distribution. To 
conduct this test, we can adapt Pearson’s chi-square test to the context of 
record models (for details see Hoayek et al., 2017). If Pearson’s test rejects 
the geometric distribution, it is not appropriate to use the Yang model, and 
we should consider moving to a higher level of complexity where 
observations are dependent and not identically distributed. A common 
method to test the dependency between underlying observations is to use 
the Ljung–Box test (1978). 
 

9.4 Variable Selection Based on Record Behavior 
 
We will apply the methodology outlined in the previous section to create a 
variable selection tool for detecting anomalies. Most anomaly detection 
algorithms are designed to identify abnormal behavior, and users often aim 
to avoid the problem of dimensionality that can lead to increased 
computational costs, especially during the training phase. 
 
To address this issue, various classical solutions have been proposed, such 
as linear and non-linear dimension reduction methods like principal 
component analysis and AEs, as well as variable selection methods like 
genetic algorithms. However, all of these methods consider the entire 
multidimensional distribution behavior of the underlying variables to 
determine how dimension reduction should be performed. This approach 
may not be suitable for certain application contexts, particularly when the 
focus is on the tails distribution behavior of the variables, as in the fields of 
anomaly detection and extreme event detection. Therefore, the proposed 
method is innovative and specifically adapted for the anomaly detection 
case. The method primarily focuses on the behavior of extreme events, 
especially upper records, to determine which variables should be selected. 
By prioritizing the features that are critical during anomaly detection, the 
dimension of the decision space is reduced, and the application of any 
algorithm becomes faster and less computationally complex. This is 
particularly important for online detection purposes. 
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In practice, we will use a collection of time series, known as KPIs, to 
evaluate the quality of services provided by a virtual telecommunication 
network. These KPIs will be used to identify abnormal behavior for each 
element of the network.  
 
However, before applying any of the anomaly detection algorithms, we will 
assess each KPI separately and assign a priority level to each of them based 
on the following rules: 

a. KPIs with high priority: when record behavior related to the 
underlying distribution of the KPI follows the Yang model. In this case, 
the probability of observing a new record on a long-term basis is 
constant, and extreme abnormal behavior is always likely to occur at 
any time. Therefore, such KPIs are considered risky in the context of 
anomaly detection. 
 

b. KPIs with medium priority: when the DTRW model is accepted as a 
description of record behavior. In this case, record rates converge to 
zero in the long term, but at a slower rate than in the classical record 
IID model (see Figure I). Such records are considered to have 
medium risk and may have a significant impact on abnormal behavior. 

 
c. KPIs with low priority: when records fit the classical IDD case. In such 

cases, record rates converge rapidly to zero, and abnormal behavior 
is observed very rarely on a long-term basis. Such KPIs are 
considered to have low risk and can be removed from later global 
abnormal behavior analysis. 

 
To track the changes in the behavior of KPIs over time, we will apply the 
priority classification rules on sliding windows of fixed length ′𝑘′ with a step 
size ′𝑠′. This will allow us to monitor the KPIs’ behavior over time and make 
any necessary adjustments to their priority levels. After assessing each 
window, a final decision on the priority level of the KPI will be made by 
aggregating the results of all the windows, using a rule determined by SMEs. 
In practical terms, the entire time series is examined for each KPI and then 
broken down into sliding windows. Using the information gathered from 
each window, we carry out the following steps: 
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• Step 0: If the KPI shows concerning high values, do not change the 

time series observations 𝑋_U , 𝑡 = 1,… ,𝑁 = 𝑘, where 𝑋_U denotes the 
observation of the considered KPI at time 𝑡 in window 𝑤. Otherwise, 
transform the time series by considering −𝑋_U instead of 𝑋_U. In both 
cases, focus on the upper records for analysis. 
 

• Step 1: From the time series obtained at the end of Step 0, extract 
record observations (𝑅#, 𝐿#) and calculate the values of record 
indicators RV 𝛿_ and the number of records 𝑁e. 
 

• Step 2: Test for an IID behavior based on the statistic of Eq. (17). If 
the behavior is classical, assign a low priority to the window. 
Otherwise, proceed to Step 3. 
 

