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Présentation de la thèse

La fabrication de ballons d’eau chaude implique la production d’un produit complexe composé

de divers éléments qui subissent de multiples soudages manuels et automatiques. La qualité des

soudures est cruciale pour assurer la qualité globale et la durabilité du produit final. Par conséquent,

l’inspection de la qualité des soudures joue un rôle essentiel dans cette industrie. Cependant, ceci est

souvent encore effectué à l’aide de méthodes traditionnelles d’inspection de la qualité qui reposent

principalement sur l’inspection humaine. Néanmoins, ces méthodes d’inspection sont chronophages

et sujettes à un taux élevé d’erreurs.

Une solution potentielle pour surmonter les problèmes des techniques d’inspection classiques est

l’utilisation de l’apprentissage automatique. Ces dernières années, les algorithmes d’apprentissage

statistique et automatique ont attiré une attention considérable dans l’industrie manufacturière

et sont utilisés pour diverses tâches, telles que l’optimisation de la chaîne d’approvisionnement,

la prévision de la demande, l’optimisation des processus et la détection des défauts. L’objectif

principal de ce travail de recherche est le développement de systèmes de détection et de diagnostic

des défauts de soudage utilisant l’apprentissage statistique et automatique en exploitant les signaux

des variables de soudage capturés lors des processus de soudage automatique ainsi que des images

du cordon de soudure final.

L’utilisation de l’apprentissage automatique pour la détection des défauts de soudage peut être

particulièrement difficile dans le contexte du soudage des ballons d’eau chaude pour de nombreuses

raisons, telles que la dynamique complexe du soudage, la diversité des procédés de soudage utilisés

et le large éventail de défauts qui peuvent avoir lieu. Nous proposons dans cette thèse des approches

qui répondent à ces défis, dans le but de développer des systèmes destinés à être utilisés pour la

détection en temps réel des défauts de soudage dans la fabrication des ballons d’eau chaude.

Après avoir étudié la faisabilité de la détection des défauts à partir des signaux de soudage,

nous avons proposé une approche basée sur le One-Class SVM et les noyaux de substitution de

la distance. Cette approche ne nécessite que des données de soudures sans défaut dans la phase

d’apprentissage, ce qui surmonte le problème du manque d’étiquettes, car elle peut détecter toute

anomalie des signaux des variables de soudage. De plus, l’approche proposée fonctionne avec les
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signaux bruts et détecte les anomalies en fonction de leurs distances aux données normales, ce

qui facilite la généralisation sur des signaux de différents types provenant de différents procédés

de soudage. En plus de la détection d’anomalies, nous avons également proposé une approche de

diagnostic basée sur la classification des sous-séquences anormales des signaux.

Une autre approche est proposée où nous avons étendu la transformée de noyaux convolutifs

aléatoires au problème de détection d’anomalies. L’approche utilise cette transformée pour détecter

et expliquer les anomalies dans des séries temporelles, ce qui peut assister dans le diagnostic des

défauts. En plus des signaux de soudage, nous proposons également un système qui détecte les

défauts à partir des images de la soudure. Nous avons conçu un système d’acquisition d’images et

entraîné un réseau neuronal capable de localiser et de classer les défauts de soudure.

Cette thèse a été effectuée en partenariat avec elm.leblanc, une entreprise du groupe Bosch, dans

le cadre d’une convention Cifre.
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General Introduction

Context

Hot water tank manufacturing involves the production of a complex product composed of various

components that undergo multiple manual and automatic welding processes. The quality of the

welds is crucial for ensuring the overall quality and durability of the final product. Consequently,

weld quality inspection plays an essential role in this industry. However, it is still often performed

by traditional quality inspection methods that primarily rely on human inspection. Typically,

the welds are inspected visually by the operator after each welding cycle and by a final liquid

penetrate testing at the end of the manufacturing process. Because of the small size that welding

defects can have, the large number of welds to inspect, and the required expertise to detect welding

defects, human visual inspection becomes time-consuming and error-prone, resulting in reduced

efficiency. Moreover, welding defects that are not detected by the operator at a given stage of the

manufacturing process will lead to a nonconforming final product that will eventually be detected

at the final test. In such cases, the entire product must be discarded, leading to high scrap costs

and possible negative impacts on the environment. Additionally, there are cases in which the defect

is not detected by the final test. The consequences in this scenario may prove to be considerably

more severe, as the product would be shipped back by the client, resulting in high logistics costs.

A potential solution to overcome the shortcomings of classical inspection techniques is the use of

machine learning. In recent years, statistical and machine learning algorithms have gained signifi-

cant attention in the manufacturing industry and are used for various tasks, such as supply chain
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GENERAL INTRODUCTION

optimization, demand forecasting, process optimization, and defect detection. The primary objec-

tive of this research work is the development of automatic welding defect detection and diagnosis

systems using statistical and machine learning in the case of hot water tank manufacturing.

A background on the manufacturing of hot water tanks

The manufacturing process of hot water tanks consists of multiple stages. The essential steps are

shown in Fig. 1. Initially, two sub-processes are involved in transforming two initial pieces, which

are stainless steel metal sheets and tubes. Part of the metal sheets is dedicated to producing the

caps by a deep-drawing process, while another part is rolled to create the ferrule. Subsequently,

the ferrule (cylinder) is welded with a longitudinal welding machine before joining a muff at one of

its ends by another welding machine.

On the other side, the tubes are bent and rolled to create sticks and coils. Each two coils are

assembled by an orbital welding process to make the heat exchanger. Finally, a small piece called

the nipple is welded at the ends of the sticks and the coils.

The last two welding processes constitute the stages where all previously manufactured parts are

assembled. First, the coils and rods are placed inside the ferrule, and the assembly, consisting of

two caps and the equipped ferrule, is put into a machine that assembles them by welding. The

final welding process fixes the tubes to the ferrule with a robotic welding arm, which forms the hot

water tank connections.

There are numerous welding types, each possessing its own advantages and application range.

Concerning the manufacturing of hot water tanks, arc welding is used for all the welding processes

presented above. Arc welding is a family of welding techniques that use the heat produced by an

electrical arc to melt and fuse the pieces. The preference for arc welding in the context of the

manufacturing of hot water tanks arises from its suitability for joining thin sheets of stainless steel.

Fig. 2 illustrates arc welding in its basic form. The electric arc is created between an electrode

and the workpiece, which produces sufficient heat for the fusion of the pieces. Shielding gas is often

used to protect the weld area from contamination. The shielding gas can be an inert gas, such as

2
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Figure 1: The manufacturing process of hot water tanks.

argon, helium, or a mixture of both. In some cases, an active gas, such as carbon dioxide, can be

used as the shielding gas.

As noted, there are different types of arc welding techniques, such as Shielded Metal Arc Welding

(SMAW), Gas Metal Arc Welding (GMAW), Flux-Cored Arc Welding (FCAW), etc. The choice

of arc welding method depends on the type of metal being welded, the thickness of the pieces, and

the specific application requirements. The types of arc welding used in the manufacturing of hot

water tanks will be described later in the manuscript.
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Figure 2: An illustration of the arc welding process.

A background on welding defects

Due to the range of welding techniques and the multitude of factors that impact the welding process,

a broad spectrum of welding defects can occur. Fig. 3 gives an illustration of some welding defects.

The lack of penetration indicates that the gap between the two pieces is not completely filled. This

can occur when the heat level is low or when the size of the electrode is not adequate. Cracks, on

the other hand, are fractures that can be caused by high stress levels or improper cooling. Porosities

are small holes that are formed in the weld pool resulting from gas bubbles that do not escape the

weld pool. This defect can be caused by unclean pieces or high welding speed. Burn-through is

a penetration through the pieces being welded, which can be caused by a high level of heat, low

welding speed, or misalignment between the pieces. Misalignment is also an undesirable event even

without the presence of burn-through, as it reduces the durability of the weld.

There are many other welding defects that can occur, which, among other reasons, makes auto-

matic welding defect detection a challenging subject.
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Figure 3: Some examples of welding defects illustrated from the front view of welded pieces.

Objectives of the research work

The primary objective of this research work is the development of automatic welding defect detection

and diagnosis systems using statistical and machine learning by leveraging the signals of the welding

variables that are captured during the automatic welding processes. Additionally, the research work

explores defect detection from weld images acquired after welding has been completed.

The use of machine learning for automatic welding defect detection is particularly challenging in

the context of hot water tank welding for numerous reasons, namely:

• The complex dynamics of the welding operation: this could make differentiating be-

tween a good and a defective weld difficult.

• The diversity of the welding processes used in the manufacturing of this product:

this suggests that a machine learning model used to detect defects in a given process might
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not be adequate to detect defects in another welding process.

• The diversity of the welding defects: as evoked earlier, a wide range of welding defects

can occur. Hence, labeling data can be a time-consuming and expensive task, especially if

deliberately made defects are needed for this purpose.

• The quality of the data: in an industrial environment, it can be difficult to acquire data

without external interference, which can make defect detection challenging.

This thesis proposes approaches that specifically address these challenges, with the aim of devel-

oping systems intended to be utilized for real-time welding defect detection in the manufacturing

of hot water tanks. Hence, in addition to the discussed challenges, the approaches must also satisfy

the criteria of accuracy and inference time. Moreover, a research question that is addressed in this

work is the possibility of predicting the defect’s root cause from the welding data.

Organization of the manuscript

This thesis is organized as follows:

In Chapter 1, we study the feasibility of an automatic burn-through detection in the circular

welding process, which is one of the most observed welding faults in the manufacturing of hot water

tanks. We begin by reviewing the techniques used in the literature for automatic welding defect

detection. We then propose a method for burn-through detection and localization. Additionally,

we study the root causes of this defect and explore the possibility of an automatic diagnosis and

root cause extraction from welding signals.

In Chapter 2, we treat the problem of detecting any welding abnormality based on the concept of

semi-supervised time series anomaly detection. This addresses the challenges of the lack of labels

and the problem of generalization to different welding signals. Moreover, we propose in this chapter

an automatic diagnosis of welding anomalies using a classification approach.

In Chapter 3, we propose an approach to the problem of welding defect detection that can

produce an explanation about why an anomaly is detected as such, which may be used as a tool
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for root cause extraction. Furthermore, an approach is proposed that also addresses the problem

of generalization to different welding signals.

In Chapter 4, we address the problem of welding defect detection through weld images. We begin

with a literature review of computer vision-based defect detection. We then present the developed

image acquisition system and the adopted approach used for the defined objectives.
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CHAPTER 1. STUDY OF THE BURN-THROUGH DETECTION IN THE CIRCULAR
WELDING

1.1 Introduction

In this first chapter, we are interested in studying and exploring welding signals in the circular

welding process. Our aim in this study is to explore the possibility of developing automatic burn-

through detection through welding signals. Moreover, we are interested in studying the root cause

of the burn-through in this process and the feasibility of an automatic root cause extraction from

the welding signals.

The circular welding machine employs Tungsten Inert Gas (TIG), also called Gas Tungsten Arc

Welding (GTAW), which is a type of arc welding used to produce high-quality welds on most

materials such as steel, stainless steel, aluminum, and nickel alloys and is in use in different sectors

such as aeronautics and automobile industry. During this welding process depicted in Fig. 1.1, an

electrical arc is created between a non-consumable tungsten electrode and the workpiece to produce

the required heat for the fusion. The protection of the weld pool from contamination and oxidation

is assured by an inert gas such as argon or nitrogen. GTAW can be used with or without the filler

wire depending on the application and is highly known for its suitability for the assembling of thin

parts.

Like any welding process, GTAW is subject to defects such as lack of penetration, porosity,

Figure 1.1: Illustration of the TIG welding (Antonini (2014)).
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WELDING

and burn-through. In the circular welding of hot water tanks, the latter is the most commonly

encountered fault. The inspection of the circular weld is performed visually by the operator at the

end of the process. However, due to the large number of tanks produced and the difficulties in

inspecting the whole welding seam around the perimeter of the water tank, this procedure is time

demanding and can be prone to errors. Our objective in this chapter is to study the electrical signals

acquired during this welding and explore the possibility of automatic burn-through detection.

The process of circular welding is depicted in Fig. 1.2. It is carried out by a semi-automatic

machine, which simultaneously performs the welding of the two caps of the hot water tank with the

cylinder. During the circular welding process, the tank rotates at a constant speed, whereas the

two torches are immovable. The wire is automatically fed to the pool at a constant speed and the

welding is conducted using a constant current or pulsed current depending on the type of the tank

to be welded. We study in this chapter two types of hot water tanks that are made respectively of

austenitic and duplex stainless steel. Information on the nominal values of the process variables of

each type is given in Table 1.1.

Two sets of signals per tank are acquired in real-time, which consist of current, voltage, and wire

feed speed for each of the two welds. The sampling rate is fixed at 25 Hz and the acquisition is

done by WeldQAS data acquisition device to which are connected the sensors as Fig. 1.2 shows.

We obtain signals consisting of 2800 and 1700 points respectively for the austenitic and the duplex

hot water tanks.

We noticed that the voltage is the variable that contains most of the information regarding the

arc behavior during welding. For both types of tanks, the current signal is nearly constant. This is

due to the fact that the current is produced by the generator and has only a minor interaction with

the welding operation in this specific welding process. We also found that the wire feed speed is

very often not informative for the detection of burn-through. Fig. 1.3.(a) shows the three signals of

a good weld of an austenitic tank, and Fig. 1.3.(b) shows the signals of a weld with burn-through.

Table 1.1: Information on welding parameters.

Current type Current (A) Voltage (V) Wire speed (m/min)
Duplex Pulsed at f=7Hz 190 10.5 8

Austenitic Constant 180 10 8.5
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Figure 1.2: Illustration of the setup of the circular welding process.

As discussed above, the current and the wire feed speed are approximately the same for the two

welds, while the voltage signals are different. We noticed that the burn-through in this process

is indicated by peaks in the voltage signal. This is because the voltage is correlated with the arc

length. As a consequence, when the arc lengthens because of a hole in the weld seam, the voltage

increases rapidly. In the considered example, the burn-through is highlighted in red in Fig.1.3.(b)

around the 20th second. According to the morphology of the burn-through, the peaks can have

variable duration and amplitude. Moreover, despite the fact that the welding of the two caps is

simultaneous, the presence of a burn-through on one side does not indicate its presence on the

other. In fact, a burn-through is frequently observed on only one side at a time.

An important observation that must be taken into account for the development of an adequate

method for burn-through detection, is that welding voltage signals can be nonlinear and non-

stationary because of the complex dynamics of the welding operation (Bingul et al. (2000)). Often,

the voltage signals of the circular welding process are non-stationary. To show this, we apply
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Figure 1.3: Examples of signals of a defect-free weld (a) and a weld with a burn-through (b).

the Augmented Dickey-Fuller to test stationarity against the null hypothesis that the time series

has a unit root, which implies the non-stationary. The p-value of this test for the signal of good

weld shown in Fig.1.3.(a) is equal to 0.5626. Therefore, the null hypothesis of the Augmented

Dickey-Fuller test is accepted, which verifies that the voltage signal of the circular welding can

be non-stationary. This has the implication that the burn-through peaks can have a value that is

within the usual values of the signal.

In our exploratory analysis, we also found that in the case of welding with pulsed current, we also

noticed that the pulse frequency is found in the voltage signals. This is shown by the periodograms
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Figure 1.4: Periodogram of the voltage and current signals in the case of welding duplex water
tanks.

in Fig. 1.4 where we see that the component at 7Hz is shared by both the current and the voltage

signals.

In this work, we would like to detect burn-through in a two-level procedure, as depicted in Fig.

1.5. In the first level, we want to detect if there is a burn-through in the signal. If yes, in the

second stage, we want to localize the burn-through by analyzing segments of the signal by a moving

window. This procedure is adopted because we do not only want to detect burn-through in real-

time, but we also want to make use of the historical signals to learn more about this defect in

the considered process, namely by studying the signatures of the burn-through and its localization.

We then need the detection method to be both fast and accurate. A part of the efficiency is then

achieved by abandoning the uninteresting signals at the first stage, which would help accelerate the

study.

Our work in this chapter is summarized as follows:

• We propose a fast and accurate method for burn-through detection based on signal filtering,

probability density distribution, and the use of a functional data classifier.

• We conduct a study on the defect root cause and the information carried out by the signal

with the aim of exploring the possibility of automating the root cause extraction from the

welding signals.
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Figure 1.5: The proposed procedure for burn-through detection and localization.

• Based on root cause analysis, we propose solutions to prevent the burn-through occurrence.

• We show that in some cases, it is possible to anticipate the occurrence of the burn-through

from the welding signals.

The chapter is organized as follows: in Section 1.2 we review relevant works about welding defect

detection through the welding signals. We present the methods and materials in Section 1.3. The

results of the proposed methodology along with a comparative study are given in Section 1.4. In

Section 1.5 we conduct a study about root cause analysis, and we finish by conclusions.
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1.2 Literature review on welding defect detection

Many efforts have been made to propose methods for welding quality evaluation and defect detec-

tion, mainly through the signals of welding key parameters such as voltage and current, which were

found to correlate to the seam quality in arc welding processes (Sumesh, Nair, et al. (2018)). The

techniques from the literature can be grouped into two main categories: Statistical Process Control

and Machine Learning.

1.2.1 Statistical process control

The classical statistical process control (SPC) approaches were used in several recent works for the

problem of welding defect detection. For instance, Z. Zhang, X. Chen, et al. (2014) use the control

chart technique in the time and the frequency domain for the online detection of three forms of

welding faults under pulsed GTAW. In the time domain, the pulse interference is eliminated with the

help of the wavelet transform, then the variance of each segment of the filtered signal is monitored

with the mean control chart. In the frequency domain, the root-mean-square is defined as the key

feature and is monitored for each preset frequency band of the spectral density. It was found in their

study that the voltage in the time domain has more sensitivity to the welding quality. Thekkuden

et al. (2018) employed control charts to investigate their ability to detect porosity in GMAW under

short circuit transfer mode. The mean and the standard deviation of voltage transient segments are

computed and monitored by the control chart. The technique showed good results in detecting this

type of welding defect. Guo et al. (2016) combine the Shewhart control chart with the Mahalanobis

distance in order to monitor the quality of ultrasonic welding of lithium-ion batteries. However,

the main disadvantage of control charts is the fact that they make assumptions about the data that

are not always met such as normality and independence.

1.2.2 Machine Learning techniques

Machine Learning (ML) algorithms have gained considerable interest in the subject of welding

defect detection. For instance, Pal et al. (2008) proposed a method named Neuro-wavelet, which

16



CHAPTER 1. STUDY OF THE BURN-THROUGH DETECTION IN THE CIRCULAR
WELDING

combines features obtained with wavelet transform on the current signal and the use of an Artificial

Neural Network (ANN) to predict the tensile strength of weld joints. Sumesh, Nair, et al. (2018)

studied the correlation of the current and voltage signals to the welding quality and constructed

a decision tree model from 12 statistical features extracted from the raw signals. Under GMAW,

Y. Huang, D. Yang, et al. (2020) developed a Support Vector Machine (SVM) classifier based on

the multiscale entropy of the current and voltage signals to classify welds into four groups: porous,

good, uneven, and spatter welding seams. The accuracy of the classifier was improved using the

genetic algorithm for the optimization of the SVM parameters, which led to a final accuracy of

92.36%.

After observing that the waveforms in the voltage signal are irregular when there is porosity in

the weld, Shin et al. (2020) extracted 12 statistical features to assess the regularity of the voltage

signals in a GMAW process and studied the correlation between these features and the porosity

rate. Based on the correlation, 6 features were then retained to develop a neural network to

automatically detect porosity. Y. Huang, X. Wang, et al. (2021) used local mean decomposition to

decompose the current signal into a series of product functions and employed multiscale entropy

of a set of the latter to train a deep belief network to classify the signals into four categories:

surface porosity, poorly formed, well-formed, and wider weld. Jin, Shin, et al. (2020) transform

the current signal acquired during GMAW into scalograms using Morlet wavelet transform and

use a convolutional neural network to detect under penetration. Jin and Rhee (2021) extracted 24

features from both voltage and current signals from time and frequency domains, which were used

afterward to develop an ANN to predict the gap between the pieces during welding. K. Chen et al.

(2019) used 6 features from current, voltage, and energy to train an XGBoost model to predict the

coefficient of penetration that they defined as the ratio of penetration depth to the plate thickness.

Y. Li et al. (2022) proposed an incremental learning approach based on linear SVM and 13 features

extracted from voltage and current signals to detect defects in Cold Metal Transfer (CMT) welding.

Moinuddin et al. (2021) used statistical features from current and voltage signals and trained an

SVM and decision tree models to detect porosity, burn-through, and lack of penetration. Arabaci

et al. (2019) pointed out that the use of statistical characteristics extracted from current signals of

the GMAW may fail to capture the difference between categories of welding data. Based on this

statement, they attempt to categorize welding defects based on the use of Principal Component
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Analysis (PCA) on raw current signals. Thirty experiments composed of six categories of welding

were conducted and the acquired current signals are reduced by PCA. The scores obtained from

the projection of signals on several first eigenvectors were classified using SVM, decision trees, and

k-Nearest Neighbors (k-NN) whose accuracy was the highest.

In addition to welding electrical signals, arc sound was found informative of the welding quality

(Sumesh, Rameshkumar, et al. (2015)). Pernambuco et al. (2019) suggested the use of ANN for

the classification of sound signals into three welding conditions; good weld, with oil, and without

shielding gas under GMAW. The classification was studied for different modes of metal transfer,

and the results showed higher accuracy of the trained ANN when the welding is carried out with the

short circuit transfer mode. He et al. (2019) proposed a strategy where real-time acquired sound

signal segments are transformed by synchrosqueezed wavelet transform to get the time-frequency

distributions, which are reduced by the PCA afterward. The approximate entropy computed from

the obtained principal components was used as a feature vector for the training of an SVM model.

Cocota Jr et al. (2017) used wavelet transform and Fourier transform to extract features from sound

signals to train ANN and SVM models for the detection of discontinuities during the Shield Metal

Arc Welding Process. W. Ren et al. (2020) proposed to transform the sound into a Time-Frequency

spectrogram and the use of a convolutional neural network to classify the penetration level of the

welding.

Instead of using only welding parameters’ signals or only the sound signals for defect detection,

Z. Zhang and S. Chen (2017) defined a strategy to identify penetration quality based on the fusion

of multi-sensor data. Arc sound, voltage, and light signals were used in their study. The extracted

features from each signal are combined to train an SVM model with 10-fold cross-validation. The

data fusion model was compared to models trained from each sensor data separately and was found

more accurate, with an accuracy of 96.5% against 92% when using only the sound signal. Cui

et al. (2020) carried out another recent work based on multi-sensor data fusion. They use the

combination of current, voltage, and sound signals in order to identify the lack of penetration, full

penetration, and excessive penetration in Keyhole TIG welding. The features extracted from the

signals were reduced using principal component analysis. The accuracy of the SVM model used

for the classification was found dependent on the retained number of principal components. Surovi

et al. (2022) extracted multiple features from the sound signal such as energy, mean, and kurtosis,
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and combined them with process parameters to detect welding defects.

Despite the conducted works, real-time welding quality control remains a difficult task due to

the complexity of the physics of welding and the interdependence between its different parameters

(Mirapeix et al. (2007)). The ML models for welding defect detection are often based on the

classification of some statistics extracted from the welding signals. This methodology might fail

because the statistical features may not accurately capture the difference between defect-free and

defective welding signals in real industrial processes (Arabaci et al. (2019)) mainly when the length

of the signal is high. Moreover, most of the studies are done on deliberately made defects, which

may not reflect the real behavior of the welding process. Furthermore, as the defects are often

deliberately made, there is a lack of root cause studies in most of the works.

1.3 Methods

In order to overcome the shortcomings of the existing methods that are relying on the classification

of the welding signals from some features extracted from them, which might fail to distinguish

between defect-free and defective weld signals. We propose in our work to classify the signals based

on their probability density distribution (PDD). This is motivated by our first observations that

the burn-through appears as peaks in the signals. Hence, when working with the PDDs of the

signals, we expect them to exhibit heavy tails when there is a burn-through, which makes the PDD

an interesting discriminatory characteristic of the signals. To that end, we use Kernel Density

Estimation to estimate the PDDs of the signals and the functional non-parametric kernel classifier

to classify the PDDs.

1.3.1 Kernel Density Estimation

Kernel Density Estimation (KDE), also called Parzen estimator, proposed by Parzen (1962), is the

most used non-parametric method for estimating the probability density distribution (PDD) of a

given independent and identically distributed (i.i.d) univariate sequence. It is given by the following
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equation:

P̂DD(x) =

∑n
i=1 K(h−1(x− xi))

nh
(1.1)

where:

• K: The kernel function,

• x: The point where density is estimated,

• h: The bandwidth (also called the smoothing parameter),

• n: The length of the sample,

• x1,. . . ,xn The i.i.d sample, which is a preprocessed signal in our case.

The bandwidth value determines the resolution of the density distribution function. The larger

the value of the bandwidth, the more the PDD is smooth. This parameter is more important than

the kernel type in the KDE method (Węglarczyk (2018); Kamalov (2020)). Several techniques

exist for the estimation of the optimal value of the bandwidth h. In our study, we consider the

optimal bandwidth value to be the value that leads to the highest classification accuracy. The

Gaussian kernel is the most used for the estimation of the probability density distribution because

it is distributed over the whole x-axis, which makes it the most suitable for KDE (Węglarczyk

(2018)) and will be then used in our study. After estimating the PDD of the signals, we use the

functional non-parametric kernel classifier in order to classify them.

1.3.2 Functional non-parametric kernel classifier

Ferraty et al. (2003) introduced the non-parametric functional data classifier that we use in this

study, which is based on distances between functional observations and the use of a kernel function

to determine the posterior probabilities that a new curve belongs to one of the predefined classes.

Let Yi be a categorical response taking values in Ĝ= (1,..,G) and Xi the associated functional

observations, which is in our case PDDs. The probability that a new functional observation X
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belongs to the class g in Ĝ is given by the following estimator:

P̂ (g|X) =

∑n
i=1 1Yi=g ×K(h−1d(X,Xi))∑n

i=1 K(h−1d(X,Xi))
(1.2)

where:

• P̂ (g|X): The posterior probability that a curve X belongs to class g,

• K : The kernel function,

• h: The smoothing parameter,

• 1Yi=g: The Heaviside function that equals 1 when the curve Xi belongs to class g,

• d(X,Xi): Distance between the PDD X and the PDD Xi with i=1,. . . ,n, where n is the

number of the training curves). We use the Euclidean distance (L2) in our classification

problem, which is given by:

||X −Xi||2 =

√√√√ 1∑m
j=1 w

j

m∑
j=1

(|Xj −Xj
i |)2 × wj (1.3)

where:

• w: A vector of weights having the same length as the functional observations,

• m: The length of the functional observations.

We choose the L2 distance since we classify the PDDs and not the original signals. The PDD

aligns the signals since it does not take into account the time. Thus, we do not need a distance

measure intended for the alignment. To show that, consider two simulated signals f1 = sin(2πt)

and f2 = sin(π(2t − 0.5)), which is exactly f1 with a phase shift of 0.5π. Fig. 1.6 shows the two

signals and their PDDs. We notice that the PDDs of the two signals are aligned, which confirms

the suitability of the L2 distance.

Usually, the Kullback-Leibler divergence is used to measure dissimilarity between PDDs. How-

ever, for our particular problem, the L2 distance is well-suited because we are only interested in

detecting if a PDD has a heavier tail compared to PDDs of defect-free signals.
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Figure 1.6: The two sinusoidal signals and their PDDs.

The classifier in Eq. 1.2 is based on Bayes theorem and is a generalization of the one proposed

by Hall et al. (2001) who formulated the problem of curve discrimination in terms of the posterior

probability estimation where
∑n

i=1 1Yi=g × K(h−1d(X,Xi)) is the likelihood that a new curve X

belongs to a given class g. They used a uniform prior equal to 1
number of classes . The arguments that

motivate our choice for this classifier is that Hall’s classifier uses the projection of the curves, into a

basis to be chosen, for the classification, whereas the classifier in Eq. 1.2 uses directly the original

curves, which means that it avoids the loss of information due to the projection and the problem

of selecting the proper projection basis.

The idea behind this classifier as explained by Ferraty et al. (2003) is that in order to obtain the

posterior probability that a curve belongs to a given class g, we only need the curves of the class

g from the training data at a distance of at most h from X (i.e d(X,Xi∈g) ≤ h). The likelihood

increases with the closeness between X and Xi∈g. The curve is then assigned to the class Ŷ h = g
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where P̂ (g|x) is the highest:

Ŷ h = argmax
g

(P̂ (g|X)) (1.4)

Where h is the used value of the smoothing parameter in the posterior probability computation.

This classifier is built by optimizing the value of h, which is done by minimizing the error criterion

defined for a given training sample I of pairs (Xi, Yi)i∈I by the equation:

E(h) = 1− 1

|I|
∑
i∈I

1Yi=Ŷ h
i

(1.5)

Where:

• |I|: The number of elements in I,

• Yi : The real categorical response of the curve Xi,

• Ŷ h
i : The predicted categorical response of the curve i using the bandwidth value h,

• 1Yi=Ŷ h
i

: The Heaviside function that equals 1 when the predicted categorical response of a

curve Xi is correct.

The minimization of E(h) is then done by cross-validation, which produces an optimal smoothing

parameter hopt and a minimum classification error E(hopt).

Finally, we note that with the normalization factor
∑n

i=1 K(h−1d(X,Xi)), the estimated probabil-

ities satisfy the rule of total probability:

G∑
g=1

P̂ (g|X) = 1 (1.6)

To give an illustration of the method, consider the example shown in Fig. 1.7. For an incoming

curve in a binary classification problem, the posterior probability P̂g is estimated as the ratio

between the likelihood, which is the sum of smoothed distances (by the kernel) between X (the

incoming curve) and the curves Xi of the class g at most h from X, and the sum of smoothed

distances between X and all Xi at most h from X. For a numerical application, we use the Gaussian

kernel and h = 1 for this example. The likelihood that the incoming curve belongs to the class
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Figure 1.7: An example of classification using the non-parametric kernel classifier.

1 (in red)
∑15

i=1 1Yi=1 × K(h−1d(X,Xi)) is equal to 0.844 whereas the likelihood that it belongs

to class 2 (in black)
∑15

i=1 1Yi=2 ×K(h−1d(X,Xi)) is equal 2.055. The posterior probabilities are

then estimated as the odd ratio: P̂ (Y = 1|x) = 0.844
2.90 = 0.291, P̂ (Y = 2|x) = 2.055

2.90 = 0.709. As

discussed above, the incoming curve is assigned to class 2 where the posterior probability is the

highest. Overall, the classifier can be seen as a probabilistic extension of the classical k-nearest

neighbors classifier.

1.3.3 Pipeline of burn-through detection

As discussed in the introduction, the problem of welding burn-through detection and localization

requires a method that captures the presence of sudden peaks in a signal and extracts the part

where they appear. The central idea of our methodology is the use of the PDDs estimated from the

signals to detect and localize the defects. If the signal is stationary, the defect peaks will appear at

the tails of the PDD regardless of where they are in the signal thanks to the alignment obtained by

the PDD as shown in the methods section. This holds whether we work with the whole signal or

a segment of it. Hence, we can use the two-stage approach where the first stage detects if a signal

contains peaks that indicate a burn-through, if yes, the signal is segmented and each segment is

processed in the second stage to localize the peaks.

Based on the above analysis, we define the adopted methodology for data processing and classi-
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Figure 1.8: Diagram of the adopted methodology for defect detection and localization.

fication in Fig. 1.8. In the first stage, we are interested in predicting if a signal is generated from

a defective or defect-free weld. For this purpose, we begin by eliminating the high frequencies and

the trend from the signal in order to make it stationary, which can be achieved using a pass band

Butterworth filter. We want the signal to be stationary in order for our assumption that the PDDs

of defective weld signals having a heavy tail, because of the burn-through peaks, would hold. The

PDD composed of 64 points is afterward obtained from the filtered signal using the KDE method

with the Gaussian kernel and a value of the bandwidth leading to the highest classification accuracy.

The PDD is then classified using the functional classifier as either corresponding to a good or a

defective welding signal.
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In the second stage, we seek to find the part of the signal where the burn-through occurred as

follows: if a PDD is classified as non-conforming, the corresponding signal is split into segments of

200 points (corresponding to 8 seconds) using an overlapping sliding window moving by 100 points.

The size of the window was determined by observation, ensuring that a defect is always captured by

the window. PDDs estimated from each signal segment are then classified as either containing the

burn-through or not, which will allow us to detect the part of the signal where the burn-through

occurred. The filter is not needed in this stage because of the small length of the signal segments.

1.4 Results and discussion

1.4.1 Preliminary study of the methodology

An example of a processed signal according to the defined methodology of each of the two categories

of the austenitic hot water tanks is shown in Fig.1.9. The passband filter removes both high

frequencies and the dominant trend components from the original signal. The PDD of the good weld

shows that the signal is centered in the range of 10-10.8V whereas the PDD of the nonconforming

weld shows contributions of values at the right tail of the distribution, which indicates the presence

of the defect peaks in the signal. Note that the logarithmic transformation is needed in order to

highlight these small values in the PDD.

To verify the discrimination ability of the methodology, we apply the Functional Principal Com-

ponent Analysis (FPCA) on a set composed of 10 PDDs of signals of good welds and 10 PDDs of

signals of defective welds carried out on duplex tanks. The FPCA gives the two principal functions

and the variation projection shown in Fig. 1.10. The principal function 1 captures 63.4% of the

variations in the curves. The PDDs having a positive variation with respect to this function have

a higher density of values that are far from the mean. Knowing that trends were removed from

the original signals, this indicates the sudden fluctuations or peaks in the original signal that are

the result of the disturbance of the electric arc when the defect occurs. The second function shows

the variation in the standard deviations of signals; curves with negative variations have a smaller

standard deviation. We notice that the PDDs of defective welds (marked in red) are naturally
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discriminated from those of defect-free, as can be seen from the projection on the two FPCA func-

tions in Fig. 1.10. This shows the ability of the probability density distributions to categorize the

welding quality. We also notice from the FPCA functions that the PDDs of good welds and those

of welds with burn-through are different almost over the whole voltage axis. Hence, in the distance

computation for the classification, we use no specific weights. The weight vector in Eq 1.3 is then

fixed to wj = 1 ∀j.

Figure 1.9: Example of processed signals according to the proposed methodology. The PDDs are
log-transformed.
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Figure 1.10: (a) The first FPCA function. (b) The second FPCA function and the variation
projection (c).

1.4.2 Results

We consider in this study 160 signals generated from the welding of austenitic tanks (equivalent

to 80 tanks) and 300 signals when welding duplex tanks. For each of the two data sets, half the

number of the signals corresponds to welds with burn-through. As for the creation of classification

models, 70% of the total number of signals are used for training, while the remaining 30% is for

testing.
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Following the methodology described in Fig. 1.8, two functional kernel classifiers are created

using the Gaussian kernel and values of bandwidth h optimized on the training data. The first

model classifies the PDDs of the austenitic tanks’ welding signals, and the second classifies those

of the duplex tanks’ signals. In what follows, the classifiers are called classifier A and classifier

D for clarity (A for Austenitic and D for Duplex). Table 1.2 and Table 1.3 give the results for

the training and the test of the models. No misclassification of the austenitic tanks signals and

only one duplex tank signal is misclassified in the test data for the second model, resulting in an

accuracy of 100% and 98.86% respectively. These results confirm the suitability of the method for

the detection of burn-through. Furthermore, the ROC curves (Receiver operating characteristics)

of the two classifiers in Fig. 1.11 confirm the perfect performance of the classifiers.

There are three parameters that can influence the classification accuracy in the presented method-

ology: the pass band of the filter, the range of the PDD, and its bandwidth value. Prior knowledge

of the range in which the signals evolve helps in selecting the range of the PDD; we define a range

from 9v to 11.5v for austenitic tanks signals and a range from 6v to 15v for those of the duplex

tanks. Tuning the pass-band of the filter also needs prior knowledge of the pulse and the wire

feed frequency bands to eliminate in order to avoid their interference with the voltage signal. The

filtered signal must also attenuate the trend of the original signal in order to prevent the appearance

of values at the tails of the PDD for a defect-free welding signal. This can be done by eliminating

the 0 Hz frequency component that contains the trend, i.e. by setting the first cutoff of the filter

Table 1.2: The confusion matrix of the classifier A.

Training Test
Categories Good Defective Good Defective

Good 56 0 24 0
Defective 0 56 0 24
Accuracy 100% 100%

Table 1.3: The confusion matrix of the classifier D.

Training Test
Categories Good Defective Good Defective

Good 106 0 44 1
Defective 0 106 0 43
Accuracy 100% 98.86%
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Table 1.4: Optimal parameters of the two classifiers.

Parameters Classifier A Classifier B
Pass-band of the filter 0.025-1.75Hz 0.025-1.75Hz
Bandwidth of the PDD 0.1 0.02

Range of the PDD 9V-11.5V 6V-15V
Classifier’s optimal bandwidth 9.045 22.356

at a frequency greater than 0 Hz. Here, the pass-band is determined to be from 0.025Hz to 1.75Hz

for both signal types. If the information on the pulse and the wire feed frequency is not available,

one can estimate the passband using cross-validation.

The last parameter to be tuned is the bandwidth of the PDD. In Fig. 1.12 we show how the

accuracy of the classifiers change when varying this parameter, we notice that an accuracy of 100%

is achieved when the bandwidth is between 0.005 and 0.2 for classifier A. Classifier D exhibits more

sensitivity to this parameter as can be seen from the curve, its optimal accuracy is obtained when

the bandwidth is set to 0.02. The optimal parameters for the two classifiers are summarized in

Table 1.4.

In practice, it might be expensive to collect and annotate a large number of welding signals. It is

then interesting to study the effect of sample size on the accuracy of the classification. Considering

Figure 1.11: The ROC curves of the classifiers A and B.
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the classifier A and the 160 austenitic tanks signals, we vary the training sample size from 4 to 112

while keeping the test sample at 48. For both the training and the test datasets, 50% of the PDDs

correspond to nonconforming welds. We study the accuracy of the classifier of each partitioning

by keeping the optimal parameters discussed above identical except for the value of the classifier’s

smoothing parameter h, which is optimized by cross-validation for each training set as discussed in

the methods. Fig. 1.13 shows the test accuracy as a function of the training sample size. We notice

that with only 4 curves, we obtain an accuracy of 95,8% on the 48 signals. The 100% accuracy of the

classifier becomes stable with a training sample size of 28. These results show that the methodology

can handle the problem of small sample size thanks to the good discrimination provided by the

PDDs.

As discussed in the methodology description, if a PDD belongs to the nonconforming group, we

are interested in capturing the location of the defect in the signal, which is important information

for the study of defect causes, for example, if defects occur at the beginning of the welding cycle

then the welding torch would be the most probable cause and needs then to be changed or repaired.

In this second stage, the signal of the defective weld is split into segments of 8 seconds using

an overlapping sliding window moving by 4 seconds, which are transformed into PDDs that are

subsequently classified in order to obtain the location of the defect. In this context, two other

functional kernel classifiers that we call defect localizers A and D are created to process the signals

of welds with burn-through of austenitic and duplex water tanks respectively. A total of 60 PDDs

Figure 1.12: The effect of the PDD’s bandwidth on the classifiers’ accuracy.
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Figure 1.13: The effect of the training sample size on the accuracy of the classifier A.

Table 1.5: The confusion matrix of the defect localizer A.

Training Test
Categories No defect Defect No defect Defect
No defect 22 0 8 0
Defect 0 22 0 8

Accuracy 100% 100%

Table 1.6: The confusion matrix of the defect localizer D.

Training Test
Categories No defect Defect No defect Defect
No defect 22 0 8 0

Defect 0 22 0 8
Accuracy 100% 100%

are used for each model, with 70% of them for the training and 30% for the evaluation, with

equitable distribution of the two categories in the two steps. The signal segments are transformed

into PDDs without the application of a filter because of their small length. We maintain the use

of the Gaussian kernel for both the PDD estimation and the functional kernel classifier and the

same PDD bandwidths as in the first stage classification. The confusion matrices for training and

validation are shown in Table 1.5 and Table 1.6.

Both defect localizers had 100% accuracy in the training and validation phases. This perfect

32



CHAPTER 1. STUDY OF THE BURN-THROUGH DETECTION IN THE CIRCULAR
WELDING

Figure 1.14: Signals of defective welds where burn-through are localized (shown in red).

accuracy is encouraging for the use of this methodology as an online fault detection, where segments

of a signal are transformed into PDDs and classified in real time. Fig. 1.14 shows an example of

two signals of a defective weld where the burn-through are detected by the localizer and colored in

red.

1.4.3 Comparative study

We compare here the proposed approach with the most used ones for the classification of welding

signals, which are based on the classification of the signals based on some extracted features from

them as seen in the literature review. For this purpose, we consider a feature vector composed of

the mean, standard deviation, energy, and entropy of the voltage signals. For the classification of

the input features, we use several classifiers: SVM with both the linear and the radial basis kernels,

Logistic Regression, Random Forest with 500 trees, and k-NN with k=2. We use the same datasets

that we used to create our models in the previous section, which is composed of 160 voltage signals

of austenitic tanks and 300 voltage signals of duplex tanks. for both datasets, 70% of the signals

are used for training, while the remaining 30% for testing. Table 1.7 shows the accuracy for each

technique. Our approach outperforms the other ones for both datasets and has very high accuracy.

These results confirm the disadvantages of the feature extraction strategy for the classification

of non-stationary welding signals because the statistical features may not accurately capture the
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difference between defect-free and defective welding signals. We notice that the other classifiers

perform better for the signals of duplex tanks, which is explained by the fact that these signals

have less degree of non-stationarity than the signals of austenitic tanks. This is because the welding

machine of this type of tanks is equipped with an automatic voltage control. Moreover, the peaks

indicating the defects can have a high amplitude in this dataset, which makes the classification

relatively easier than when working with the signals of austenitic tanks.