• Step 3: Calculate the values of the inter-record times RV Δ8'and use 
them to perform the goodness of fit test for the Yang model. If the 
Yang model is reasonable, assign a high priority to the considered 
window. Otherwise, consider that we are in the context of the DTRW 
model and assign a medium priority to the considered window.  
 

• Step 5: Repeat Steps 1 to 3 for all sliding windows and assign priority 
decisions for each window. 
 

• Step 6: Aggregate the results for all windows using a rule established 
by SMEs and assign the resultant priority to the corresponding KPI. 
For example, consider the highest priority assigned across all windows 
as the KPI priority.   
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9.5 Anomaly Scoring System Based on Records Distribution 
 

9.5.1 One Dimensional Abnormality Score 
 
It is crucial to create a scoring system based on records to detect anomalies 
in a random variable that exhibits extreme behavior and abnormal events.  
Suppose {𝑋_ , 𝑡 ≥ 1} is a time series that represents the behavior of a specific 
KPI over time with real values. ∀𝑡 ≥ 1, we denote: 
 

Λ_ = ³𝑅#, 𝑛 ≥ 1	such	that	𝑅#	is	the	𝑛_d	record	of	the	series	{𝑋! , 1 ≤ 𝑖 < 𝑡}Ë,	
Λ_∗ = {𝑅# ∈ Λ_	such	that	𝑅# ≥	𝑋_},	
𝒟_ = {𝑅# − 𝑋_ , such	that	𝑅# ∈ Λ_∗},	

𝒟_ÍÍÍ = Arithmetic	average	of	the	elements	of	𝒟_.  
 
Now for each observation 𝑋_ , 𝑡 ≥ 1 the corresponding abnormality score is 
given by: 
 

𝒮6 =

⎩
⎨

⎧
1, if	𝑋6	is	a	record

1

=1 + CardΛ6
∗

CardΛ6
A
× C

1
1 + 𝒟6EEE

F , Otherwise . 

  
Where Card(∙) gives the number of elements in a given set. 
 
Assuming that the time series {𝑋_ , 𝑡 ≥ 1} has been standardized to have 
values between 0 and 1, and transformed so that high values indicate 
abnormal behavior, the 𝒮_ will fall between $

O
 and 1. This score is calculated 

based on upper records only. Whenever 𝑋_ reaches its maximum (i.e, 𝑋_ =
1), it is considered a new record. 
 
On the other hand, when 𝒮_ is closer to 1, it indicates a higher risk of 
abnormal behavior. Each component of 𝒮_ focuses on an aspect of 
abnormality in the underlying time series based on records:  
 
• $

n$'
89:;<.

∗

89:;<.
o
: This component is closer to 1 when almost all the records taking 

place before 𝑡 are lower than 𝑋_. Therefore, in this case, even if 𝑋_ is not 
a record, it has an impact that is comparable to the majority of the 
previously detected records and should be highlighted as a potential 
anomaly.  
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• ~ $
$'𝒟.qqqq

�: This component has a complementary role to the previous one. 

Here, we are computing the average distance between the observation 
𝑋_ and all previously detected records with a value higher than 𝑋_ 
(elements of Λ_∗). Thus, for this component, we obtain a value close to 1 
when the value of 𝑋_ is close to the records of the set Λ_∗ which is also a 
scenario that should be highlighted in the process of detecting potential 
abnormal behavior.    

 
While not an exhaustive list, the proposed record-based scoring system 
offers several advantages over classical anomaly detection models: 
 
1. Unlike popular anomaly detection ML models, there is no risk of 

overfitting because there is no classical training/testing phase in the 
proposed algorithm. Additionally, the algorithm is designed to function 
as an online anomaly score system, generating a score for each new 
arrival. 
 

2. The algorithm is distribution-free, meaning there is no need to make 
assumptions about the probability distribution of the underlying random 
variables in each time series. 
 

3. The algorithm is parameter-free, requiring no statistical estimation or 
numerical optimization. 
 

4. The approach has low computational complexity, allowing for fast 
generation of scores, giving SMEs the necessary time to intervene and 
address any detected anomalies. 
 