We showed in the previous subsection that our methodology has the ability to generalize from a

small training sample. To confirm this result, we compare it to the other techniques using a training

set composed of only 10% of the whole dataset for each tank type (resulting in 15 out of the 150

austenitic tanks’ signals and 30 for those of duplex tanks). The remaining 90% are used for testing.

Table 1.8 shows the test accuracy of each technique for this configuration. The accuracy of our

methodology remains very high for the two datasets while the other techniques fail to learn from

small training samples, especially in the case of austenitic tanks’ signals. The other methodologies

still perform better for the signals of duplex tanks than for those of austenitic tanks, for the reasons

discussed earlier.

The results of this comparative study confirm the good performance of the proposed methodology

Table 1.7: Comparison with other techniques.

Methodology/Dataset Signals of austenitic tanks Signals of duplex tanks
Proposed 100% 98.86%

SVM (radial basis kernel) 81.25% 92.04%
Logistic regression 79.10% 90.90%

SVM (linear kernel) 77.00% 89.77%
Random Forest (500 trees) 77.00% 89.77%

k-NN (k=2) 66.66% 73.06%

Table 1.8: Comparison with other techniques when training on 10% of the whole dataset.

Approach/Dataset Austenitic tanks Duplex tanks
Proposed approach 94.44% 98.13%

SVM (radial basis kernel) 70.83% 86.94
Logistic regression 70.83% 89.17%

SVM (linear kernel) 58.33% 88.80%
Random Forest (500 trees) 59.02% 88.05%

k-NN (k=2) 75.00% 70.98%
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for the detection of burn-through in welding signals that can be non-stationary and nonlinear and

its ability to handle the problem of small sample size, which is very useful for industrial welding

where data collection may be expensive and time-consuming.

To summarize, the main advantages of the proposed methodology are the high reduction in the

length of the signals and this by transforming them into PDDs consisting of only 64 points, resulting

in fast processing of data. The application of the whole methodology from the prepossessing to the

defect localization on 100 voltage signals is done in 0.41 seconds only. Moreover, results show that

the methodology has very high accuracy and can generalize well when trained on a small sample.

In the next section, we study the subject of root cause analysis with the help of the presented

approach for burn-through detection.

1.5 Burn-through root cause in the circular welding of hat

water tanks

We are interested in this section in the study of the burn-through root cause for the austenitic

hot water tanks. Using the presented methodology, we localized the burn-through in 200 historical

voltage signals of 200 defective circular welds. Fig. 1.15 shows the histogram of defect localization

in the signals. We notice that there is a peak at the time interval between 30 and 40 seconds. This

is where the circular welding meets the longitudinal weld of the cylinder. Since the positioning

of the cylinder in the circular welding machine can be slightly different each time, the physical

localization of the defects appearing in the time interval from 20 to 50 seconds can be considered

as the zone of the intersection with the longitudinal weld or nearby. More than 60% of the defects

are then situated in this zone.

We noticed that the patterns of the burn-through in the signal can be classified into two types,

as Fig. 1.16 shows. The first type is characterized by a gradual increase before the appearance of

the peaks (highlighted in orange). In the second type, the defect peak appears suddenly.

Since the voltage is correlated to the length of the electric arc, the gradual increase in the first

defect signal type means that there was a gradual misalignment between the cap and the cylinder.
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Figure 1.15: Histogram of the defects’ localization.

Figure 1.16: The two types of burn-through in the signals.

This happens when one of them is not perfectly circular. The gap between them increases until the

welding pool collapses before it comes back to normal when the misalignment decreases as illustrated

in Fig. 1.17. The second type indicates that a sudden discontinuity caused the defect. Fig. 1.18

shows an example of each of the defect types. We can see the gradually increasing misalignment

until the burn-through in the first type. We also notice that the misalignment begins shortly after

the intersection with the longitudinal weld. In the second type, we notice that the defect appears

exactly at the intersection with the longitudinal weld and that there is no significant misalignment
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Figure 1.17: An interpretation of the first type of burn-through signature.

Figure 1.18: The two types of burn-through shown in real pieces.

between the cap and the cylinder.

From these analyses and the histogram in Fig. 1.15, we conclude that most of the defect oc-

currences caused by the misalignment are generated by a distortion of the cylinder due to the
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longitudinal welding process. The second type can be caused by a tear of the longitudinal weld, as

shown in Fig.1.19, which can occur when the operator removes the run-on and run-off tabs used

in the longitudinal welding or when he attempts to redress the shape of the cylinder at this zone.

Soni et al. (2013) also found in their study on a similar product that one of the causes of defects is

the improper removal of the run-on and run-off tabs. They proposed in their case the use of a gas

cutter for this task as a corrective action. The tabs are used to ensure full penetration. However,

incomplete penetration might still occur, and it would be a potential cause along with other types

of defects at the beginning or the end of longitudinal welding, such as cracks.

An important observation is that the first type of burn-through can be anticipated, and this by

detecting the gradual increase of the voltage and predicting the time at which the defect peaks

would appear. This can be addressed using techniques from a concept of predictive maintenance

called Remaining Useful Life (RUL) estimation, where the goal is to predict the time before the

failure of equipment. Another interesting approach would be the early classification of the signal.

We were also interested in this study in searching the cause of the burn-throughs that are not

at the intersection with the longitudinal welding. Using the developed method for burn-through

detection, we searched in the available data and found that there are signals where the defect is

localized always at the end of the cycle, as Fig. 1.20 shows. We notice that the burn-throughs are of

the first type defined earlier. This means that there is a misalignment that causes the burn-through

Figure 1.19: Tear of the longitudinal weld.
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Figure 1.20: Voltage signals where the burn-through is detected at the end of the welding cycle.

here. After investigation, we found that the end of the welding cycle corresponds to the part near

the welded muff for those specific hot water tanks. We observed that the welding of this latter

induces distortions in the cylinder as we show in Fig. 1.21 which perfectly explains the occurrence

of burn-through at this location. As a corrective action after this study, the shape of the cylinder

at this location is now corrected before the circular welding.

This study of the burn-through root cause shows that the quality of the circular welding depends

highly on the ones of the longitudinal welding and the muff welding. Optimizing the latter would

highly reduce the number of burn-through occurrences. This can be done by applying the Design of

Experiments to reduce the distortion (Narwadkar et al. (2016)) in order to prevent the misalignment

between the cap and the cylinder. Furthermore, it would be beneficial to detect the longitudinal

welding defects via their welding signals as an approach to reducing the circular welding defects.

To prevent the tears of the longitudinal weld, the run-on and run-off tabs are no longer used after

this study, the longitudinal weld is now stopped shortly before the borders of the cylinder and is

finished by another machine after the circular welding is performed.

In some cases, we noticed that the signature of the burn-though appears also in the wire speed

signal. In Appendix A we study if abnormal movements of the wire caused the defect in these cases

using the concepts of signal decomposition and causality analysis (Dragomiretskiy et al. (2013); L.

Ma et al. (2018)).
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Figure 1.21: The distortion caused by the welding of the muff.

1.6 Conclusion

In this chapter, we reviewed methods used for defect detection from welding signals, and we proposed

a two-stage method for burn-through detection in the circular welding process of hot water tanks.

Results show that the methodology can classify welding voltage with high accuracy thanks to the

information summarized by the probability density distributions and the use of a non-parametric

classifier. Moreover, our method can localize defects in the signal with high precision and can be

then used in real-time fault detection.

With the help of the presented methodology used to localize the defects, we studied the root

cause of the defects by the interpretation of the defect signatures. We then showed the possibility

of automatic extraction of the root cause from the signal and demonstrated the feasibility of the

burn-through anticipation when it is caused by a misalignment between the cap and the cylinder.

Furthermore, we proposed solutions that would allow practitioners to avoid scrap and rework costs.
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After this first study about welding signals and the automated detection of burn-through, we

were interested in exploring other crucial welding processes and generalizing the automatic defect

defection. To that purpose, we carried out efforts to incorporate sensors in these machines. Never-

theless, one disadvantage of the approach proposed in this chapter is that it is supervised, whereas,

for the new processes in question, there are much fewer accessible labels and no historical data.

Furthermore, the approach only identifies burn-through, whereas we are interested in detecting

other welding flaws for which we do not have labeled signals. To address these limitations, we will

look at the problem of welding defect detection from another point of view in the next chapter,

which is the semi-supervised time series anomaly detection.
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2.1 Introduction

This chapter treats the problem of detecting welding faults using the concept of One-class classifi-

cation. The need for such semi-supervised welding anomaly identification stems from the fact that

normal signals can be easily obtained, while defective weld signals are rare and mostly unlabeled.

Moreover, we are interested in detecting anomalies in multiple welding processes with different

physiques. Collecting labels of multiple types of defects for different welding processes would be

very time-consuming. Therefore, we are interested here in exploring the possibility of developing

a method that can be generalized to different welding processes. Given this formulation of the

problem, a suitable method would originate from the field of time series anomaly detection.

Time series anomaly detection is a research subject that gained a lot of interest due to its

numerous applications across various fields, such as fault detection in manufacturing, diagnosis

in medicine, intrusion detection, and cybersecurity. Many real-world problems focus on finding

outliers from time series datasets (Lu et al. (2018)). Anomalies might be hard to define, multiple

definitions of the term anomaly (also known as outlier, novelty, and rare event) are suggested in

the literature. According to Ord (1996), an anomaly is an observation that is inconsistent with

the rest of the data. Chandola, Banerjee, et al. (2009) define an anomaly as a pattern that does

not conform to a well-defined notion of normality. Braei et al. (2020) state that anomalies have

two main characteristics: the distribution of anomalies deviates significantly from the general data

distribution and the majority of the data consist of normal observations.

There are 3 types of time series anomalies depicted in Fig 2.1:

• Point anomaly: a data point whose value is different from the neighboring values (local outlier)

or that is different from all values of the time series (global outlier).

• Subsequence anomaly: also known as a collective anomaly, which is defined as consecutive

points in time that form an abnormal pattern.

• Whole time series anomaly: an entire time series that differs significantly from usual behavior.

As anomalies are patterns that do not conform to a well-defined normality, the reference of nor-
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Figure 2.1: Types of univariate time series anomalies.

mality is important in the detection of these types of time series anomalies and helps in the selection

of the appropriate methods. For the point anomaly, the reference can be the neighboring values if

one is interested in detecting a local outlier (also known as contextual anomaly) or the whole time

series values to detect a global point outlier. For abnormal subsequence detection, the references

can be the subsequences of the same time series, the previous subsequence, or subsequences of

external time series depending on the problem at hand. The references for abnormal whole time

series are external time series in the univariate case. In the multivariate case, the references can be

the time series of the other variables in the multivariate time series or external multivariate time

series.

Most of the methods in the literature focus on the detection of abnormal points in time series

(Blazquez-Garcia et al. (2021)). In our case, we are interested in the detection of abnormal subse-

quences in the univariate case where the variable is the voltage signal. This is due to the fact that

a welding defect occurs very often in a small part of the weld seam. The defect is then observed

as an abnormal subsequence in the signal. This applies to all the welding processes considered in

this chapter. Hence, to be able to detect abnormal subsequences in the voltage signal, we follow

the general procedure depicted in Fig. 2.2 in the work of this chapter. When a new voltage signal
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Figure 2.2: The procedure followed for the detection of abnormal subsequences.

arrives, its subsequences are extracted using a moving window, whose size is to be set for each

welding process, and passed to an anomaly detector, which outputs an anomaly score for each

subsequence that indicates the degree of abnormality after which a threshold is used to transform

it into a binary label. Preprocessing or post-processing might be added to this general procedure

in order to tackle specific problems. As we shall see later in this chapter, we add a post-processing

step for the circular welding process to predict the type of the detected anomaly, while for the other

processes, we add a preprocessing to despike the signals.

The following summarizes our work in this chapter:

• We propose a method based on the One-Class Support Vector Machine with distance substi-

tution kernels to detect abnormal times series subsequences for anomaly detection in different

welding processes.

• We show that the proposed approach allows working with the raw subsequences while having

a lower algorithmic complexity than most of the existing methods dealing with the raw data.

• We propose an automatic diagnosis of the circular welding defects based on a method that

treats a specific problem of time series classification.

• We propose techniques for signal despiking.
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The chapter is organized as follows: section 2.2 gives a literature review of methods used in

abnormal time series subsequence detection. We formulate the problem and present the One-Class

SVM and how to adapt it to the problem of anomaly detection from the raw subsequences in section

2.3. In section 2.4 we introduce the three welding processes we are interested in along with signal

preprocessing. In section 2.5 we give the results of the anomaly detection in the three considered

processes. In section 2.6 we conduct a study to propose an automatic welding defect diagnosis, and

we finish the chapter with conclusions and future works.

2.2 Literature review on abnormal time series subsequence

detection

In machine learning, methods for anomaly detection can be classified based on the level of super-

vision, i.e: supervised, semi-supervised, and unsupervised. (Chandola, Banerjee, et al. (2009)).

• Supervised methods: these methods assume that the labels for the normal and the anomaly

classes are available, which is a challenging requirement in applications such as welding where

it is hard to obtain the labels of all the anomaly classes.

• Semi-supervised : this class of methods assumes that labels for normal data are available.

They build a model that learns the normal behavior. A new instance is accepted if it belongs

to the known class, otherwise, it is classified as abnormal.

• Unsupervised : the unsupervised methods do not require any knowledge or labels of the data,

which is their most notable advantage. They rely on the assumption that the majority of the

data is normal, while anomalies are rare and live in low-density regions.

In what follows we will be only interested in semi-supervised and unsupervised methods for anomaly

detection since labels for anomaly classes are rarely available in our case study as stated before.

In most mining tasks, three types of representations exist for working with temporal data :

• Raw data: working with the raw data has the advantage of avoiding information loss. How-
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ever, methods working directly with the original data often suffer from high computational

complexity.

• Discretization: the continuous time series are transformed here into discrete sequences using

methods such as Symbolic Aggregate Approximation (SAX). This representation compresses

the original data, thus allowing to speed up the processing, but can cause loss of information.

• Numeric Multidimensional transformation: consists in summarizing the temporal data into a

multidimensional feature vector. This can be achieved by feature engineering or by automatic

feature extraction using neural networks.

We group the approaches used for subsequence anomaly detection into two main categories. The

first deal with subsequences in both the raw and the discrete representations, while the second

is intended for detecting anomalies after transforming the subsequences into a multidimensional

vector.

2.2.1 Methods for anomaly detection in the raw and discrete represen-

tations

Discord detection

A famous unsupervised method for abnormal subsequence detection in the literature is called the

discord detection proposed by Keogh, Lin, and Fu (2004). It seeks to detect the most unusual

subsequence in a time series called the discord, which is defined as the subsequence of length m,

fixed by the user, having the highest distance to its nearest neighbor in the time series. The distance

used depends on the types of time series and the anomalies to be detected. In most cases, The

Euclidean distance is well-suited and provides good detection (Keogh, Lin, and Fu (2004)). The

brute force algorithm has O(m2) complexity, where m is the length of the discord, and is therefore

not possible to use for long time series. Keogh, Lin, and Fu (2004) proposed to use a discretization

called Symbolic Aggregate ApproXimation (SAX) to reduce the dimensions of the data along with

pruning to speed up the computations. Bu et al. (2007) extended the technique to detect top k

discords by employing the Haar wavelet transform along with augmented trie. To overcome the
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problem of discord length selection, Kha et al. (2015) used a segmentation technique to retrieve

variable length candidates and used a homothetic transformation to scale the subsequences to the

same length. After that, clustering is performed on the transformed subsequences, and the Cluster-

Based Local Factor (CBLOF) algorithm is used to detect K top discords. A shortcoming of these

techniques is that, since discord detection is fully unsupervised, it does not rely on the use of a

threshold or known normality references, it then requires user intervention to decide whether a

discord is an anomaly.

Clustering

The clustering techniques can be extended to perform anomaly detection. The main idea is that

observations that do not belong to any cluster are considered abnormal. Generally, if the distance

d of a subsequence s to its closest centroid ŝ is greater than threshold τ , i.e: d(s, ŝ) > τ , s is

considered abnormal. In this kind of dissimilarity-based approach, the distance d should be chosen

depending on the problem and the nature of the data. Chao Chen et al. (2011) transformed time

series into discrete representation and uses the K-means algorithm with the Euclidean distance to

cluster the normal patterns. They then use the general rule discussed above to detect abnormal

patterns. Boniol et al. (2020) proposed a method that consists of summarizing the subsequences

of a time series by only one subsequence that best captures the normal behavior. This is done by

clustering the subsequences and choosing the centroid of the cluster that represents the normality,

depending on the criteria of frequency and coverage. The abnormal subsequences are then detected

based on the distance between them and the normal subsequence.

There are some issues with the clustering methods; the choice of the number of clusters may

be difficult, and they consider the clusters to be spherical (Bigdeli et al. (2017)). Furthermore, it

was shown that clustering overlapping subsequences is meaningless and always produces sinusoidal

centroids independently of the dataset and the clustering algorithm (Keogh and Lin (2005)).

49



CHAPTER 2. ONE-CLASS CLASSIFICATION FOR WELDING FAULT DETECTION

Nearest neighbors

An important number of anomaly detection methods are based on the k Nearest Neighbors (k-

NN) algorithm and its variants (Munir et al. (2018)). Since anomalies are in low-density regions,

the assumption is that the distances of abnormal observations to their k nearest neighbors are

significantly higher compared to those of normal observations to their k Nearest neighbors. L.

Lei et al. (2023) used the Local Outlier Factor (LOF) with the Dynamic Time Warping (DTW)

dissimilarity in order to detect abnormal subsequences in energy consumption time series. Ishimtsev

et al. (2017) used the average of the distances of the subsequence of interest s to its k nearest

neighbors as the anomaly score. Chandola, Cheboli, et al. (2009) used k-NN and considers the

distance of subsequence of interest s to its kth neighbor in the set of subsequences S as the anomaly

score. Teng (2010) proposed a k-NN approach with the DTW. The authors attempted to reduce

the computational complexity by using a lower bound of the distance and by reducing the number

of training instances by averaging similar ones.

Despite their simplicity and straightforward implementation, these methods suffer from high

computational complexity, since they require to compute the distances between a subsequence of

interest s and every subsequence in the dataset.

Forecasting

These methods are based on fitting a forecasting model to the training data and the use of the

forecasting error as the anomaly score. The assumption is that large forecasting errors indicate

abnormal points. Classical statistical forecasting methods were used in several works. Pincombe

(2005) used Autoregressive Moving Average (ARMA) model to detect anomalies in time series of

graphs. To deal with nonstationarity, some works adopt Autoregressive Integrated Moving Average

(ARIMA) for the time series modeling, as in the works by Zhu et al. (2011) and Moayedi et al.

(2008). To account for the seasonal component in the time series, Kromkowski et al. (2019) used the

Seasonal ARIMA (SARIMA) for network traffic anomaly detection. Other works employ regression

techniques to model the data. One of the most used approaches is the Support Vector Regression

that was used by Kromanis et al. (2013) and Y. Yang et al. (2021). Recent works leverage deep
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learning for forecasting and anomaly detection. For instance, Malhotra et al. (2015) employed a

Long Short Time Memory (LSTM) neural network to learn the normal dynamics of the time series.

Chauhan et al. (2015) used a deep LSTM network to learn the normal Electrocardiogram signals

and fit a Gaussian Mixture Model to the residuals for the final anomaly score. Munir et al. (2018)

proposed a predictor based on a convolutional neural network and considered the points for which

the error is higher than a preset threshold as anomalies.

Reconstruction

Similar to forecasting-based methods, these methods consider reconstruction errors as anomaly

scores. Most of the techniques are based on autoencoders. Theumer et al. (2021) proposed an

autoencoder composed of gated recurrent units to detect both abnormal points and subsequences. T.

Chen et al. (2020) used a variational autoencoder based on two-dimensional convolutions to detect

abnormal subsequences in multivariate time series. J. Chen et al. (2020) used a stacked denoising

autoencoder to reconstruct the time series from corrupted versions using multiple noise levels. Choi

et al. (2022) proposed a model to detect anomalies in multivariate time series named SeqVAE-

CNN, which is a variational autoencoder where the encoder is composed of one convolutional layer

followed by one LSTM layer.

Information theory

This class of methods uses the information carried by the subsequences to detect anomalies. They

rely on measures of information such as entropy, conditional entropy, and information gain to detect

infrequent observations after discretizing the data. J. Yang et al. (2004) uses the information gain

to detect abnormal periodic patterns. Bereziński et al. (2015) investigated the use of Shannon,

Renyi, and Tsallis entropy for network anomaly detection.
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2.2.2 Methods based on features for anomaly detection

In order to reduce the dimensionality of the data and reduce noise, a large body of research proposes

to work with a multidimensional transformation of the subsequences by feature extraction. In this

case, any method intended for anomaly detection in tabular data can be employed. There are two

types of feature extraction for time series: engineered features and deep features.

Engineered features

Engineered features are meaningful characteristics of the time series subsequences that are hand-

crafted prior to the use of an anomaly detector. They can be extracted from the time domain, the

frequency domain, or the time-frequency domain. Hu et al. (2018) proposed a method based on the

extraction of 6 statistics and the use of the One-Class SVM (OC-SVM). When a new subsequence

arrives, its 6 statistics are extracted, and then the OC-SVM predicts whether they belong to the

learned normal regions. N. Huang et al. (2015) used wavelet transform to extract time-frequency

features and used OC-SVM to detect mechanical faults of high voltage circuit breakers. Xu et al.

(2019) extracted features from both time and frequency domains for the detection of vibration

signal anomalies. H. Wang et al. (2022) extracted 15 statistical characteristics from the vibration

signal of rolling-element bearing and used the Isolation Forest algorithm to detect defects.

The challenge with this form of feature extraction is that designing the proper features may

necessitate a high level of human knowledge (Janssens et al. (2016)). Moreover, as the extracted

features depend on the problem at hand, the same features might not be efficient for different

problems where time series and anomalies are of different natures. Furthermore, this transformation

of subsequences into tabular data may cause loss of information (Teng (2010)).

Deep features

Instead of manually designing the appropriate features, some works make use of deep neural net-

works for automatic feature extraction. They are known in the literature as deep features. Zilong

Wang et al. (2021) used an autoencoder to extract features from the latent space and employed
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OC-SVM to detect abnormal time series. Some other works as in C. Liu et al. (2021) replace the

kernel function of the Support Vector Data Description (SVDD), which is an alternative formula-

tion of the OC-SVM, by a convolutional neural network. In this setting, the loss functions of the

SVDD and the reconstruction loss function of the autoencoder are simultaneously optimized, which

forces the features learned by the autoencoder to be in a minimum volume hypersphere.

2.3 Methods and materials

The above literature review shows that there are a plethora of methods proposed for time series

anomaly detection. In several recent benchmarks, it was shown that classical statistical and machine

learning methods can outperform deep learning for time series anomaly detection (Braei et al.

(2020); Wu et al. (2021); Schmidl et al. (2022)). Particularly, dissimilarity-based techniques dealing

with the raw data are effective for the problem of anomaly detection (H. Ren et al. (2018); Z. Lei et

al. (2020)). Furthermore, they can be easily generalized to diverse problems. In our case, this would

allow us to generalize anomaly detection for different welding processes. However, they often suffer

from high computational complexity, which could limit their use, especially with the need for real-

time predictions in an industrial environment. In this context, we present our contribution, which is

the use of the OC-SVM for the detection of abnormal time series subsequences. The use of OC-SVM

is advantageous because it only requires distances to the support vectors for the inference, unlike

most of the distance-based methods that require distances to all normality references. Moreover,

unlike clustering techniques, the OC-SVM can adapt to any cluster shape. However, an issue is

that the OC-SVM is designed for vector data and not temporal data. To address this issue, our

contribution consists in integrating a dissimilarity measure in the formulation of the OC-SVM using

distance substitution kernels.

2.3.1 Definition and notations

• Time series: A time series xt is a sequence of real values ordered in time, where t ∈ [1, 2, .., n]

with n is the length of the time series.
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• Time series subsequence: Given a time series xt with t ∈ [1, 2, .., n], a subsequence s of xt

is a segment of length m with m≪ n, starting at the index p and ending at p+m− 1. i.e :

sp= xp, .., xp+m−1 with 1 ≤ p ≤ n−m− 1

• Dissimilarity : Given two subsequences s and s′ of length m and n respectively, a dissimi-

larity measure is a mapping d(s, s′) : Rm ×Rn −→ R+ that indicates the proximity between s

and s′. The higher the value of d the more distant are the subsequences s and s′.

There are two types of dissimilarity measures in the time series domain, lock-step and elastic

measures illustrated in Fig. 2.3). The lock-step dissimilarity measures are defined only when

n = m and compare the ith point of s to the ith point of s′ whereas elastic dissimilarity

measures can work with subsequences of different lengths and also allow alignment of the

subsequences by performing nonlinear mappings.

Figure 2.3: Illustration of lockstep and elastic dissimilarity measures.

• Anomaly detector: An anomaly detector for a univariate subsequence s of length m is a

mapping A : Rm −→ R, A(s) = γ Where γ ∈ R is the anomaly score, which reflects the degree

of abnormality of s. Generally, the higher the score, the more s is abnormal.

In order to convert the anomaly scores into binary labels, a mapping Abinary is performed by

applying a threshold τ ∈ R to the anomaly score γ. An observation whose anomaly score is

higher than τ is assigned the label abnormal.

Abinary = R −→ {normal, abnormal}
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Abnormal, if A(s) > τ

Normal, Otherwise

• Centering: Centering a subsequence s is a transformation such that the mean of the subse-

quence is equal to 0. i.e: sc = s− s̄. Where s̄ is the mean of the subsequence.

• Z-normalization: Z-normalization of a subsequence s is a transformation such that s has a

mean of 0 and a unit standard deviation, i.e. sz = s−s̄
σs

, where σs is the standard deviation of

the subsequence s.

2.3.2 Problem Formulation

Given a time series xt of real values ordered in time with t ∈ [1, 2, ..n] where n is the length of the

time series, we seek to detect abnormal subsequences of a fixed length m ≪ n by analyzing them

using a model trained to recognize the normal behavior.

For this purpose, the set S of all possible subsequences sp= xp, .., xp+m−1 of length m with

1 ≤ p ≤ n−m− 1 are extracted from xt with a moving window of length m and step 1. Depend-

ing on the problem at hand, z-normalization or centering might be needed. The former is used

when one is interested in detecting subsequences with abnormal shapes, while the latter is used

when the abnormal subsequences are characterized by their abnormal amplitude. The extracted

subsequences are analyzed by the normality model, which is trained on a set Ŝ composed only of

normal subsequences, also of length m, extracted from normal time series. The model produces an

anomaly score A(sp) for each sp ∈ S, which is then transformed to a binary label using Abinary.

In the next section, we show how to obtain the normality model using OC-SVM directly from

the raw subsequences.
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2.3.3 One-Class SVM with distance substitution kernels

In many applications, it is preferable to rely on an external reference of normality in order to detect

abnormal subsequences in an incoming time series, which is the case for our case study where the

reference of normality is subsequences of voltage signals of defect-free welding. Learning the normal

class of subsequences can be done with a one-class classification algorithm, such as the One-Class

SVM (OC-SVM). OC-SVM learns the boundaries of the hypersurface enclosing the normal data

class and rejects any instance that does not belong to it. More formally, the method seeks to find

the support of a high-dimensional data distribution.

We use here the OC-SVM proposed by (Scholkopf et al. (2000)) formulated by the following

quadratic optimization problem:

min
1

2
∥w∥2 − ρ+

1

νN

N∑
i=1

ξi (2.1)

s.c : ⟨w, xi⟩ ≥ ρ− ξi

ξi ≥ 0
(2.2)

With :

• w: the vector normal to the hyperplane.

• ρ: the distance between the origin and the hyperplane.

• ν ∈ ]0; 1]: the proportion of outliers in the training data.

• ξ: slack variables used to account for outliers.

• N : the number of the training data.

The OC-SVM (Fig. 2.4 (a)) seeks to find a hyperplane that maximizes the distance ρ between

the origin of the space and the normal training data. It is a soft-margin problem controlled by the

proportion of outliers in the training data ν which is both an upper bound on the proportion of
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outliers and a lower bound on the proportion of support vectors.

In order for the OC-SVM to be able to learn nonlinear decision boundaries (Fig. 2.4 (b)), a nonlinear

kernel k is used in the dual problem. The dual problem is obtained by introducing the Lagrangian

multipliers αi > 0 and ηi > 0 as follows:

L(w, ξ, ρ) =
1

2
∥w∥2 − ρ+

1

νN

N∑
i=1

ξi +

N∑
i=1

αi(ρ− ξi − ⟨w, xi⟩)−
N∑
i=1

ηiξi (2.3)

For optimality, the partial derivatives of L must be computed with respect to w, ξ, and ρ and

set to 0. They are given as:
∂L

∂w
= 0 =⇒ w =

N∑
i=1

αixi (2.4)

∂L

∂ξi
= 0 =⇒ 1

νN
= αi + ηi (2.5)

∂L

∂ρ
= 0 =⇒

N∑
i=1

αi = 1 (2.6)

By substituting these equations in Eq. 2.3, we obtain the dual problem given as follows:

min

N∑
i=1

N∑
j=1

αiαjxixj (2.7)

s.t :0 ≤ αi ≤
1

νN
N∑
i

αi = 1
(2.8)

Since the dual problem involves the inner product, a nonlinear kernel k can be used to compute

the similarities in a feature space A to which the data x could be mapped from the original space X

by ϕ: X −→ A, x −→ ϕ(x) without going through the mapping ϕ, i.e: k(xi, xj) = ϕ(xi)ϕ(xj). Hence,

the kernelized dual problem is then given by:

min

N∑
i=1

N∑
j=1

αiαjk(xi, xj) (2.9)

57



CHAPTER 2. ONE-CLASS CLASSIFICATION FOR WELDING FAULT DETECTION

s.t :0 ≤ αi ≤
1

νN
N∑
i

αi = 1
(2.10)

which allows learning a nonlinear decision function.

To detect if an instance x′ is normal, the OC-SVM uses a decision function that determines

whether the instance belongs to the learned hypersurface or to its complement. It is defined as

follows:

F (x′) = (

N∑
i

αik(x
′, xi)− ρ) (2.11)

The prediction is made as follows: Normal, if F (x′) > 0

Abnormal, Otherwise

If the sign of F (x′) is positive, x is in the normal region, otherwise, it is outside this region and is

then abnormal. The anomaly score is the value of the decision function F (x′), the smaller the value,

the more anomalous the instance. The decision function in Eq. 2.11 is calculated using only the

support vectors i.e. the training instances xi with 0 ≤ αi ≤ 1
νN , which makes the prediction fast

comparing to other methods that require distances to all training data. Moreover, the proportion

of support vectors in the training data Nsv

N , where Nsv is the number of the support vectors, is

an estimator of the classification error of the normal class. These statistical guarantees associated

with the OC-SVM make it more attractive than other approaches.

The OC-SVM is formulated originally for vector data. Therefore, it has not been widely explored

for direct learning from ordered sequences such as time series subsequences. Previous works using

OC-SVM transform the time series into vector data by performing feature extraction. J. Ma et al.

(2003) stated that one needs to find a method to convert the time series to vectors in order to be

able to use OC-SVM. The works following this strategy are numerous as we saw in the literature

such as in Su et al. (2015), Hu et al. (2018), and Zilong Wang et al. (2021). Beggel et al. (2019)

stated that OC-SVM is applicable to time series only after extracting some features from them.
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Figure 2.4: Illustration of OC-SVM with the linear (a) and nonlinear (b) kernels.

Braei et al. (2020) highlighted in their review on time-series anomaly detection that previous works

stated that the OC-SVM is able to detect anomalies only in a set of vectors and not on time series.

However, to be able to use the OC-SVM with temporal data, in fact, one must find a way to

incorporate a dissimilarity measure in the kernel rather than necessarily transforming the data into

a set of vectors. The work in Schölkopf (2000) demonstrated the existence of a class of kernels that

allows the integration of a dissimilarity measure and transforms kernel methods into dissimilarity-

based methods, which were introduced to treat the problem of computing distances in the feature

space. These kernels are known as Distance Substitution (DS) kernels, which we propose to use

in the OC-SVM to be able to learn the normal class directly from the raw subsequences, which is

the novelty of our work. In time series classification, these kernels have been used in some works

with multi-class SVM as in Bahlmann et al. (2002) and D. Zhang et al. (2010). However, they have

not gained widespread adoption for abnormal time series subsequence detection with the One-class

SVM, despite the discussed advantages that the OC-SVM can offer.

We propose in this study the use of the Radial Basis (RBF) and the Negative Distance (ND) DS

kernels, which are defined as follows:

• kRBF (x, x
′) = e−γd(x,x′)

• kND(x, x′) = −d(x, x′)β

59



CHAPTER 2. ONE-CLASS CLASSIFICATION FOR WELDING FAULT DETECTION

where γ and β are smoothing parameters that control the degree of the non-linearity of the decision

boundaries. For β = 2, the ND kernel produces a perfectly spherical decision boundary in the

OC-SVM. To ensure that the optimization problem is convex, the dissimilarity d used must be a

metric (for the kernel to be positive definite and therefore a valid Mercer kernel), i.e. it must satisfy

the following conditions:

• Symmetry: d(x, x′) = d(x′, x)

• Separation d(x, y) = 0 =⇒ x = y

• Positivity: d(x, y) > 0

• The triangular inequality: ∀x, y, z, d(x, y) ≤ d(x, z) + d(z, y)

The RBF DS kernel is positive definite for any metric and the ND kernel is conditional positive

definite for β ∈]0, 2], which is a valid kernel for translation invariant problems (Schölkopf (2000)).

This ensures the existence of a space A in which the similarities are computed with the kernel trick

without going through the projection: K(x, x′) = < ϕ(x) , ϕ(x′) >.

The new formulation of OC-SVM that we propose in order to work with time series subsequences

is given in Eq.2.12:

min

N∑
i=1

N∑
j=1

αiαjDSk(ŝi, ŝj) (2.12)

s.t :0 ≤ αi ≤
1

νN
N∑
i

αi = 1
(2.13)

Where DSk is a DS kernel employing a dissimilarity d, N is the number of the training subse-

quences Ŝ, and ŝi and ŝj are two training subsequences in Ŝ.

A pseudocode for training the OC-SVM with a DS kernel is given in Algorithm 1. In this stage,

the dissimilarity matrix of the training subsequences is computed and transformed into a kernel

60



CHAPTER 2. ONE-CLASS CLASSIFICATION FOR WELDING FAULT DETECTION

matrix using a DS kernel. This matrix is then used to fit an OC-SVM model with the predefined

parameter ν. In the test stage detailed by Algorithm 2, the test dissimilarity matrix is obtained by

computing the dissimilarities between the test subsequences and the support subsequences of the

trained model. The model uses then this information to compute the anomaly scores by Eq. 2.11.

For the detection of abnormal subsequences, the Euclidean distance is the most used. However,

some problems require the use of elastic measures, which are mostly non-metric. In the multi-class

SVM, results of the works by Bahlmann et al. (2002) and D. Zhang et al. (2010) show that the

Dynamic Time Warping, which is theoretically non-metric dissimilarity, can still produce a good

Algorithm 1 Train OC-SVM with DS kernel

1: Ŝ ▷ Subsequences of some normal time series
2: γ ▷ kernel parameter
3: ν ▷ proportions of outliers
4: D ▷ Dissimilarity matrix of normal subsequences
5: KM ▷ Kernel Matrix
6: for (i =1 to |Ŝ|) do
7: for (j =1 to |Ŝ|) do
8: D[i, j]← d(Ŝi, Ŝj)
9: end for

10: end for
11: KM ← k(D) ▷ k is the kernel. For example k = exp(−γD) for the RBF kernel.
12: model← solve_ocsvm(KM, ν) ▷ Fit the OC-SVM model

Algorithm 2 Predictions with OC-SVM using DS kernel
1: xt ▷ The test time series
2: SV ▷ The support vectors of the trained model (support subsequences in our case).
3: w ▷ Length of the subsequences
4: D_test ▷ Dissimilarity matrix between the test subsequences and the support vectors of the

trained model.
5: τ ▷ Threshold of the anomaly scores.

S=get_subsequences(xt,w) ▷ Subsequences of the test time series
6: for (i =1 to |S|) do
7: for (j =1 to |SV |) do

D_test[i, j]← d(Si, SV j)
8: end for
9: end for

10: KM_test=k(D_test) ▷ Kernel Matrix
11: Anomaly_scores← model.predict(KM_test)
12: Final_predictions← convert_to_binary(Anomaly_scores, τ) ▷ 0 if

Anomaly_scores[i] > τ , 1 otherwise.
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classification accuracy when used in DS kernels. We also investigate in our experiments the use of

an elastic dissimilarity measure with the DS kernels in OC-SVM and study its accuracy.

2.3.4 Time series dissimilarity measures

We consider in this work two dissimilarity measures. The Euclidean distance, also known as L2

distance, defined for two sequences x = (x1, x2, .., xm) and y = (y1, y2, .., ym) as follows:

ED(x, y) =

(
m∑
i=1

|xi − yi|2
) 1

2

(2.14)

and a lower bound of the Dynamic time warping (DTW) in order to deal with phase shifts

between the signals of some welding processes. To obtain DTW distance between two sequences

x = (x1, x2, .., xm) and y = (y1, y2, .., yn) of length m and n respectively, the algorithm begins

by constructing the cost matrix M ∈ Rm×n of all pairwise distances, where each element Mi,j is

generally the L2 distance between xi and yj . The warping path P (also called the alignment path)

is a sequence of points P = (p1, p2, ..pk) with pl = (pi, pj) for l ∈ [1 : K], where K is the length

of the warping path. The warping path must satisfy three conditions (Senin (2008); Keogh and

Ratanamahatana (2005)):

• Boundary conditions: p1 = (1, 1), pK = (m,n). This means that the warping path must

start at the first points of the aligned sequences and end at their last points.

• Continuity: Given pl(a, b) then pl−1(a
′, b′) where a − a′ ≤ 1 and b − b′ ≤ 1. This restricts

steps to adjacent cells.

• Monotonicity Given pl(a, b) then pl−1(a
′, b′) where a−a′ ≥ 0 and b−b′ ≥ 0 which preserves

the time-ordering of points.

The optimal warping path P ∗ that gives the best alignment between x and y is the one that min-

imizes the dissimilarity, i.e: DTW (x, y) = min
P

(
∑K

l=1 MP /K) obtained by dynamic programming.
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Figure 2.5: An illustration of a Sakoe-Chiba constraint. The white cells indicate the allowed shifts
from the diagonal.

The time complexity for the DTW computation is O(mn). However, we can reduce this com-

plexity using a constraint on the warping window such as the Sakoe-Chiba constraint that limits

the warping path to be inside a region that determines the largest temporal shift allowed from the

diagonal of the matrix M i.e: wl = (i, j)l such that j − r ≤ i ≤ j + r, where r is a positive integer

(Keogh and Ratanamahatana (2005)), as illustrated by Fig. 2.5. Moreover, since we are dealing

with subsequences of the same length as formulated earlier, there exist techniques for computing

lower bounds of DTW in much lower time complexity. Keogh and Ratanamahatana (2005) pro-

posed a lower bound named lb_keogh that is defined for same length sequences. To compute the

lb_keogh(x, y) between x and y of the same length n, the technique starts by creating an upper

and a lower envelope U and L of x defined as:

• Ui = max(xi−r, xi+r)

• Li = min(xi−r, xi+r)

Where r is a positive integer corresponding to the window constraint. For the Sakoe-Chiba
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constraint, r is independent of i. The lower bound is then obtained by the following formula:

lb_keogh(x, y) =


d(yi, Ui) if yi > Ui

d(yi, Li) if yi < Li

0 Otherwise

(2.15)

where d here is the Euclidean distance. An illustration of the lb_keogh is given in Fig. 2.6.

Figure 2.6: Illustration of the lb_keogh. The hatched region is the lower bound.

Another technique that gives a tighter lower bound is proposed by Lemire (2009) and is known

as lb_improved. It is based on two passes of lb_keogh as follows:

lb_improved(x, y) = lb_keogh(x, y) + lb_keogh(y, x′) (2.16)

Where x′ is the projection of x on the envelopes of y and is defined as:

x′
i =


U(y)i if xi ≥ U(y)i

L(y)i if xi ≤ L(y)i

xi Otherwise

(2.17)

In the present study, we consider the lb_improved since it gives a better lower bound of the

DTW dissimilarity.
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2.3.5 Experimental protocol

Fig. 2.7 shows the steps of the experimental protocol followed in our work. In the training stage, we

fit an OC-SVM model with a DS kernel employing an adequate dissimilarity measure. We use the

L2 distance when dealing with the signals of the circular welding, while for the rest of the welding

processes considered in this study, we use the lb_improved to account for the phase shifts. We use

the Sakoe-Chiba constraint with a width r that we fix to at least the length of one period of the

signal. Note that since the lb_improved might not be symmetric, we compute the distance from

the test subsequence to the support subsequences in Eq. 2.11 i.e F (s) = (
∑N

i αiDSk(s, ŝi) − ρ),

where s is the test subsequence, in order to get the anomaly score.

Only normal data is used for training since we are dealing with a semi-supervised problem. The

training subsequences are extracted from voltage signals with a non-overlapping moving window.

This is because we want the subsequences to be different in order to capture more variations of

the normal behavior. Furthermore, if the subsequences are overlapping, they are then embedded

in the phase space. This would create a complex representation, which would make it difficult to

learn the boundary of the normal class by the OC-SVM. Moreover, the model would require a large

number of support vectors to describe the boundary, which results in higher inference time. To

Figure 2.7: The experimental protocol.
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Figure 2.8: The representation of the subsequences obtained by the MDS. (a) overlapping subse-
quences, (b) non-overlapping subsequences.

show this, we employed Classical Multidimensional Scaling (MDS) to produce a visualization of the

subsequences of a voltage signal acquired during the circular welding using the distance matrix for

the two cases. Fig. 2.8 (a) shows the representation of overlapping subsequences. As stated above,

we notice that they form a complex shape whereas non-overlapping subsequences form a simpler

cluster shape as shown in Fig. 2.8 (b). Thus, in all the problems in this work, the training dataset

consists of non-overlapping subsequences.