5. Unlike most ML anomaly detection models, the threshold scores and 
values used to classify observations as anomalies are automatically 
fixed, minimizing the risk of confusion and ensuring optimal algorithm 
performance. This approach also allows for proposing optimal threshold 
values for each KPI, above which the KPI becomes alarming (further 
clarification is provided in the application section). This is the first 
anomaly score system to generate scores and assist with setting optimal 
scoring thresholds with minimal intervention from SMEs. 

 
Note that, to address the risk of the first records in a time series being 
declared as anomalies, even if their values are not high enough, a practical 
solution is to run the algorithm on a warm-up period before initiating the 
extraction and detection of anomalies.  
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9.5.2 Multidimensional Abnormality Score 
 
To obtain a more comprehensive understanding of abnormal behaviors, it 
is preferable to develop a scoring system that takes into account all 
available features at a given point in time and generates an abnormality 
score reflecting the interaction between all variables (i.e., KPIs). Suppose 
that we have 𝑙 variables characterizing the status of a system over time, 
denoted by Ð𝑋_! , 𝑡 ≥ 1	and	i = 1,… , lÑ. As a first step, we define upper records 
in a multidimensional context using the following two definitions: 
 

1. ∀𝑡 ≥ 1, an observation 𝑋_	 = ]𝑋_$, … , 𝑋_9^ is considered to be an upper 
record if it is a record on at least one of the underlying dimensions. 
In other words, if there exists an ∃𝑖 ∈ {1, … , 𝑙} such that 𝑋_! > max

5r_
𝑋5!. 

This definition is referred to as the “At Least One-Based 
Multidimensional Record” (ALO) in the rest of this chapter. It is worth 
noting that this definition of records in a multidimensional context is 
introduced in Arnold et al. (2011; page 266). 
 

2. ∀𝑡 ≥ 1, the first step is to compute the Euclidian distance from the 
origin to the observation 𝑋_	 = ]𝑋_$, … , 𝑋_9^: 

𝑑_ = Òg]𝑋_!^
%

9

!2$

 

Then, based on the time series {𝑑_ , 𝑡 ≥ 1} instead of {𝑋_ , 𝑡 ≥ 1}, the 
abnormality score at time 𝑡 is computed in the same manner as in 
Subsection 6.5.1. This approach will be called the “Distance-Based 
Multidimensional Record”. However, this approach has a weakness in 
that it transforms the multidimensional data into one distance series, 
losing information about the impact of each underlying variable on the 
final abnormality score. Consequently, this approach cannot interpret 
the scores on a variable (KPI) level or determine the root cause of the 
anomaly. Since SMEs prefer models that can be used for both anomaly 
scoring and root cause analysis, the ALO approach will be the sole 
focus of the chapter going forward. 
 

Once the record series of the underlying multidimensional time series 
dataset has been collected using the ALO approach, the next step is to 
modify the abnormality score formula proposed in Subsection 6.5.1 to suit 
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the multinational context. Let {𝑋_ , 𝑡 ≥ 1} be the multidimensional time series 
that displays the behavior of 𝑙 KPIs over time. ∀𝑡 ≥ 1, we denote: 
 
Λ_ = ³𝑅# = (𝑅#$ , … , 𝑅#9 ), 𝑛 ≥ 1	such	that	𝑅#	is	the	𝑛_d	record	of	the	series	{𝑋! , 1 ≤ 𝑖 < 𝑡}Ë,	

Λ_∗ = Ð𝑅# ∈ Λ_	such	that	∃𝑗 ∈ {1, … , 𝑙}	with	𝑅#
5 ≥	𝑋_

5Ñ,	
Λ_,5∗ = Ð𝑅# ∈ Λ_∗ 	such	that	𝑅#

5 ≥	𝑋_
5Ñ	with	𝑗 ∈ {1, … , 𝑙},	

𝒟_,5 = Ð𝑅#
5 − 𝑋_

5 , such	that	𝑅# ∈ Λ_,5∗ Ñ	with	𝑗 ∈ {1, … , 𝑙},	

𝒟Ó_,5 = Ô
0, if	𝒟_,5 = ∅

Arithmetic	average	of	the	elements	of	𝒟_,5 	, Otherwise, with	𝑗 ∈ {1, … , 𝑙}. 