We employ both the RBF and the ND kernels. The γ parameter of the former will be fixed at
1
m where m is the length of the subsequences, following the well-known heuristic 1

number of features

used in the classical SVMs. We are not aware of the existence of a method for the choice of the β

parameter of the ND kernel. Nonetheless, because the training subsequences do not overlap, we

expect to obtain a cluster that is nearly spherical as indicated by the visualization in Fig. 2.8 (b)

produced by the MDS technique. Consequently, we will set the value of β to 2. The ν parameter is

kept at 10−5 while the threshold τ on anomaly score of the OC-SVM model is estimated as follows:

τ = F̄ (Ŝ)− 3× σF (Ŝ) (2.18)
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Where F̄ (Ŝ) is the mean of the anomaly scores obtained for the training subsequences and σF (Ŝ)

refers to their standard deviation. At the test stage, we predict the anomaly score of the new

subsequences using the trained model. If it is lower than τ , the subsequence is declared abnormal.

We compare our approach to four other approaches:

1. Mean k-NN: this first approach is similar to the one proposed by Ishimtsev et al. (2017) where

the mean of the distances to the k nearest neighbors is the anomaly score: M_NN(s, k, Ŝ) =

1
|Nk(s)|

∑
ŝ∈Nk(s)

d(s, ŝ). where Nk(s) are the k-nearest neighbors of the test subsequence s in

Ŝ and d the dissimilarity measure. We fix the value of k is fixed to 5.

2. kth-NN: in the second method, the anomaly score is the distance to the kth nearest neighbors,

as in Chandola, Cheboli, et al. (2009). The value of k is fixed to 1 in this approach. We use

the same dissimilarity d for the OC-SVM and the k-NN-based methods in each problem.

3. Feature-based: this third approach consists of extracting statistical features from the sub-

sequences and the use of an Isolation Forest similar to H. Wang et al. (2022). We extract

8 features that we design based on our knowledge of the welding signals and the anomalies,

namely we extract kurtosis, skewness, maximum level shift, maximum variance shift, and

other frequency and decomposition statistics.

4. Autoencoder: The last approach is based on an autoencoder, where the encoder is composed

of two convolutional layers with 32 and 16 filters respectively and a kernel size of 3. In order

to optimize the autoencoder by preventing it from overfitting the relatively small training

sample, we employ a dropout rate of 0.2 as a regularization. The decoder is composed of two

transpose convolution layers with the same number of filters and kernel size. We train the

autoencoder with 50 epochs and a batch size of 4.

The threshold for all these approaches is estimated in the same manner as in Eq. 2.18 while

adapting the sign of the 3 standard deviations depending on the method.

For a reliable assessment of the approaches, we use the k-folds technique with k=5; we decompose

the normal dataset into 5 subsets. For each of the 5 iterations, the models are trained using 4 subsets

of the normal data while the remaining set is combined with some abnormal subsequences to form
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Figure 2.9: Illustration of the 5-folds evaluation technique.

the test dataset as shown in Fig. 2.9. We evaluate the approaches using the F1-score that we

present in the next subsection.

2.3.6 Evaluation metric

To obtain a binary classification from an anomaly detector, a threshold must be set on the anomaly

score, as seen before. Once done, we evaluate the models based on the F1-score that is computed

based on the precision and the recall, which are derived from the confusion matrix illustrated in

Table 2.1.

Table 2.1: The confusion matrix.

Actual anomaly Actual normal
Predicted anomaly True positives (TP) False Positives (FP)
Predicted normal False Negatives (FN) True Negatives (TN)

• Precision: The proportion of identified anomalies that are actual anomalies, given by Eq.

2.19.

Precision =
TP

TP + FP
(2.19)
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• Recall: The proportion of true anomalies in the predicted anomalies. The recall is given by

Eq. 2.20

Recall =
TP

TP + FN
(2.20)

• F1-score: gives the overall performance by computing the harmonic mean of the precision and

recall, it is computed by Eq 2.21.

F1-score =
2× Precision×Recall

Precision+Recall
(2.21)

2.4 Description of welding processes and preprocessing

2.4.1 The circular welding

The first welding process we consider in this study is the circular welding, which was discussed in

Chapter 1. We briefly recall here the process and the characteristic of the signal and the anomalies.

This welding is carried out by a semi-automatic machine employing Gas Tungsten Arc Welding

(GTAW), which simultaneously performs the welding of the two caps of the hot water tank. During

the circular welding process, the tank rotates at a constant speed, whereas the two torches are

immovable. The wire is automatically fed to the pool at a constant speed and the welding is

conducted using a constant current level. Two voltage signals per tank are acquired in real-time

(one voltage for each side of the tank) with a sampling rate of 25 Hz. We obtain signals consisting

of 2800 points. An example of a voltage signal from a normal welding cycle is shown in Fig. 2.10

(a). The normal voltage signal is non-periodic with a global trend that reflects the overall shape of

the cap and the cylinder as voltage correlates to the electric arc length. The trend can be different

from one signal to another and the signal can be non-stationary without presenting any anomalies,

as we saw in Chapter 1.

The anomalies are very often subsequences with unusual shapes and amplitudes that would

indicate burn-through, misalignment, etc. Fig. 2.10 (b) shows a signal with an anomaly highlighted

in red, corresponding to a hole in the weld. Since the anomalies have high amplitudes, it is important
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Figure 2.10: Example of a normal signal (a) and a signal with an abnormal subsequence (b).

that the subsequences are not z-normalized. We only center them, since the difference in the mean

is not an indication of a defect.

2.4.2 The orbital welding

Another welding process we are interested in is called the orbital welding, which consists in joining

a connection part known as the nipple to the hot water tank tubes (Fig. 2.11). The welding of

these parts is conducted using an automatic machine employing pulsed current GTAW process.

During the welding cycle, the workpiece is fixed while the electrode orbits around it (Hence the

name orbital welding). The pulse frequency is changed two times during the cycle: first when the

electrode is situated below the tube, and then shortly before the end of the welding cycle. The

location of the three frequencies that we shall refer to as freq1, freq2 and freq3 are shown on the

voltage signal in Fig. 2.12. Varying the frequency was found to help avoid the effects of gravity

on the weld pool and in getting better coalescence for upward welding. The voltage signals of this

process are sampled at 20Hz, which produces signals of 1050 points for each welding cycle.

The voltage signal of the orbital welding is sometimes contaminated with spikes whose number

is variable. In the freq1 part, which we shall call the first part of the signal, the number of spikes

tends to be low while in the rest of the signal, called the second part, there can be signals with an

important number of spikes as Fig. 2.13. shows.

One of the challenges in the anomaly detection domain is to differentiate between noise and
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Figure 2.11: The setup of the orbital welding of nipples.

Figure 2.12: An example of a normal voltage signal of the orbital welding.

anomalies (Shaukat et al. (2021)). Therefore, it is more convenient to clean the signals at the

preprocessing stage for more efficient anomaly detection.
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Figure 2.13: An example of a signal with spikes.

There exist some methods in the literature for spike elimination. The most simple one is to

eliminate the points that are higher or lower than some threshold. Costabel et al. (2014) employs

an approach in which points outside the interval [x̄− τ ∗σx; x̄+ τ ∗σx] are considered spikes where

x̄ is the mean of the signal xt and σx its standard deviation while τ is a predefined factor. This

technique might be effective. However, it implicitly assumes that the time series follows a normal

distribution and is stationary. Furthermore, it can be difficult to determine the appropriate factor

τ as the number of spikes is variable in our case. We test this method in our study with τ = 3

and we refer to it as temporal thresholding in what follows. In order to meet the assumption of

stationary, first the signal trend is extracted using a low pass filter, and the thresholding is applied

to the detrended part. The signal is then reconstructed by summing the trend and the thresholded

oscillations.

Wavelet transform can also be used to remove spikes and noise from signals. In Costabel et

al. (2014), the signal is decomposed using wavelet transform and subsequently reconstructed after

eliminating the points outside a predefined range in the multi-resolution detail coefficients Di for

i = 1, .., N where N is the number of the decomposition levels, the authors propose to eliminate

the values that are above the so-called universal threshold defined as
√

2σ2
i log(|Di|) where σ2

i is

the variance of the detail coefficients Di and |Di| the number of points in Di. We consider this

technique in our study, and we call it wavelets thresholding. We decompose the signal using the

symlet6 mother wavelet, as proposed by Costabel et al. (2014).
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The median filter is also a well-known despiking technique that has been used in several works

(Brock (1986); Stone (1995); Ariannik et al. (2020)). A median filter of order 2K + 1 replaces the

value of the signal xt by the median value of the sequence [xt−k, xt−k+1, ..xt, .., xt+k]. In our study,

we use a median filter of order 3.

Fig. 2.14 shows the despiked signal obtained by the three considered methods for the freq2 part

of the signal in Fig. 2.13. The wavelets thresholding achieves some degree of despiking but produces

a signal that looks very different from the original signal. Since there are a lot of spikes in this

signal, the temporal thresholding keeps it almost identical, since only a small fraction of values are

outside the predefined range. It is possible to reduce the value of the factor τ to obtain better

results. However, when the signal has no spikes, this would still eliminate values from it, resulting

in an altered signal. The median filter suppresses the unwanted spikes, but it also alters the signal

as it eliminates some of the pulse waves, which results in flat regions.

Figure 2.14: The despiked signal obtained by the despiking methods.
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The three tested techniques do not give satisfactory despiking as they either do not eliminate the

spikes as in the temporal thresholding, or modify the signal as in the wavelet thresholding and the

median filter. These results might be due to the fact that the spikes in our signals do not follow

assumptions of outliers; as stated earlier and illustrated by the second part of the signal in Fig.

2.13, there can be signals where spikes are present at every rising and falling edge, which does not

match the assumption of the rarity of outliers.

This suggests that we need a more adaptive technique that does not make such assumptions.

From Fig. 2.14, we notice that the envelope of the despiked signal obtained by the median filter

corresponds to the envelope of an uncontaminated signal. We make use of this observation to derive

Figure 2.15: The proposed despiking method.
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a more reliable despiking method for our signals.

The steps of the proposed method are shown in Fig. 2.15. First, the trend Tt is extracted from

the signal xt using a pass band filter with a cutoff equal 0.5Hz, and the oscillations Ot are obtained

by subtracting the trend from the signal Ot = xt−Tt. A median filter of order 3 is applied to Ot to

obtain the filtered oscillations OFt then the local minima and maxima are detected using a simple

rule: if OFt > OFt−1 and OFt > OFt+1, OFt is declared local maxima. Local minima are detected

by inverting the inequalities: OFt is local minima if OFt < OFt−1 and OFt < OFt+1. A polynomial

regression model of order 20 is afterward fitted to the local extrema to detect the envelope of OFt

(The order was chosen based on observations of the fit). In the last step, we eliminate the values

of the Ot that are outside the range given by the envelopes of OFt and we sum the resulting signal

with T to obtain the despiked signal. The obtained output signal with the proposed method for

the considered signal is shown in Fig. 2.16. We notice that the spikes are completely eliminated

Figure 2.16: The despiked signal obtained with the proposed method.
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without significantly altering the component of the signal we are interested in, which shows that

the proposed technique is better than the three methods from the literature for these signals with

a high number of spikes.

The technique is applied to the two parts of the signal separately (Fig. 2.17), the first part is

composed of the waves of the first frequency freq1 while the second is the rest of the signal composed

of freq2 and freq3. We do this because there is a drop in the amplitude at the transition from the

first to the second frequency that can be difficult to fit with the polynomial regression. We consider

the second part to be composed of freq2 and freq3 because freq3 represents a small portion of the

whole signal, and there is no noticeable amplitude shift between freq2 and freq3.

The transition between frequencies is always at the same point in the signals. Thus, the parts

can be easily separated without the need for automatic change point detection.

Figure 2.17: The strategy followed for signal despiking.
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For anomaly detection, we also split the signal into two parts as in the signal despiking problem,

and treat each of them separately. This is because the subsequences that are at the transition

between freq1 and freq2 tend to be detected as anomalies, as they are rare events in the signal.

Considering the whole signal would then generate a high false positive rate. Furthermore, splitting

the signal in this manner simplifies the problem, as subsequences would be homogeneous in each

case. As for the dissimilarity measure, we use the lb_improved since there can be phase shifts

between the signals. The warping window constraint is set to 5, which is equal to the length of the

longest period in the signal.

2.4.3 Cold Metal Transfer welding

We introduce here the welding of the connection tubes with the hot water tank cylinder conducted

by a robotic arm shown in Fig. 2.18 that employs the cold metal transfer (CMT). CMT is a subset

of the Gas Metal Arc Welding family. During this welding process (Fig 2.19), the wire travels

forward until it contacts the welding pool, which causes a short circuit. As soon as the short circuit

is detected, a signal is sent to the servomotor to retract the wire. The current is kept at a low level,

which gives time for the drop to cool. The arc is then reignited, and the process restarts in a loop

until the weld ends (Selvi et al. (2018)).

Fig. 2.20 shows voltage and current signals acquired during this process. Since there are multiple

tubes in the hot water tank (their number ranges from 2 to 6), we obtain a signal composed of

several sub-signals. Moreover, this welding is used to reinforce the intersection between the circular

and the longitudinal welds, the last two sub-signals correspond to this operation. We notice that

there is a peak in voltage before every welding. This corresponds to the signal used by the robotic

arm feeler before the arc ignition.

The first task that we need to complete to work with this data is to separate the sub-signals, for

this, we use a segmentation method shown in Fig 2.21 that works as follows:

• Transform the current signal using the roll-max function, which consists in returning the

maximum value of every sequence of length w in the signal extracted by a moving window.

This helps in detecting the upper envelope of the signals.
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Figure 2.18: The setup of the CMT process.

Figure 2.19: Illustration of the CMT process (Srinivasan et al. (2022)).

• Compute a binary mask by thresholding the transformed signal. This gives the value of 1 for

regions where there is a sub-signal and 0 elsewhere.
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Figure 2.20: Voltage and current signals and the corresponding welds of the sub-signals.

• Compute the first lag difference of the binary mask in order to obtain the location of the

change points. The value of 1 indicates the beginning of a sub-signal, and -1 indicates its end.

These voltage signals can also be contaminated with spikes. Their elimination is simpler here

since the signals have a slow-changing trend and the peaks are rare. We then apply the method

shown in Fig 2.22. We use a non-overlapping moving window, and for each window, we detect
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Figure 2.21: The segmentation method.

extrema by employing the same technique used for the problem of the despiking of the orbital

welding signals. We then replace the values at these locations with the median of the extrema. The

size of the window is fixed at 50 points in order to not eliminate anomalies and to preserve the

global trend of the signal.

An important observation is that the length of the sub-signals is variable. A histogram of the

lengths of a sample of 3000 sub-signals is given in Fig. 2.23. We notice that there are three

distinct sub-signal groups. The first has a median of 599 and a standard deviation of 38.81. This

corresponds to the two last welds of the intersection between the longitudinal weld and the circular

weld, as shown in Fig. 2.20. The second and the third groups, which correspond to the welding

of the connections, have medians of 1930 and 2144 with a standard deviation of 25.74 and 29.77

respectively. This is because there are in fact tubes with two different diameters. The variations in

the length for each sub-signal group might be due to errors in the segmentation and the differences

in the diameter of the tubes in each group.

Unlike the two previous processes, the current signal in CMT is not constant for all the cycles

and seems to provide more information about the welding operation. When computing the Pearson

correlation between each voltage sub-signal and its corresponding current in the sample considered

earlier, we found that the mean correlation is 0.862 with a standard deviation of 0.015. A histogram

showing the correlation values is given in Fig. 2.24. We also noticed that there is an outlier instance
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Figure 2.22: The despiking technique used for the CMT signals.

Figure 2.23: Histogram of the sub-signals lengths. Figure 2.24: Histogram of the correlation between
current and voltage.

where the correlation value is equal to 0.5. The corresponding weld was in fact faulty, which suggests

that the correlation between current and voltage can be an interesting feature for anomaly detection.

However, it might be a strong assumption to consider that only the correlation can be used to detect

anomalies, we can imagine a scenario where the current and the voltage are highly correlated but

still abnormal. We will see later in the manuscript that this is still a relevant observation when
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we introduce the problem of multivariate time series anomaly detection. For now, we maintain the

assumption that the voltage signal is the variable that holds most of the information for welding

defect detection.

A final observation to take into consideration for anomaly detection is that the welding of the

connection tubes and the welding of the intersection can have different dynamics. Hence, we believe

that it is more convenient to treat each of them separately in the anomaly detection process. Fur-

thermore, there can be phase shifts between the signals. Therefore, in the distance-based techniques

and in our approach, we employ the DTW lower bound lb_improved to align the subsequences with

a warping window of 3.

2.5 Results and discussion

In this section, we give the results of abnormal subsequence detection in the signal of the three

welding processes following the defined strategies and the experimental protocol presented in section

2.3.5. Table 2.2 gives the number of the normal and abnormal subsequences used for each welding

process along with their lengths, which are set by prior knowledge of the length of anomalies in the

signals.

We begin with the circular process. Table 2.3 gives the F1-scores of the approaches for each

of the 5 test subsets, along with the average F1-score and the average inference time. The OC-

SVM models with both kernels have the best performance in terms of the average F1-score and the

prediction time. The maximum mean F1-score of 0.947 is obtained with the OC-SVM model with

Table 2.2: Number and length of the subsequences used for each signal.

Process Normal
subsequences

Abnormal
subsequences length

Circular welding 6000 200 200
1st part of the orbital welding 5000 50 100
2st part of the orbital welding 5000 100 100

CMT connection welding 2000 200 200
CMT intersection welding 2000 200 100
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the RBF kernel. The OC-SVM models are the fastest since they only require the distances to the

support subsequence. For the one with the RBF kernel, one single support subsequence is used

for the prediction for each subset, while the OC-SVM model with the ND kernel needed 3 support

subsequences on average for each subset. The next fastest method is the autoencoder. However, it

has a much higher training time compared to the OC-SVM models. The k-NN based methods do

not require any training, but they needed 6.11 seconds for the prediction. Given that the number

of the test subsequences used here is less than the number of the subsequences of a single voltage

signal, these methods might not be adequate for real-time monitoring. The approach combining

the features and Isolation forest is the slowest, namely because calculating the designed features

requires a considerable amount of time. Overall, although all approaches exhibit good accuracy in

detecting anomalies in the circular welding process, the proposed approach is much faster.

We move now to the signals of the orbital welding process. Table 2.4 gives the results of the models

Table 2.3: Results for abnormal subsequence detection in the circular welding process.

Model F1-score 1 F1-score 2 F1-score 3 F1-score 4 F1-score 5 Mean Time
OC-SVM RBF L2 0.959 0.941 0.943 0.957 0.939 0.947 0.01
OC-SVM ND L2 0.948 0.937 0.943 0.950 0.932 0.942 0.026

kth-NN L2 0.943 0.945 0.911 0.943 0.943 0.937 6.11
Mean k-NN L2 0.952 0.946 0.913 0.943 0.946 0.940 6.11

Features & IForest 0.928 0.913 0.926 0.932 0.924 0.924 8.94
AutoEncoder 0.950 0.930 0.939 0.948 0.932 0.939 0.21

Table 2.4: Results for defect detection in the first part of the tube welding signal.

Model F1-score 1 F1-score 2 F1-score 3 F1-score 4 F1-score 5 Mean Time
OC-SVM RBF lb_improved 0.935 0.901 0.885 0.862 0.885 0.89 0.11
OC-SVM ND lb_improved 0.943 0.980 0.952 0.926 0.971 0.954 0.044

kth-NN lb_improved 0.901 0.901 0.901 0.885 0.917 0.90 3.59
Mean k-NN lb_improved 0.893 0.909 0.862 0.87 0.87 0.88 3.59

Features & IForest 0.826 0.814 0.766 0.769 0.8 0.795 6.17
AutoEncoder 0.820 0.845 0.787 0.794 0.726 0.794 0.15

Table 2.5: Results for defect detection in the second part of the tube welding signal.

Model F1-score 1 F1-score 2 F1-score 3 F1-score 4 F1-score 5 Mean Time
OC-SVM RBF lb_improved 0.980 0.971 0.99 0.966 0.995 0.980 0.14
OC-SVM ND lb_improved 0.99 0.976 1 0.99 1 0.991 0.10

kth-NN lb_improved 0.889 0.881 0.889 0.913 0.893 0.893 3.37
Mean k-NN lb_improved 0.901 0.889 0.909 0.913 0.881 0.898 3.37

Features & IForest 0.87 0.851 0.858 0.866 0.844 0.857 6.38
AutoEncoder 0.909 0.926 0.917 0.917 0.901 0.914 0.16
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for the first part. For these signals, the feature-based method and the autoencoder have the lowest

F1-scores of approximately 0.80. For the former, the reason can be that the extracted features

are not optimal for this data and cannot perfectly differentiate between normal and abnormal

subsequences. For the autoencoder, it might be because these signals are complex due to the

distortions between them. Hence, for the autoencoder to work better, it would require more data.

The distance-based methods are more accurate since the dissimilarity used allows better detection.

The OC-SVM with the ND distance has the highest average F1-score of 0.954 and the lowest

inference time. It required only 2 support subsequences for the prediction in each subset, while the

OC-SVM using the RBF kernel needed 17 support subsequences on average.