 
Then, for each observation 𝑋_ , 𝑡 ≥ 1 the corresponding abnormality score is 
given by: 
 

𝒮_ =

⎩
⎨

⎧
1, if	𝑋_	is	a	record

1

¾1 + CardΛ_
∗

CardΛ_
¿
c

1
1 + ∑ 𝒟Ó_,59

52$
e , Otherwise . 

 

9.6 Real-World Data Application 
 
The data analyzed in this research consists of 18 primary metrics (KPIs) 
that assess the quality of service provided by a virtual telecommunications 
network cell. These KPIs are consolidated hourly, resulting in 955 
observations in total, where each observation represents 1 hour of data.  
 
The KPIs include metrics such as Downlink and Uplink volume of data, 
Downlink and Uplink throughput, network availability, call setup success 
rate, and dropped call rate. These metrics play a vital role in measuring the 
efficiency and effectiveness of data transmission over the network, as well 
as the overall performance of the cell. 
 
Analyzing the dataset provides valuable insights into the virtual 
telecommunication network cell's performance and helps identify areas for 
improvement. For example, a high dropped call rate could indicate network 
congestion or other issues that need to be addressed by implementing 
corrective measures to enhance the quality of service offered to customers. 
In summary, the dataset used in this study presents a comprehensive view 
of the virtual telecommunication network cell's performance, empowering 
network operators to make informed decisions about resource allocation 
and optimize network performance to enhance the user experience. 
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To account for the specificities of telecom time series data, the KPI values 
have been standardized to fit within the interval [0,1] and transformed to 
give higher values a more alarming indication of abnormal behavior. 
Therefore, we are working within a space of dimensions [0,1]stt×$u, with a 
focus on the upper records for each of the underlying variables. It should 
be noted that when a KPI reaches the upper bound (e.g., KPI = 1), this 
observation is regarded as a new record. 
 
Before starting anomaly scoring, a feature selection process is undertaken 
using the methodology described in Section 6.4, where only the high and 
medium risk KPIs are considered, following the Yang and DTRW record 
models, respectively.  
 
 
 
Table I shows the selected KPIs and their corresponding risk levels in terms 
of anomaly detection. 
 

KPI Risk Level 

RRC_SR_RATIO 
High 

E_UTRAN_RRC_Conn_Stp_Failure_due_RRC_timer_expiry_RATIO 
High 

RACH_Stp_Completion_SR_RATIO 
Medium 

Total_E_UTRAN_RRC_Conn_Stp_SR_RATIO 
High 

E_RAB_QCI1_DR_RATIO 
Medium 

DCR_LTE_RATIO 
Medium 

LTE_INTER_ENODEB_HOSR_RATIO 
Medium 

E_UTRAN_tot_HO_SR_inter_eNB_X2_RATIO 
High 

DL_THROUGHPUT_RATIO 
High 

E_RAB_DR_RATIO 
Medium 

Table I: Risk level of the selected KPIs  
 
For each of the chosen KPIs, the one-dimensional abnormality score, 
developed in Subsection 9.5.1, is calculated and the kernel density function 
of the scores is plotted in Figure II. It is evident that the probability density 
functions are multimodal, and that the abnormality scores associated with 
each of the KPIs can effectively discriminate between observations classified 
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as normal and abnormal, using a threshold that can be determined by a 
simple descriptive analysis of the various distributions. Therefore, by 
establishing these score thresholds, an optimal corresponding KPI threshold 
can be recommended to SMEs to minimize classification errors. For 
example, consider LTE_INTER_ENODEB_HOSR_RATIO. Based on Figure II, 
the recommended abnormality score threshold is 0.7 (i.e., an observation 
with a score above 0.7 is deemed anomalous). A grid search technique is 
then applied to determine the optimal KPI value threshold, which is found 
to be 0.1131 (i.e., an observation with a KPI value above 0.1131 is 
considered anomalous), with a classification error rate of 5.23%. This is the 
first time that an anomaly detection algorithm has been able to propose a 
threshold for SMEs to consider, rather than the opposite. Results for all KPIs 
are presented in Table II. 
 