The results for the second part of the signal are presented in Table 2.5. It reveals that using the

OC-SVM with both kernels performs the best once again, achieving mean F1-scores of 0.980 and

0.991 using the RBF and ND kernels respectively. The autoencoder had a mean F1-score of 0.914,

which is higher this time than the ones obtained with the k-NN approaches. The IForest technique

with the features had the lowest F1-score and the largest inference time.

From Table 2.4 and Table 2.5 we notice that the OC-SVM model with the ND kernel performs

better than the one with the RBF model, especially for the first part of the signal. This suggests

that the assumption that the hypersurface containing the normal data is perfectly spherical is more

accurate for these signals.

Results for the CMT welding process are given in Table 2.6 and Table 2.7 for the connection tube

welding and the intersection welding respectively. For both problems, the ranking of the methods

in terms of the F1-score is similar to the one obtained for the other welding processes, the OC-SVM

models with both types of kernels maintain the highest average F1-scores and lowest inference time

compared to all other methods while the k-NN based approaches have higher average score than

the autoencoder and the features with IForest for both problems.

The first conclusion to make from the presented results is that all the approaches achieve an

F1-score higher than 0.8 in most of the cases. This is in part due to the preprocessing steps

and also to the strategies followed where homogeneous signals are treated separately, as well as

our attempts to optimize each approach. The findings of this study show that the OC-SVM with

distance substitution kernels achieves the highest accuracy and the lowest prediction time for all the
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Table 2.6: Results for abnormal subsequence detection in the connection tube welds.

Model F1-score 1 F1-score 2 F1-score 3 F1-score 4 F1-score 5 Mean Time
OC-SVM RBF lb_improved 1 1 1 0.995 1 0.999 0.064
OC-SVM ND lb_improved 1 1 1 0.995 1 0.999 0.03

kth-NN lb_improved 0.998 1 0.998 0.998 1 0.998 1.516
Mean k-NN lb_improved 0.983 0.993 0.988 0.99 1 0.990 1.516

Features & IForest 0.971 0.980 0.978 0.988 0.971 0.978 4.454
AutoEncoder 0.995 0.995 0.980 0.980 0.990 0.988 0.501
Table 2.7: Results for abnormal subsequence detection in the intersection welds.

Model F1-score 1 F1-score 2 F1-score 3 F1-score 4 F1-score 5 Mean Time
OC-SVM RBF lb_improved 0.998 0.998 1 0.995 1 0.998 0.05
OC-SVM ND lb_improved 0.99 0.995 0.998 0.985 0.988 0.991 0.05

kth-NN lb_improved 0.971 1 0.983 0.983 0.993 0.986 0.754
Mean k-NN lb_improved 0.976 0.998 0.985 0.973 0.988 0.984 0.754

Features & IForest 0.978 0.975 0.950 0.971 0.988 0.972 3.87
AutoEncoder 0.971 0.975 0.972 0.975 0.970 0.973 0.157

considered welding processes. The gain in inference time is clear especially when compared to the

other distance-based approaches, suggesting that the OC-SVM with distance substitution kernels is

well-suited for detecting abnormal subsequences in time series data, particularly in welding signals,

which allows real-time monitoring of the welding operation and to search anomalies in historical

data, namely in order to extract knowledge such as trends of the occurrence of defects over time or

clustering similar anomalies.

Concerning the non-positive definiteness of the similarity matrix obtained with the lower bound

of the DTW and DS kernels, the findings of the presented experimentation show that, despite that

DTW and its lower bound lb_improved are theoretically non-metric, OC-SVM can still achieve

high accuracy. These good results of OC-SVM with this non-metric dissimilarity can be explained

by the fact that positive definiteness is weakly violated. In fact, Lemire (2009) demonstrated that

for same length time series, the DTW satisfies a weakly triangular constraint and is unlikely to

violate the triangular inequality in real-world data. Formally, the weak triangular inequality for

three sequences x, y and z of the same length m is defined as following:

DTWp(x, y) +DTWp(y, z) ≥
DTWp(x, z)

min(2r + 1,m)1/p
(2.22)

Where p is the order of the Lp distance used in the DTW and r is the warping constraint.
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This weak triangular inequality combined with the fact that the Sequential Minimal Optimization

algorithm, used to solve the optimization problem of the SVMs, can still guarantee finding a good

local optimum (Bahlmann et al. (2002)) when using indefinite kernels, which explains the good

results obtained by the OC-SVM with the lb_improved dissimilarity. To further confirm the

performance of the approach, we test it in Appendix B for the problem of abnormal whole time

series detection.

Fig. 2.25 gives examples of signals from the three welding processes analyzed by the OC-SVM

employing the ND kernel, along with the produced anomaly scores. We notice that the abnormal

subsequences are perfectly identified by the models. This shows the ability of the approach to learn

the expected shapes of the normal subsequences and to detect any abnormal shape that is not seen

in the training data. For the circular welding signals in Fig. 2.25 (a) the abnormal subsequences are

abnormal shapes with high amplitude. Fig. 2.25 (b) and Fig. 2.25 (c) show examples of signals of

the orbital and the CMT welding respectively. The anomalies here are abnormal shapes regardless

of their amplitude, they can be parts where there is an absence of the oscillations or oscillations with

abnormal frequency observed especially in the signals of the CMT process, indicating an abnormal

short circuit frequency.

We were interested in our work only in detecting anomalies of voltage signal since it is the

variable where there is most of the information about anomalies as the voltage is correlated with

the electric arc dynamics. However, it is possible that practitioners will be interested in detecting

anomalies in multivariate signals having more variables of the welding operation such as the gas

flow or the current in the CMT process, etc. The simplest extension is to treat each variable as

a univariate time series. However, one shortcoming of this approach is that we need a model for

each variable. A more appropriate extension would be to use a dissimilarity measure that is able

to handle multivariate time series in the kernel function. For example, the generalization of the L2

distance defined for two multivariate time series subsequences s and s′ of length m and with dim

dimensions as:

EDm = (

dim∑
k=1

m∑
i=1

|ski − s′di |2)
1
2 (2.23)
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Figure 2.25: Examples of signals and the associated anomaly scores for each subsequence. (a) The
circular welding, (b) the orbital welding, and (c) the CMT welding.

To show an example, consider the problem of detecting abnormal subsequence in a multivariate

signal composed of voltage and wire feed speed of the circular welding. We fit an OC-SVM model

using centered subsequences of length 200 of a normal signal. we employ the RBF kernel using the

dissimilarity in Eq. 2.23 with the RBF parameter γ=0.05. The results of the prediction of two

signals with abnormal subsequences are shown in Fig. 2.26. The right-hand signal has an abnormal

subsequence in the voltage signal, while the left signal has abnormal subsequences in the wire speed.

We notice from the anomaly scores that these subsequences are perfectly detected, showing that

the proposed approach can be used for anomaly detection in multivariate time series. Note that the

abnormal subsequences detected in the wire speed signal do not indicate the presence of a welding

defect, which is the reason that we only worked with the voltage signals.

Despite the good detection results shown in Fig. 2.26, a shortcoming of using the dissimilarity in

Eq 2.23 is that it does not take into account the correlation between the variables in the multivariate

signal. As we saw in the Cold Metal Transfer welding, there is a high correlation between voltage

and current in a typical normal operation while we observed that in an abnormal weld, there was a

decrease in the correlation. A more convenient dissimilarity measure should take into consideration

the correlation structure. In future works, it would be interesting to study the use of OC-SVM
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Figure 2.26: Examples of multivariate welding signals along with the produced anomaly scores.

with the Extended Frobenius norm (EROS) proposed by K. Yang et al. (2004), which is a similarity

that is based on Principal Component Analysis (PCA) in order to take into account the correlation

between variables in a multivariate time series. Another approach to study in future works would

be to first perform PCA to transform the multivariate signals into a univariate time series prior to

the use of the L2 distance.

Like any method, the proposed approach for abnormal subsequence detection has some limitations

that can be further addressed in future works, which are as follows:

• Despite that the sizes of the moving windows used to extract the subsequences were carefully

set for the signals of each welding process, there is still a possibility that some anomalies

will be missed because of the large difference in length between the anomalies and the size

of the moving window. In Appendix D, we propose two approaches that can be used to

detect variable length subsequences using Shape Based Distance (Paparrizos et al. (2015))

and Uniform Scaling (Keogh (2003)).
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• Like any dissimilarity-based approach, the proposed approach relies on the choice of an ade-

quate dissimilarity measure.

• The models do not automatically adapt to the change of normality over time.

• The anomaly detector does not offer interpretability of the predictions made.

For the circular welding process, this problem of interpretability is addressed by an automatic

defect diagnosis that we present in the next subsection.

2.6 Welding defect diagnosis using Random Convolutional

Kernel Transform

Abnormal subsequences in the welding voltage signals can be caused by multiple events such as

burn-through, misalignment, etc. We are interested here in automatically classifying the most

recurrent abnormal subsequences in the circular welding process. This would help the operator

take adequate corrective actions that depend on the type of the detected anomaly. For example,

if abnormal oscillations are detected, the operator would change the electrode or check the health

state of the welding torch. Moreover, knowing the classes of the detected anomalies could help

engineers to better understand the welding process and to optimize the product’s design in order

to minimize the apparition of faults, for example by analyzing the possible link between the type

of observed anomalies and the product’s design and its mechanical and the chemical composition.

Employing our approach for anomaly detection, we searched for abnormal subsequences in the

available historical data and conducted a study to identify the classes of the most recurrent circular

welding defects with the help of domain experts. We identified 6 classes shown in Fig. 2.27 along

with their associated welding defect. The 1st class corresponds to a burn-through, the peak here

shows that the arc lengthens due to a hole in the weld seam. The 2nd class is characterized by

the low peak and indicates a possible weld skip, while the 3rd is a local misalignment between the

cap and the ferrule. The 4th class are subsequences with a peak that indicates a hole and which

is preceded by a gradual increase in the voltage. This suggests that the cause of the burn-through
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Figure 2.27: The 6 most observed welding defects.

is the misalignment between the cap and the ferrule. The 5th is the same phenomenon but with

multiple holes shown by multiple peaks in the abnormal subsequence. The last class shows abnormal

oscillations, which can be caused by abnormal movements of the wire or a problem with the welding

torch.

A noteworthy observation is that anomalies can be of different lengths despite the use of a

fixed-size window to extract subsequences from the signal. This is because when analyzing the sub-

sequences using the anomaly detector, we consider consecutive subsequences that have an anomaly

score lower than the threshold to form a single welding defect. To give an example, consider a

voltage signal with two defects shown in Fig. 2.28 along with the obtained anomaly scores for each

subsequence. We notice that there are two distinct series of subsequences with an anomaly score

lower than the threshold. These two series will be then combined to form two longer subsequences

with different lengths that will be considered as two distinct welding defects to classify. We will
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Figure 2.28: Illustration of the anomaly detection output (the anomaly scores) and how it is used
to extract welding defects’ signatures.

refer to these longer abnormal subsequences that we seek to classify in the remainder of this section

as time series since they are non-overlapping.

The subject of time series classification has been highly studied in the literature, and many

methods have been proposed. Time series classification methods can be divided into three categories

(Xing et al. (2010), Abanda et al. (2019)):

• Features-based: consist in transforming the time series into a feature vector and the use of a

classification method to classify the time series using their feature vector.

• Model-based: suppose that the time series in a class are generated by the same statistical

model, they then classify a new instance based on the best fit to a model.
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• Dissimilarity-based: incorporate a dissimilarity measure between time series into a classifier,

very often k-NN classifier (Abanda et al. (2019)) similar to the anomaly detection domain.

A comprehensive review of the literature giving more information on this field is given in Bagnall

et al. (2017).

Another important observation about the anomalies shown in Fig. 2.27 is that in some cases, it is

a small segment that represents the class of the anomaly. For example, the increasing trend before

the burn-through peak that differentiates between class 1 and class 4. This suggests that it is more

convenient to use a method that can learn these parts of the subsequences that are representative

of the class, rather than classifying the anomalies based on their global shape.

The first method that addresses this type of problem is called the Shapelets method, proposed

by Ye et al. (2011). It is a method that classifies time series using some subsequences that are

maximally representative of a class, called shapelets. The method uses the distances to these

shapelets as a discriminatory feature. The brute force algorithm for automatically learning the

shapelets has a complexity of O(k2m̄4) where k is the number of the time series in the training

set and m̄ their average length. The authors proposed a faster shapelet search decision tree-like

algorithm that combines early abandoning of the distance calculations and entropy pruning. In this

algorithm, the minimum length of a shapelet is set at 3 while the maximum length is the length of

the minimum time series in the dataset. Despite these improvements, the algorithm still had the

worst-case complexity of O(m̄4).

This led to further research for speeding up the shapelet search and extending the concept. For

instance, Rakthanmanon et al. (2013) proposed the Fast shapelets method that uses a discretization

of the time series rather than the raw representation in order to speed up the shapelet search. Hills

et al. (2014) introduced the Shapelet Transform that represents a time series as a vector v ∈ Rk

where each element is the minimum distance between the time series and the shapelet k. The goal

was to overcome the shortcoming of the original Shapelet method allowing only the decision tree

classifier. With the new representation of the data, any classifier can be used. The authors also

suggest a heuristic to automatically estimate the minimum and maximum length of the candidate

shapelets. Karlsson et al. (2016) proposed the Generalized Random Shapelet Forest that can
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handle multivariate time series, which uses a randomized forest rather than a single decision tree as

in the original method. Rather than searching for shapelets, Grabocka et al. (2014) introduced a

mathematical formulation to jointly learn the shapelets and a linear hyperplane using a non-convex

classification objective function.

Recently, a method called Random Convolution Kernel Transform (ROCKET) was proposed by

Dempster et al. (2020), which is based on representing the time series to be classified by features

extracted from the convolution of the time series with random convolutional kernels (also known

as filters. Not to confuse with kernels used in methods like SVM) and using a linear classifier. The

authors showed that there are similarities between ROCKET and shapelets despite the fact that

shapelets are usually sampled from the input data while ROCKET uses random shapelets. The

method achieved state-of-the-art accuracy while being faster than existing methods.

Since ROCKET meets both criteria of accuracy and fast inference, we use it to classify the welding

anomalies in our work. Fig. 2.29 describes the ROCKET algorithm. The feature extraction part is

based on the convolution, which is a sliding dot product, between the input time series xt and the

random kernel w. Each dot product is defined as follows:

zi = xi ∗ w = (

lkernel−1∑
j=0

xi+(j×d) × wj) + b (2.24)

Where:

• lkernel is the length of the kernel selected randomly from 7, 9, 11 with uniform probability.

• w are the weights of the kernel sampled randomly from a normal distribution w ∼ N(0, 1)

and are afterward centered i.e. w = (w − w̄)

• b is the bias sampled from a uniform distribution, b ∼ U(-1, 1)

• d is the dilation sampled on an exponential scale d = 2x , x ∼ U(0, A) where A = log2
linput−1
lkernel−1 .

This ensures that the kernel’s length including dilation is at most equal to the length of the

input time series.

• Padding: for each random kernel, a decision is made at random if the padding will be used,

if yes, zeroes are appended at the start and the end of the time series.
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• k is the number of kernels. The higher the number, the higher the accuracy of the classification.

The authors recommend using k=10 000.

• Stride is always equal to 1.

Two features are extracted from each convolution:

• ppv : The proportional of positive values defined as ppv(Z) = 1
n

∑n−1
i=0 [zi > 0], where Z is the

output of the convolution and n is the length of Z.

• mv: The maximum value of the convolution, also known as global max pooling in the neural

networks’ literature defined as mv = max(Z).

The 2× k features (two features extracted from each convolution) are then used to train a linear

classifier. The authors propose to use logistic regression if the number of time series is higher than

Figure 2.29: An illustration of ROCKET.
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the number of features and ridge linear classifier with L2 regularization otherwise.

To test ROCKET on our problem, we consider a dataset composed of 50 instances of each of

the 6 defect classes. Since anomalies can have different lengths, we use zero padding to match the

length of the maximum possible anomaly length, which is the length of the whole voltage signal.

Despite the recommendation of ROCKET authors to use 10 000 kernels, much fewer kernels can

be used for our case study. In order to select the proper number, we vary k from 100 to 5000. For

each k, we run ROCKET 10 times and save the mean and the standard deviation of the accuracy

produced. Fig. 2.30. shows a box plot of the accuracy obtained for k ranging from 100 to 5000

with a step of 100. We notice that from k=500 the accuracy starts to stabilize at 100% for most

of the runs. We then select these 500 kernels for our case study. With this number of kernels, we

ensure an accurate and fast classification of the anomalies of the circular welding process.

Combining the OC-SVM models and the diagnosis based on ROCKET. We developed software

for real-time monitoring of the circular welding process that is used as a part of the process. More

information about the developed software is given in Appendix C.

It is important to note that the diagnosis proposed here has some limitations that originate

primarily from the assumptions made. First, we assumed that consecutive abnormal subsequences

Figure 2.30: Accuracy of ROCKET as a function of the number of random kernels.
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form a single welding defect. While this is true for most of the cases, it is not always valid. There

can be scenarios where they indicate more than one defect type. Furthermore, we discussed earlier

the fact that we classify here only the most observed abnormal subsequences. Therefore, once a

new class of anomalies is detected by the anomaly detector, the diagnosis will then necessarily give

a false prediction as the new class is unknown by the classifier.

One approach to address the above problems would be to integrate a reject option in the classifi-

cation. There are two types of rejection: ambiguity rejection and distance-based rejection (Hanczar

et al. (2008);Landgrebe et al. (2006)). The first addresses the problem of high uncertainty about

which class to assign to an observation. In our case, this can be used to tackle the problem of when

there is more than one welding defect in consecutive abnormal subsequences. A simple technique

is to use a threshold on the probabilities given by the classifier. If the maximum probability is

lower than the threshold, the classification is rejected. The distance-based reject option is similar

to outlier detection and can be employed for the second problem in order to reject the classification

of a defect that does not seem to belong to any of the known classes.

Rather than rejecting the classification, which might not be very useful in the context of welding

diagnosis, another direction to address the ambiguity case is to assign soft labels to the anomalies

by employing fuzzy classification. For the appearance of new types of defects, techniques em-

ployed in the field of classification with concept evolution can be used in order for the classifier to

automatically adapt to the appearance of new classes.

2.7 Conclusion

In this chapter, we proposed a one-class classification approach for the detection of welding faults.

Employing dissimilarity in the raw temporal data, we were able to generalize the anomaly detection

across multiple arc welding processes. The results showed that the proposed approach with the

adequate dissimilarity measure is able to detect anomalies in voltage signals of different natures

with higher accuracy and faster inference time than most of the existing approaches. Moreover, the

work of this chapter addressed a gap in the literature, which is the problem that OC-SVM cannot be

used with the raw time series. We showed in this work that integrating distance substitution kernels
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allows the OC-SVM to effectively work with the raw time series and time series subsequences. We

studied distance substitution kernels with the Euclidean distance and a lower bound of dynamic time

warping, and we gave justification of why such a theoretically non-metric dissimilarity can give high

anomaly detection accuracy when used with the OC-SVM that normally requires a positive definite

kernel. In future works, evaluating the performance of OC-SVM using other dissimilarity measures

would be an interesting research direction, particularly those that are suitable for multivariate time

series.

In addition to anomaly detection, we proposed in this work an automatic welding defect diag-

nosis for the circular welding process in order to predict the class of the anomalies detected. This

proposed solution has been integrated into a software and is currently being utilized as part of the

welding process. In future works, we plan to extend this automatic diagnosis to other welding pro-

cesses, along with addressing its limitations that include the assumption that consecutive abnormal

subsequences form a unique anomaly and the problem of the appearance of new classes of defects.

The OC-SVM with distance substitution has certain limitations. They include the fact that we

employ a fixed-length moving window for analyzing the subsequences of the signals and the inability

to automatically adapt to the change of the normality. Moreover, the approach relies on the choice

of an adequate dissimilarity measure and does not offer information about the detected defects.

These two last limitations are addressed in the next chapter.
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3.1 Introduction

In the previous chapter, we noted that the OC-SVM with distance substitution (DS) kernels has

the limitations of relying on the choice of the distance and the fact that it does not offer information

about the anomalies detected. This chapter addresses these shortcomings by proposing approaches

based on the random convolutional kernel transform (ROCKET). As we saw earlier, ROCKET

was originally proposed for time series classification, and we used it for classifying the circular

welding defects. Nevertheless, this specific transformation has not been employed for detecting

abnormal subsequences in time series data. To the best of our knowledge, this is the first work

using ROCKET for this purpose. ROCKET is interesting due to its ability to generalize well across

various problems, and because the random convolutional kernels can serve as basic shapes that

could help explain the abnormal patterns within the detected abnormal subsequences.