 
 
 

 



 136 

 
 

 
 

 
 

Figure II: Kernel density functions of the one-dimensional abnormality 
scores of each KPI. 
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KPI Score 
Threshold 

KPI Value 
Threshold Error % 

RRC_SR_RATIO 0.69 0.0103 1.47% 
E_UTRAN_RRC_Conn_Stp_Failure_due_ 
RRC_timer_expiry_RATIO 

0.85 0.0163 1.26% 

RACH_Stp_Completion_SR_RATIO 0.65 0.2693 2.83% 
Total_E_UTRAN_RRC_Conn_Stp_SR_RATIO 0.69 0.0103 1.47% 
E_RAB_QCI1_DR_RATIO 0.71 0.1492 2.30% 
DCR_LTE_RATIO 0.51 0.0854 0% 
LTE_INTER_ENODEB_HOSR_RATIO 0.7 0.1131 5.23% 
E_UTRAN_tot_HO_SR_inter_eNB_X2_RATIO 0 0.4835 5.13% 
DL_THROUGHPUT_RATIO 0.8 0.4414 0.31% 
E_RAB_DR_RATIO 0.6 0.241 0.21% 
Table II: One-dimensional anomaly score analysis 
 
To assess the relationship between all the KPIs and generate a single 
anomaly score that represents the behavior of all the underlying variables, 
we will use the ALO method discussed in Subsection 9.5.2. The graph in 
Figure III shows the kernel density function of the abnormality scores that 
were calculated. This distribution is bimodal, making it easy to distinguish 
between anomalies and non-anomalies without the need to estimate a 
threshold, unlike traditional anomaly detection models. Using this method, 
we identified 4.4% of observations as abnormal. 

 
Figure III: Kernel density functions of the ALO approach abnormality scores 
of each KPI.  
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9.7 Conclusion 
 
This chapter describes the use of records theory to create two methods. The 
first method reduces the number of variables in a time series to focus on 
those that have a significant impact on abnormal behavior. The second 
method proposes a scoring system for anomaly detection that can be 
applied in one or multiple dimensions. This system can objectively detect 
anomalies and suggest threshold values for KPIs without the need for expert 
input.  
 
The suggested anomaly detection scoring system is a simple algorithm that 
does not rely on any specific distribution or parameters. It is designed to be 
used as an online system for detecting anomalies with minimal 
computational complexity, and it eliminates the risk of overfitting. 
Additionally, the system can automatically estimate the threshold value 
needed to classify observations as anomalies, ensuring optimal 
performance of the algorithm. Furthermore, the algorithm was tested on 
real-world telecommunications data, and it demonstrated excellent 
performance in detecting anomalies with very low error rates. 
 
One possible application of this work is to conduct a more in-depth analysis 
of the anomaly scores in order to extract information about the underlying 
causes of the anomalies. Another potential direction is to explore the 
probabilistic properties of the different anomaly scores generated by the 
system, using records theory as a basis for analysis. This approach could 
be informed by the research conducted by Hoayek and Ducharme in 2017.     
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Chapter 10:  Conclusion and 
research perspective 
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In this thesis, we have investigated the existing anomaly detection 
algorithms and how we can contribute by developing new methodologies to 
improve performance and accuracy of detecting anomalies applied to time 
series data generated from telco networks. Through a series of deep 
mathematical and analytical research followed by multiple experiments on 
the data, we have made the following contributions to the field: 
 
1. Our research introduces a novel geometrical multidimensional 

probabilistic model for detecting abnormal behavior in data, 
generating anomaly scores, and quantifying anomaly drivers. This 
innovative approach enables more effective determination of the root 
causes of detected anomalies. We also propose a data-driven outlier 
scoring system to prioritize device anomalies and tackle data 
observations with a higher likelihood of being outliers. To enhance 
real-time performance, our model incorporates a sampling approach 
that accelerates scoring of new observations. When tested on real-
world datasets and compared to conventional AD methods, our new 
model demonstrates improved efficiency in detecting anomalies and 
identifying their drivers. Telecommunication network experts have 
validated the effectiveness of our approach, highlighting its potential 
for significantly enhancing network maintenance and management. 
 

2. We present a novel algorithm that extracts four features from 
historical alarms data and aggregates them to generate an optimized 
final score, informed by supervised labels for enhanced accuracy. 
These features capture the likelihood of event occurrence, event 
sequences, and the significance of relatively novel events not 
previously observed in the data. Prior to implementation, we test 
certain assumptions on the data using appropriate statistical tests to 
ensure validity. Our evaluation on labeled data demonstrates the high 
anomaly detection accuracy of our proposed algorithm. This 
innovative approach offers a valuable tool for NOC teams to efficiently 
process and analyze alarms data, enabling them to prioritize critical 
events and take timely action to address network anomalies. 
 

3. We present a novel algorithm that serves as a pipeline for 
preprocessing textual logs data, grouping it into patterns, and 
dynamically labeling each pattern as anomalous or non-anomalous. 
This innovative approach offers users and experts continuous, real-
time logs monitoring capabilities, facilitating the detection of 
anomalies and system failures that could impact network 
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performance. By applying our algorithm to real-world data, we 
demonstrate its effectiveness in processing and analyzing logs data 
for timely anomaly detection, ultimately providing a more robust and 
adaptable solution for network performance monitoring in an evolving 
technological landscape. 

 
4. We proposed a novel anomaly scoring system based on records 

theory, offering multiple advantages over current state-of-the-art 
models. Our research makes a significant contribution by presenting 
an innovative approach to anomaly detection and scoring that focuses 
on tail behavior, leading to more efficient and accurate network 
maintenance decision-making. The effectiveness of this approach is 
showcased through its application to a real-world dataset, 
highlighting its practical implications and potential for enhancing 
network performance management. 

 
Research Perspectives and Future Work 
 
This research has successfully demonstrated the effectiveness of various 
advanced anomaly detection models for efficient network performance 
management in telecommunication networks. While these models have 
shown promise in addressing the challenges of network maintenance and 
prioritization, there remain several potential areas for future exploration 
and development: 
 

• Integration of multiple data sources: Investigate the potential 
benefits of combining alarms data, logs data, and KPIs to develop a 
more comprehensive and robust anomaly detection model, 
aggregating the individual scores obtained in the different chapters 
and that leverages the strengths of each data type. 
 

• Adaptation to emerging technologies: As new communication 
technologies and network architectures continue to evolve, it will be 
essential to adapt and refine the proposed models to accommodate 
the unique challenges posed by these innovations. 
 

• Real-time processing and scalability: Explore strategies for optimizing 
the proposed algorithms' real-time processing capabilities to ensure 
their performance scales effectively with the ever-growing size and 
complexity of telecommunication networks. 
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• Automated root cause analysis: Develop methods for automatically 
identifying the root causes of detected anomalies to further 
streamline network maintenance processes and accelerate response 
times. 
 

• Advanced visualization techniques: Implement advanced visualization 
tools and techniques to improve the interpretability of the results 
generated by the proposed models, enabling network engineers to 
identify and prioritize issues requiring attention more easily. 

 
By addressing these challenges and building upon the existing research, 
future work in this area can further advance the field of network 
performance management and support the ongoing development and 
maintenance of increasingly complex telecommunication networks. 
 
In conclusion, this thesis has made significant contributions to the 
understanding of anomaly detection algorithms, while also highlighting 
areas for future research.  
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Résumé: 
 
La croissance exponentielle des réseaux de dispositifs 
connectés dans le monde entier signifie que les opérateurs 
de télécommunications ont besoin de systèmes intelligents 
et performants pour aider à maintenir leurs réseaux vastes 
et complexes. Pour répondre aux limites des modèles de 
détection d'anomalies (DA) les plus populaires, les auteurs 
proposent un nouveau modèle géométrique 
multidimensionnel probabiliste pour rechercher les 
comportements anormaux dans l'espace de données, 
générer des scores d'anomalie et quantifier les facteurs 
d'anomalie. Ils introduisent également un algorithme pour 
générer un score final basé sur quatre caractéristiques 
dérivées des données historiques pour les données d'alarme. 
En outre, ils présentent un algorithme pour aider à prétraiter 
les données textuelles, les regrouper en classes et étiqueter 
dynamiquement chaque classe comme une anomalie ou non. 
Enfin, ils proposent une méthode qui réduit la 
dimensionnalité et propose un système de score d'anomalies 
basé sur la théorie des records. Dans l'ensemble, leurs 
recherches fournissent des méthodes innovantes pour 
détecter et prioriser les anomalies dans les réseaux de 
télécommunications et fournir des outils puissants pour 
l'analyse de données et la maintenance du réseau. 