Explaining the prediction of machine learning models became an important research topic in

recent years. However, little attention is given to explaining models based on temporal data (Tripa-

thy et al. (2022)). Hence, there is a need for research work addressing this subject. Explainability

in anomaly detection consists in explaining why an anomaly is considered anomalous, and this is

by anomaly description and outlying property detection (Z. Li et al. (2022)). One interpretable

technique for time series classification is the shapelet transform that we presented in the previous

chapter. Since shapelets are local patterns that are maximally representative of a class, explain-

ability is readily obtained by visualizing the shapelets associated with each class. However, this

is only valid for multi-class classification, since the shapelets search is guided by the labels. For

one class classification, Yamaguchi et al. (2018) proposed an algorithm that learns the shapelets

of the normal class of time series. However, these shapelets are representative of only the normal

class and might not be used to explain the abnormal shapes of the anomalous class. On the other

hand, the random convolutional kernels offer random shapelets that can be used to explain the

abnormal patterns of the anomalous time series subsequences in our case, even if the training is

only done using the normal subsequences, as they are random and not characteristic of the normal

class. Following this key assumption, we make use of ROCKET to derive a method for explainable

time series subsequence detection.
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In summary, two main approaches are proposed in this chapter that address the discussed short-

comings of OC-SVM with DS kernels:

• Explainability: We propose an explainability approach making use of the random convo-

lutional kernels and the maximum value extracted from their convolutions with the subse-

quences.

• Generalization: We study the use of ROCKET with unsupervised feature selection tech-

niques and OC-SVM in order to investigate the possibility of developing an abnormal subse-

quence detection approach that generalizes well to different problems while preserving com-

putational efficiency.

The two aspects will be studied using two separate approaches. The chapter is structured as

follows: in section 3.2 we present the methods and materials that cover the extension of ROCKET

for anomaly detection using OC-SVM, the explainability technique that we will use in the first

approach, and the feature selection and reduction techniques that will be used in the second ap-

proach. In section 3.3 we present the results of the two approaches we propose, and we finish with

conclusions and future works.

3.2 Methods

3.2.1 Random convolutional kernel transform with OC-SVM

We reintroduce here the feature extraction part of the ROCKET method proposed by Dempster

et al. (2020) that is based on the convolution, which is a sliding dot product, between the input

time series xt and the random kernel w. Each dot product is defined as follows:

zi = xi ∗ w = (

lkernel−1∑
j=0

xi+(j×d) × wj) + b (3.1)

Where:

101



CHAPTER 3. WELDING DEFECT DETECTION USING RANDOM CONVOLUTIONAL
KERNEL TRANSFORM

• lkernel is the length of the kernel selected randomly from {7, 9, 11} with uniform probability.

• w are the weights of the kernel sampled randomly from a normal distribution w ∼ N(0, 1)

and are afterward centered i.e. w = (w − w̄)

• b is the bias sampled from a uniform distribution, b ∼ U(-1, 1)

• d is the dilation sampled on an exponential scale d = 2x , x ∼ U(0, A) where A = log2
linput−1
lkernel−1 .

This ensures that the kernel’s length including dilation is at most equal to the length of the

input time series.

• Padding: for each random kernel, a decision is made at random if the padding will be used,

if yes, zeroes are appended at the start and the end of the time series.

• k The number of kernels.

• Stride is always equal to 1.

Two features are then extracted from each convolution, which are:

• ppv(Z) = 1
n

∑n−1
i=0 [zi > 0]: The proportion of positive values. Where Z is the output of the

convolution and n is the length of Z.

• mv = max(Z): The maximum value of the convolution. It gives the maximum similarity

between the random kernel and the shapes in the time series.

The focus of the work of this chapter is to examine the use of features obtained from convolutions

with random kernels for the problem of abnormal subsequence detection. We aim to accomplish

the two main objectives mentioned earlier, and that will be studied with two distinct approaches.

In the first, we intend to develop a method that can identify abnormal subsequences and provide

an explanation by making use of the random kernels. In the second, we prioritize achieving high

accuracy, computational efficiency, and the ability to generalize the approach across the different

welding signals introduced in the preceding chapter.

The two approaches are depicted in Fig. 3.1. In the first approach that addresses explainability,

we extract the maximum values mv of the convolutions of the subsequences with a number of
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random kernels to form the feature vectors that are used as inputs to an OC-SVM model that

learns the hypersurface containing the normal class. Our choice of the OC-SVM is again motivated

by the fact that it is fast at inference, as it relies only on the distance to the support vectors,

which is an important advantage here as we may require a high number of random convolutional

kernels to detect and explain abnormal subsequences and since there are possibly a high number of

subsequences in a welding signal. To predict if a new subsequence is normal, first, its features are

extracted using the random convolution kernels generated at the training stage that are subsequently

passed to the OC-SVM model that returns an anomaly score reflecting its degree of abnormality.

If the subsequence is abnormal, we follow the explainability technique that we present shortly to

give an explanation about why it is considered abnormal.

In the second approach depicted in Fig. 3.1 (b), we investigate the use of feature vectors that

consist of mv only, ppv only, and both mv and ppv, and we study the accuracy obtained for each case

in order to select the more accurate models. Prior to modeling the normal class using OC-SVM, the

features are first reduced using unsupervised dimensionality reduction techniques in order to reduce

Figure 3.1: An illustration of the two proposed approaches.
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the computational complexity while maintaining good detection accuracy. To test the normality of

an upcoming subsequence, its features are extracted using ROCKET and reduced before predicting

its class by the trained OC-SVM model. The two approaches are detailed in the next subsections.

3.2.2 Approach 1: Explainable abnormal subsequence detection using

ROCKET

In this first approach, we would like to make use of the random convolutional kernels in order to

derive a method that is able to provide information about the anomalies detected. In recent years,

there has been growing interest in explaining machine learning predictions. Nevertheless, there

has been little focus on explaining models based on temporal data (Tripathy et al. (2022)). There

is a need for research work addressing this gap. Explainability in anomaly detection consists in

explaining why an anomaly is considered anomalous, and this is by anomaly description and outlying

property detection (Z. Li et al. (2022)). There are multiple types of explainability strategies that

can be used to achieve this. According to Tripathy et al. (2022), they can be classified into,

explainability by example, feature importance, and causality mechanism. In our case, we adopt

the feature importance strategy, where a value is attributed to each of the random kernels that

describes its importance in the obtained prediction. There are two types of feature attribution

methods, model-agnostic and model-specific (Angelov et al. (2021)). Model-agnostic approaches,

such as Local Interpretable Model-agnostic Explanations (LIME, Ribeiro et al. (2016)) and SHapley

Additive exPlanations (SHAP, Lundberg et al. (2017a)) are designed to explain any model while

model-specific approaches take into account the model structure to derive explainability, and they

have the advantage of providing more reliable explanation (Z. Li et al. (2022)). Explainability

methods can further be classified into global explainability and local explainability. The former is

intended to explain the overall model behavior, while the latter explains individual predictions.

In order to achieve explainability with the random kernel transform, we first make adjustments

to the feature extraction procedure in the following way:

• lkernel is selected randomly from {3, 5, 7, 9, 11} with uniform probability. The added lengths

are intended to capture and explain abnormal trends of the subsequences, such as atypical
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upward or downward trends.

• We only extract the maximum value of the convolution mv as a feature. This is because,

unlike ppv, this feature is straightforward to interpret. To show this, consider the convolution

between a subsequence and a convolutional kernel shown in Fig. 3.2. We notice that when

the convolutional kernel matches a pattern in the subsequence, which is here a level shift,

the convolution output is maximal at this location. Therefore, the mv reflects the maximum

similarity between a random filter and the patterns in the subsequence, similar to the shapelet

transform. Hence, our assumption is that when detecting an abnormal subsequence, we are

able to trace the similarities with the random kernels that made the detector predict the

subsequence as abnormal. These random kernels will then be used to explain the abnormal

patterns in the subsequence. The technique will be detailed shortly.

• We do not use padding when performing the convolution. This is because we want the

maximum value (mv) to reflect the similarity of the random kernel with a pattern that is

fully contained in the subsequence, in order to achieve a more accurate explainability.

With these adjustments being made, we propose in this work a simple model-specific local ex-

planation approach that makes use of the random kernels. First, the approach involves estimating

the importance of each random kernel in the obtained prediction. For this, we define the impor-

Figure 3.2: An illustration of the convolution between a subsequence and a convolutional kernel.
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tance of the features as a constrained point-wise difference between the abnormal observation x′

and its nearest neighbor s from the normal training data, as Fig 3.3 shows. Formally, the features’

importance (FI) is estimated as follows:

FIi(x) = (x′
i − si)+ =

x′
i − si if (x′

i − si) > 0

0 Otherwise
(3.2)

where x′ is the abnormal observation and s the nearest neighbor of x′ in the training data. To

understand the assumptions behind Eq. 3.2, first, recall that the maximum value of the convolution

that we use as a feature gives the maximum similarity between the random kernel and the shapes

contained in the subsequence. Suppose that we use 5 random kernels and that the abnormal

subsequence has a feature vector x′ = [0, 0, 2, 8, 9], which indicates that it has a relatively high

similarity with the 4th and the 5th random kernels. Suppose now that the nearest neighbor of x′

from the training data is given by s = [5, 5, 2, 1, 1], indicating that a typical normal subsequence

that x′ deviates the least from is characterized by similarities with the first two random kernels

while having low similarities with the last two. In order to give an informative characterization

Figure 3.3: An illustration of the feature importance estimation.
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and explanation of why x′ is anomalous, we should answer the following question: which shapes

are present in the subsequences that made it abnormal? which we attempt to answer by using

Eq. 3.2, that gives the following feature importance vector FI = [0, 0, 0, 7, 8], highlighting that the

abnormal subsequence has high similarities with the 4th and 5th random kernels and that it made

it abnormal while ignoring the information that the dissimilarity with the first two kernels possibly

also made the subsequence abnormal as this might not be informative for the users as they might

not be aware of all the normal shapes of the subsequences.

After estimating the contribution of a random kernel to the prediction based on the defined

approach, we need to find where in the subsequence the similarities with the most important

random kernels are the highest, which is the second part of the explanation that we call the lo-

calization L, which indicates the localization of the pattern that makes the subsequence abnor-

mal. For this purpose, we need to find the argument of the maximum value of the convolution

Li = argmax(Zi(x
′)). The final explanation for the abnormal subsequence x′ is then a tuple

{FIi(x
′), Li(x

′)} with i = [1, 2, ...k] (where k is the number of random kernels), arranged by FIi(x
′)

in a decreasing order. Appendix E gives the pseudocode of the approach.

It should be kept in mind that this approach has some limitations. It treats every feature

individually and does not take into account the possible interaction between features. Moreover,

if a large number of random kernels are used in ROCKET, this method may not work effectively.

Despite these limitations, the approach gives good results, as we shall see later.

We compare this technique with SHapley Additive exPlanations (SHAP), which is a feature

importance, model-agnostic approach for explaining black-box machine learning algorithms based

on a game theory approach named Shapley values. To get the contribution ϕj of a feature j to the

output of an algorithm, it uses the following formula:

ϕj =
∑

S⊆F\j

|S|!(|F | − |S| − 1)

|F |!
[fS∪j(XS∪j)− fS(XS)] (3.3)

Where F is the set of all the features, S is a subset of F , X are the input values of the features,

and f is the machine learning model. fS(XS) indicates that the model f is trained using the subset

S of the features F . Eq. 3.3 can be explained as follows: the contribution of the feature j is the
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mean of the differences between the predictions of the model using all possible subsets S of F with

the presence of the feature j and the predictions of the model trained with the same S without

j. The complexity of the brute force calculation of the exact value of ϕj increases exponentially

with respect to the number of features F . For tree models, Lundberg et al. (2017b) proposed the

Tree SHAP algorithm that takes into account the structure of these models in order to compute

the Shapley values in polynomial time complexity. We use this algorithm along with the Isolation

Forest in our comparative study of explainability.

3.2.3 Approach 2: Dimensionality reduction techniques with ROCKET

and OC-SVM

In this second approach, we aim to address the shortcoming of the OC-SVM with distance substitu-

tion kernels that is relying on the choice of the dissimilarity measure. We prioritize here accuracy,

generalization, and computational efficiency, and we assume that explainability is not needed. For

this, we investigate the use of ROCKET along with feature selection and reduction techniques that

we present here. Feature selection refers to selecting a subset of the original features that are the

most relevant to the problem at hand, while feature reduction consists in transforming the original

features by mapping them to a lower dimensional space.

Correlation-based

The correlation-based feature selection that we use in this work consists in discarding highly corre-

lated features and subsequently, the random kernels that generated these features. The assumption

is that correlated features hold similar information, whereas we are more interested in features

that capture different patterns that would help us detect anomalies more accurately. Formally, the

technique involves calculating the Pearson correlation coefficient between each pair of features in

the dataset. If the correlation coefficient is higher than a specified threshold, one of the features

is removed. The process is repeated until all highly correlated features are removed. We set the

correlation threshold at 0.7 in this study.
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Principal Component Analysis

Principal Component Analysis is a feature reduction tool that can be used as a pre-processing for

supervised and unsupervised problems such as classification and clustering. The feature reduction

is performed by keeping only the components that have important eigenvalues. In this work, we

keep the components that account for 98% of the total variation.

Lian (2012) argued that for one-class classification, the components with low eigenvalues are the

most interesting. The author explained this by the fact that, unlike clustering or classification,

in one-class classification, we are not attempting to discriminate between the samples. Instead,

we are trying to group them. Hence, the components with low eigenvalues are the ones that

exhibit the patterns that are shared by the normal class. We also study in this chapter this form

of dimensionality reduction by removing the first components that account for 70% of the total

variation, and we call this technique PCA_OC.

Inter-Quartile Range

For one-class classification, Lorena et al. (2015) suggested using the Inter Quartile Range (IQR)

as a feature selection method. The idea behind this method is that the features with a small IQR

are the characteristics of the normal class, similar to the PCA_OC, and any deviations from these

features can be used to identify anomalies. In our experiments, we retain the features that have an

IQR lower or equal to the 0.2 quantile of the IQRs of all the features.

3.3 Results and discussion

In this section, the results of the two approaches are presented. We will begin by presenting the

results of the first approach that extracts only the maximum value of the convolution and that is

able to provide an explanation of the anomalies while in the second study, we are only interested

in the generalizability of the ROCKET to all the welding signal considered in this thesis. For this,

we investigate the use of mv only, ppv only, and both ppv and mv as features and employ the
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dimensionality reduction techniques presented above.

We first detail the experimental methodology followed in this study. At training, k random kernels

are generated along with their attributes discussed earlier i.e. length, weights, and dilation. After

feature extraction, an OC-SVM model is fitted to the training data represented by the extracted

features. The OC-SVM parameter ν is fixed at 10−5 as we are only training from normal data.

In the test stage, we first transform the upcoming subsequences using the generated convolutional

kernels in the training stage. We then predict if they are normal or abnormal by feeding the

extracted features from the convolutions (or a subset of them in the second approach) into the

trained OC-SVM model. If the anomaly score is lower than a threshold τ , the subsequence is

declared abnormal. The threshold is estimated as in the previous chapter using Eq. 3.4:

τ = F̄ (xtrain)− 3 ∗ σF (xtrain) (3.4)

Where F̄ (xtrain) is the mean of the anomaly scores obtained from the training data and σF (xtrain)

is the standard deviation of these anomaly scores. In the first approach, when a subsequence is

abnormal, we follow the explainability approach presented earlier in order to give indications of

why it is predicted abnormal. We retain the three most important kernels for the explanation.

In order for the results to be comparable with the ones from the previous chapter, we consider

here the same data and the same evaluation procedure, we retain the use of the k-fold technique

with k = 5. Recall that in this process, the normal subsequences are divided into 5 subsets, and

for each iteration, the model is trained using 4 subsets of the normal subsequences, while the 5th

subset is combined with the abnormal subsequences to form the test data. We repeat the training

and testing 10 times for each of the five subsets, and we report here the F1-score averaged over the

10 runs and the 5 test subsets, along with the average standard deviation in order to quantify the

variability of the detection accuracy that is due to the randomness of ROCKET. We consider here

the use of 500 random kernels to transform the subsequences unless stated otherwise.

To accurately compare approaches as well as the feature selection and reduction techniques in

terms of accuracy in the second approach, we vary the smoothing parameter γ of the RBF kernel
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from 10−5 to 10−2 with a step of 10−1 in an attempt to separate the impact of this parameter from

the effects of choosing different features and reducing the dimensionality.

3.3.1 Results of the first approach

We present in this section the results of the first approach in terms of detection accuracy and

explainability. Table 3.1 gives the F1-scores for all the signals obtained with the OC-SVM using

different values for the parameter of the RBF kernel. We can notice from the table that the

approach has good accuracy for the considered signals, notably the model with γ = 0.001 that

gives good results across all the signals and outperforms the methods presented in the previous

chapters for most of the signals. These first results indicate that ROCKET may be promising as a

generic abnormal subsequence detection method. However, we can notice from Table 3.1 that for

the subsequences of the orbital signal (orbital 1 and orbital 2 in the table), the standard deviations

of the F1-score are high compared to the ones observed for the other signals. This can be explained

by the fact that these signals are the most complex, as a consequence, the representation obtained

with ROCKET can be complex and highly variable between runs. From the standard deviation

of the F1-scores in Table 3.1, we notice that this is notably valid for the second part which is

composed of two frequencies, hence the most complex, and for which the variability is the highest.

This suggests that despite the good F1-scores obtained, ROCKET for anomaly detection can still

benefit from further optimizations in order to reduce the variability of the detection accuracy and

improve performance. This can include the extraction of other features from the convolutions and

feature selection and reduction that we study in the second approach.

We are interested at this stage in explaining the detected anomalies using the 500 random kernels

generated at training. Employing our approach for explainability, we identified the three most

Table 3.1: F1-score for all the signals obtained by the first approach.

Kernel Circular welding Orbital 1 Orbital 2 CMT connection CMT intersection
10−5 0.807±0.0116 0.932±0.0166 0.72±0.1034 0.99±0.0026 0.873±0.0162

0.0001 0.901±0.0094 0.962±0.0142 0.864±0.064 0.984±0.004 0.92±0.0052

0.001 0.952±0.01 0.929±0.0176 0.913±0.0238 0.989±0.004 0.924±0.0056

0.01 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0

111



CHAPTER 3. WELDING DEFECT DETECTION USING RANDOM CONVOLUTIONAL
KERNEL TRANSFORM

important random kernels for each abnormal subsequence. To give an illustrative explanation, we

plot the abnormal subsequences along with the most important random kernels at their associated

localization. Since the convolutions are performed with dilations, the weights of a random kernel

are spaced by the amount of the dilation used in the convolution, for example, if the weights of a

kernel are [0,1,1] and the convolution is performed using dilation of 5, then the weights will have

the timestamps t1=L, t2=t1+5, t3=t2+5, where L is the argument of the maximum value in the

convolution. Fig. 3.4 shows 4 abnormal subsequences of the circular welding signal, along with

the 3 most important kernels for each one shown in blue. We can notice that the random kernels

give an accurate indication of the abnormal shapes in the subsequences at their exact location. We

notice that when the abnormal shapes are complex, such as in the subsequence in Fig. 3.4 (a), the

three convolutional kernels are relatively different, and together they explain the complex abnormal

shape whereas in simpler abnormal shapes such as the level shift in 3.4 (c) and 3.4 (d), the three

most important kernels are relatively similar as these anomalies can be fully explained by a basic

shape.

To further investigate the explainability, we test the approach with the signals of the orbital

welding. Fig. 3.5 shows 4 abnormal subsequences of these signals, along with the three most

important random kernels. We notice again that the random kernels perfectly capture and explain

the abnormal shapes of these subsequences. Moreover, for the subsequences in Fig. 3.5.(b) and

Fig. 3.5 (d), we notice that the kernels of length 3, that we added to the possible lengths, perfectly

explain that the unusual downward trends that made these subsequences abnormal.

We are interested in exploring the variability of explainability resulting from the random gener-

ation of the convolutional kernels. For this purpose, we generate 500 random kernels four times,

and for each run, we extract the 3 most important kernels for an abnormal subsequence of the

signals of the orbital welding process. Fig. 3.6 shows the three most important kernels obtained

from each run. We notice that most of the time, they have a length of three and exhibit significant

similarities across runs. Furthermore, even when the kernels are more complex, as is the case with

the first two kernels in Fig. 3.6 (d), they still indicate the same part of the subsequence and high-

light an anomalous downward trend. These findings suggest that, despite the randomness of the

convolutional kernels, reliable explainability can be achieved each time.
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Figure 3.4: Examples of abnormal subsequences of the circular welding signals along with the three
most important kernels.

Figure 3.5: Examples of abnormal subsequences of the orbital welding signals along with the three
most important kernels.

We would like now to compare our explainability technique with SHAP that we introduced

earlier. For this purpose, we trained an IForest model and employed the TreeSHAP algorithm to
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Figure 3.6: The three most important random kernels obtained from 4 different runs.

estimate the features’ importance. Fig. 3.7 shows the three most important kernels extracted by

our technique and by the TreeSHAP from the same set of random kernels generated at training.

We notice again that our technique gives an accurate explanation while the TreeSHAP assigns

importance to shapes that do not appear in the subsequence, such as the second most important

kernels in the two subsequences. This shows that despite SHAP being theoretically optimal, it

might not be very useful in this particular problem of explaining abnormal subsequences using

random convolutional kernels, while our simple technique reveals the patterns that characterize the

anomalies.

After examining the explanations for various abnormal subsequences, we can deduce that our

proposed explainability approach is suitable for explaining anomalous shapelets and anomalous

trends. However, although ROCKET and OC-SVM may detect any type of abnormal subsequence,

not all of them can be explained by the presented approach. To give an example, we are aware of

one specific type of anomaly that cannot be effectively explained by random convolutional kernels,

which is observed in the signals of CMT welding and shown in Fig. 3.8 where the oscillations have

varying amplitudes over time, which is complex to explain with the basic shapes obtained with the

random convolutional kernels.
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Figure 3.7: The three most important random kernels obtained using our approach (in blue) and
those obtained with TreeSHAP (in red).

Figure 3.8: An example of an abnormal subsequence from the CMT welding signals that cannot be
effectively explained.

In order to study the impact of using a high number of kernels, we generated 5000 kernels at

the training stage. Fig. 3.9 shows the important kernels. We notice that the explainability did not

deteriorate and is even more accurate here than when using only 500 kernels since there are more

shapes to explain the abnormal patterns. This shows that even with this high number of kernels,

the proposed technique for characterizing the anomalies can still work effectively. However, with a

high number of kernels, finding the nearest neighbor for the features’ importance by Eq. 3.2 can

become time-consuming. A possible solution for this problem is to compute the feature importance

by replacing s in Eq 3.2 with the nearest support vector of the OC-SVM model. We tested this
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Figure 3.9: The three most important random kernels obtained with a model using 5000 random
kernels.

for some abnormal subsequences, and we found that the explainability results are identical to the

one obtained by the nearest neighbor in the training set, suggesting that it is possible to use the

support vectors for faster estimation of the features’ importance.

Another problem that can arise when using a high number of random convolutional kernels is the

risk that an important proportion of them will be highly similar, which can increase the computa-

tional complexity without adding much information. For this case, the explainability approach can

possibly benefit from the feature selection techniques that we study in the next subsection.

3.3.2 Results of the second approach

In this section, we present the results of the second approach that combines the features extracted

from the convolutions with random kernels and the use of feature selection and reduction techniques

to reduce the dimensionality of the feature vector. The objective of these experiments is to evaluate

the feasibility of developing a robust abnormal subsequence model that generalizes well across

different signals and that is computationally efficient.

We begin by studying the models combining the mv of the convolutions and the dimensionality
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reduction techniques. Table 3.2 gives the F1-scores for the signals of the three welding machines,

along with the median value of the number of the retained features for each of the dimensionality

reduction methods. We first notice that working with the original features does not always result

in the best models. For instance, for the second part of the orbital welding signals (denoted by

"orbital 2" in the table), performing any of the dimensionality reduction techniques results in an

increase in the F1-score. This is because using these dimensionality reductions simplifies the original

representation obtained by ROCKET, which can be very complex for these signals, as discussed

earlier.

Regarding feature selection techniques, we notice that the correlation-based technique improves

the accuracy for the circular welding signals and for those of the second part of the orbital signals and

only retains a low number of dimensions for these signals. However, it has a negative impact on the

accuracy for the first part of orbital signals, and it also decreases the accuracy for CMT signals, but

to a lesser extent. The IQR technique decreases the accuracy for most of the signals, but it highly

increases the accuracy for the "orbital 2" subsequences. Furthermore, both techniques increase the

Table 3.2: The results of the models using only mv in the feature vector.

Feat. selection γ Circular Orbital 1 Orbital 2 CMT connection CMT intersection

Without
feature
selection

10−5 0.807±0.0116 0.932±0.0166 0.72±0.1034 0.99±0.0026 0.873±0.0162

0.0001 0.901±0.0094 0.962±0.0142 0.864±0.064 0.984±0.004 0.92±0.0052

0.001 0.952±0.01 0.929±0.0176 0.913±0.0238 0.989±0.004 0.924±0.0056

0.01 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0

Correlation
10−5 0.923±0.0114 0.871±0.0204 0.928±0.044 0.986±0.0038 0.834±0.0158

0.0001 0.912±0.027 0.877±0.0252 0.833±0.0916 0.979±0.008 0.911±0.01

0.001 0.938±0.021 0.891±0.0226 0.888±0.0346 0.986±0.004 0.914±0.0086

0.01 0.96±0.0138 0.114±0.2568 0.924±0.026 0.0±0.0 0.0±0.0

Retained 11.0 154.0 18.0 275.0 274.5

IQR

10−5 0.709±0.0134 0.724±0.038 0.805±0.0868 0.981±0.0032 0.911±0.0034

0.0001 0.798±0.0172 0.867±0.0234 0.809±0.078 0.973±0.0106 0.91±0.007

0.001 0.906±0.0194 0.921±0.027 0.98±0.0104 0.983±0.0044 0.91±0.0048

0.01 0.921±0.0114 0.87±0.0298 0.909±0.023 0.982±0.0078 0.808±0.1618

Retained 100.0 100.0 100.0 100.0 100.0

PCA

10−5 0.803±0.012 0.928±0.0174 0.726±0.107 0.991±0.0022 0.868±0.0158

0.0001 0.898±0.01 0.963±0.0136 0.87±0.0598 0.987±0.0034 0.921±0.0046

0.001 0.96±0.009 0.937±0.017 0.954±0.0186 0.991±0.0028 0.924±0.0062

0.01 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0

Retained 159.0 256.0 67.0 313.0 318.0

PCA_OC

10−5 0.859±0.0136 0.818±0.0196 0.836±0.0512 0.959±0.0054 0.863±0.01

0.0001 0.879±0.0042 0.805±0.0258 0.886±0.037 0.959±0.0058 0.866±0.0088

0.001 0.883±0.004 0.828±0.0204 0.992±0.004 0.967±0.0074 0.87±0.0086

0.01 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0

Retained 498.0 485.0 499.0 476.0 475.5
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standard deviation of the F1-scores for most of the signals. Overall, the IQR technique seems to

better maintain a good accuracy across all the signals than the approach based on correlation.

We notice that among the considered dimensionality reduction techniques, performing PCA re-

sults in the best models in terms of accuracy, and this is for all the signals. Notably, the model

using PCA with the RBF parameter of OC-SVM γ = 0.001 generalizes the best. The PCA_OC

technique does not offer better accuracy than the classical use of PCA, except for the case of the

subsequences "orbital 2". This might be explained by the fact that the features shared between the

normal subsequence are possibly also shared with the abnormal subsequences. The technique works

well for the subsequences "orbital 2" because, as discussed earlier, these signals are composed of two

frequencies, which makes the representation obtained by ROCKET complex. Hence, by dropping

the first PCA components with the highest eigenvalues, the representation becomes simpler, and

we are able to better model the normal class. Overall, we conclude from Table 3.2 that performing

PCA results in the highest F1-scores.

We will now examine models that exclusively use the ppv in the feature vector. Table 3.3 gives the

Table 3.3: The results of the models using only ppv in the feature vector.

Feature selection Kernel Circular welding Orbital 1 Orbital 2 CMT connection CMT intersection

Without
feature
selection

10−5 0.978±0.0066 0.901±0.041 0.933±0.0642 0.952±0.0282 0.765±0.029

0.0001 0.976±0.0044 0.915±0.0192 0.988±0.0092 0.962±0.0168 0.857±0.0234

0.001 0.876±0.0056 0.896±0.0222 0.946±0.0372 0.984±0.0058 0.902±0.0204

0.01 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0

Correlation
10−5 0.975±0.0062 0.919±0.0266 0.891±0.0224 0.984±0.0074 0.812±0.0364

0.0001 0.972±0.0048 0.887±0.0338 0.871±0.017 0.967±0.0168 0.876±0.0272

0.001 0.927±0.0076 0.893±0.0264 0.843±0.0126 0.981±0.007 0.903±0.0206

0.01 0.477±0.4282 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0

Retained 221.5 299.5 131.5 278.0 314.5

IQR

10−5 0.978±0.0068 0.769±0.0718 0.867±0.1028 0.988±0.004 0.893±0.0298

0.0001 0.974±0.0044 0.754±0.0632 0.961±0.0382 0.973±0.0172 0.885±0.0312

0.001 0.87±0.0048 0.782±0.0452 0.954±0.0224 0.981±0.0054 0.927±0.0192

0.01 0.0±0.0 0.866±0.0426 0.0±0.0 0.993±0.0034 0.938±0.0132

Retained 375.0 104.0 329.5 100.0 102.0

PCA

10−5 0.967±0.01 0.895±0.0426 0.894±0.1138 0.94±0.0344 0.752±0.0336

0.0001 0.98±0.0046 0.919±0.0182 0.961±0.0364 0.953±0.0226 0.843±0.027

0.001 0.883±0.0066 0.908±0.0214 0.971±0.0204 0.98±0.0072 0.887±0.0204

0.01 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0

Retained 190.0 237.5 133.5 253.0 300.0

PCA_OC

10−5 0.951±0.0056 0.89±0.0244 0.839±0.0108 0.985±0.0054 0.928±0.0144

0.0001 0.945±0.0052 0.899±0.0226 0.833±0.0106 0.982±0.0058 0.927±0.0128

0.001 0.902±0.0046 0.919±0.021 0.814±0.0092 0.988±0.0046 0.948±0.0078

0.01 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0

Retained 487.0 488.0 497.0 488.0 479.0
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F1-scores and the number of the retained dimensions of each dimensionality reduction technique.

We notice that without feature selection, using ppv only results in higher accuracy for the circular

welding signals and those of the "orbital 2" than when using the mv but lower F1-scores are

observed for the remaining signals. The correlation-based dimensionality reduction preserves the

accuracy obtained with the whole set of features except for "orbital 2" subsequences, while the

IQR improves the accuracy for the CMT signals but decreases it for the orbital signals. We note

that IQR retains more than 100 dimensions most of the time, this is because there can be a high

number of dimensions where the PPV has zero variance and which are included in the retained

features. Similarly, The PCA_OC also enhances the accuracy for the CMT signals but retains a

large number of features. Regarding PCA, we notice that it preserves the same accuracy obtained

with the original features. In summary, using only the ppv does not offer better accuracy for all

the signals compared to when using mv.

Table 3.4 presents the results of the models that extract both mv and ppv from convolutions with

500 convolutional kernels. It is observed that the accuracy is higher when both features are used

in comparison to using each feature separately. One noteworthy result is that the model without

feature selection using the rbf parameter γ = 0.0001 generated F1-scores that are comparable to

the ones obtained using OC-SVM with distance substitution kernels. Furthermore, it outperforms

the techniques employed in the comparative study in the previous chapter for most of the signals.

This indicates that the ROCKET with OC-SVM could serve as a general method for identifying

abnormal subsequences when extracting both mv and ppv. As for the models that use dimensionality

reduction, the best accuracy is obtained using PCA. Its F1-scores are very comparable to the ones

produced with the original features, with significantly fewer dimensions. This finding confirms the

superiority of PCA over other dimensionality reduction methods that were considered in this study.

In summary, based on these findings, it can be concluded that using ROCKET is promising as a

generic method for abnormal subsequence detection. To further investigate the generalizability of

the approach, we test it on an electrocardiogram signal (Keogh, Taposh, et al. (2021)) and a signal

acquired from Mars curiosity rover (Hundman et al. (2018)) in Appendix F. Moreover, we conclude

that extracting both mv and ppv leads to the highest accuracy compared to when using only mv

or only ppv. Additionally, the results suggest that PCA is the most effective as it results in the

highest F1-scores compared to the other dimensionality reduction techniques. However, the use of
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Table 3.4: The results of the models using both mv and ppv in the feature vector.

Feature selection Kernel Circular welding Orbital 1 Orbital 2 CMT connection CMT intersection

Without
feature
selection

10−5 0.957±0.0114 0.967±0.0252 0.945±0.0352 0.994±0.003 0.91±0.0318

0.0001 0.976±0.0038 0.953±0.013 0.994±0.0052 0.987±0.0034 0.942±0.0062

0.001 0.0±0.0 0.919±0.0138 0.892±0.0268 0.993±0.003 0.946±0.0094

0.01 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0

Correlation

10−5 0.975±0.006 0.915±0.0234 0.882±0.02 0.989±0.0028 0.84±0.0168

0.0001 0.971±0.0058 0.889±0.0272 0.867±0.0142 0.983±0.0048 0.934±0.0114

0.001 0.926±0.0074 0.904±0.0204 0.84±0.011 0.989±0.0034 0.945±0.0072

0.01 0.283±0.3852 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0

Retained 224.5 441.0 143.0 537.0 573.0

IQR

10−5 0.944±0.0162 0.888±0.0272 0.834±0.1338 0.993±0.0036 0.821±0.0316

0.0001 0.971±0.0058 0.883±0.0418 0.969±0.0388 0.974±0.0136 0.912±0.0184

0.001 0.913±0.0096 0.889±0.031 0.955±0.0184 0.989±0.0038 0.928±0.016

0.01 0.0±0.0 0.018±0.054 0.0±0.0 0.0±0.0 0.0±0.0

Retained 473.5 206.0 430.0 200.0 202.0

PCA

10−5 0.945±0.0132 0.966±0.0256 0.931±0.0462 0.995±0.0036 0.9±0.0374

0.0001 0.978±0.004 0.961±0.0122 0.994±0.0056 0.988±0.0028 0.935±0.007

0.001 0.0±0.0 0.933±0.0124 0.938±0.0184 0.994±0.0026 0.927±0.0098

0.01 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0

Retained 305.0 436.5 162.0 466.0 526.0

PCA_OC

10−5 0.952±0.0052 0.903±0.0172 0.868±0.0144 0.985±0.004 0.917±0.0104

0.0001 0.94±0.0048 0.909±0.0168 0.863±0.0104 0.988±0.005 0.93±0.0084

0.001 0.886±0.0046 0.955±0.012 0.893±0.0104 0.991±0.0028 0.931±0.0084

0.01 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0

Retained 994.0 983.0 998.0 978.0 970.0

PCA does not significantly reduce the computation time since the whole set of kernels is needed to

perform the convolutions. For 500 kernels, the approach has a runtime that is comparable to the

one of the autoencoder from the previous chapter.

We would like now to study how accuracy changes with respect to the number of random kernels

used. To achieve this, we use 50, 200, 500, and 700 kernels and extract both ppv and mv. We

evaluate the accuracy of the models using the original features as well as the models that use PCA

since we have observed that it leads to the highest level of accuracy. Table 3.5 gives the results

of these models. We first notice that with only 50 kernels, we obtain models that outperform the

approaches considered in the comparative study of the previous chapter for most of the signals.

We also notice that increasing the number of kernels results in an increase in the F1-scores and a

decrease in the standard deviations for most of the signals. We remark that the orbital welding

signals are the ones that benefit the most from using more kernels. For the other signals, we do

not notice a significant improvement in the accuracy above 200 kernels. As in the classical use of

ROCKET for time series classification, we can conclude that generally, using more kernels results

in better accuracy for the problem of abnormal subsequence detection.
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Table 3.5: The results of the models as a function of the number of random kernels used to transform
the subsequences.

N kernels Features γ Circular welding Orbital 1 Orbital 2 CMT connection CMT intersection

50

Original

10−5 0.912±0.0282 0.877±0.03 0.704±0.1738 0.991±0.0062 0.823±0.0302

0.0001 0.915±0.0254 0.931±0.036 0.842±0.1176 0.988±0.0084 0.867±0.05

0.001 0.963±0.0124 0.931±0.028 0.938±0.0738 0.987±0.0042 0.925±0.0184

0.01 0.64±0.327 0.926±0.02 0.893±0.0362 0.993±0.0038 0.926±0.0168

PCA

10−5 0.91±0.0288 0.874±0.0312 0.637±0.1912 0.99±0.0066 0.819±0.0316

0.0001 0.912±0.0266 0.931±0.0358 0.795±0.1458 0.988±0.009 0.864±0.0516

0.001 0.964±0.0124 0.93±0.0292 0.904±0.1046 0.986±0.005 0.922±0.0174

0.01 0.696±0.2944 0.929±0.0226 0.911±0.0378 0.993±0.004 0.92±0.0188

Retained 58.5 73.0 37.0 77.0 80.0

200

Original

10−5 0.938±0.0152 0.907±0.0254 0.862±0.106 0.995±0.0024 0.828±0.0176

0.0001 0.972±0.0094 0.95±0.0184 0.978±0.0246 0.985±0.0034 0.929±0.0128

0.001 0.921±0.0094 0.935±0.0186 0.958±0.0186 0.99±0.0034 0.942±0.0104

0.01 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0

PCA

10−5 0.93±0.0164 0.907±0.0254 0.782±0.1572 0.995±0.0024 0.821±0.019

0.0001 0.97±0.01 0.954±0.0188 0.945±0.0644 0.986±0.0036 0.925±0.0148

0.001 0.927±0.0084 0.944±0.0178 0.978±0.0118 0.992±0.0034 0.935±0.0084

0.01 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0

Retained 174.5 225.0 97.0 249.0 272.0

500

Original

10−5 0.957±0.0114 0.967±0.0252 0.945±0.0352 0.994±0.003 0.91±0.0318

0.0001 0.976±0.0038 0.953±0.013 0.994±0.0052 0.987±0.0034 0.942±0.0062

0.001 0.0±0.0 0.919±0.0138 0.892±0.0268 0.993±0.003 0.946±0.0094

0.01 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0

PCA

10−5 0.945±0.0132 0.966±0.0256 0.931±0.0462 0.995±0.0036 0.9±0.0374

0.0001 0.978±0.004 0.961±0.0122 0.994±0.0056 0.988±0.0028 0.935±0.007

0.001 0.0±0.0 0.933±0.0124 0.938±0.0184 0.994±0.0026 0.927±0.0098

0.01 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0

Retained 305.0 436.5 162.0 466.0 526.0

700

Original

10−5 0.964±0.0112 0.956±0.0258 0.968±0.0286 0.974±0.0062 0.93±0.0036

0.0001 0.973±0.005 0.947±0.0184 0.991±0.0074 0.988±0.0028 0.944±0.0066

0.001 0.0±0.0 0.933±0.014 0.883±0.0262 0.995±0.0024 0.895±0.0154

0.01 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0

PCA

10−5 0.949±0.011 0.961±0.0252 0.953±0.0312 0.977±0.0066 0.927±0.004

0.0001 0.978±0.0044 0.959±0.0166 0.996±0.0046 0.99±0.0034 0.938±0.0054

0.001 0.0±0.0 0.943±0.013 0.958±0.0154 0.992±0.004 0.872±0.0152

0.01 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0

Retained 357.0 540.0 188.0 553.0 634.0

In the problem of abnormal subsequence detection, it is assumed that the moving window used

to extract subsequences has approximately the same length as the anomalies. This means that the

subsequences should be categorized based on their global shape, which suggests that using ROCKET

for this problem may work better if the convolutions are performed with high dilation values in

order to detect abnormal subsequences based on their overall shape. To test this, we modified

the sampling distribution of the dilations d=2x from x ∼ U(0, A), where A = log2
linput−1
lkernel−1 , to

x ∼ U( 12 × A,A) and we used only 50 random kernels in the transform in order to investigate if

there is a significant improvement in the accuracy. Table 3.6 gives the obtained results. We can
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Table 3.6: Results of the models using 50 random kernels with only high dilation values.

Feature selection Kernel Circular welding Orbital 1 Orbital 2 CMT connection CMT intersection

Without
feature
selection

1e-05 0.902+/−0.0214 0.898+/−0.0284 0.839+/−0.1214 0.142+/−0.1028 0.651+/−0.0264

0.0001 0.937+/−0.0206 0.926+/−0.0332 0.918+/−0.0644 0.866+/−0.1138 0.806+/−0.0252

0.001 0.975+/−0.006 0.93+/−0.022 0.988+/−0.0136 0.916+/−0.0558 0.868+/−0.0206

0.01 0.813+/−0.3144 0.921+/−0.0212 0.915+/−0.0292 0.919+/−0.0582 0.878+/−0.0186

PCA

1e-05 0.897+/−0.0248 0.897+/−0.0284 0.785+/−0.1392 0.135+/−0.1026 0.645+/−0.0268

0.0001 0.932+/−0.0208 0.929+/−0.0352 0.884+/−0.0854 0.858+/−0.1194 0.802+/−0.0256

0.001 0.976+/−0.0062 0.928+/−0.0224 0.979+/−0.0254 0.9+/−0.0684 0.864+/−0.0214

0.01 0.852+/−0.2492 0.923+/−0.018 0.936+/−0.029 0.901+/−0.0554 0.873+/−0.02

Retained 58.0 67.0 33.0 64.5 68.0

notice that improvements are obtained for the signals of the circular welding and the "orbital 2"

compared to the models using 50 kernels from Table 3.5. However, we notice that the performance

of the models for the CMT welding signals is worse here. After investigation, we found that using

high values of dilations results in decreasing the detection accuracy for two main reasons: when the

anomaly has a shorter length than the length of the subsequence, and when there are anomalies that

cannot be detected by their global shape. An example of this latter is the abnormal subsequence

in Fig. 3.8 that may not be effectively detected using random kernels with high dilation values. In

conclusion, if abnormal subsequences can be detected from their overall shape, using high dilation

values may lead to increased accuracy and may eliminate the need for a large number of random

kernels. Another interesting conclusion that we make from this study is that ROCKET allows the

detection of anomalies having variable length since there are variable kernel lengths and dilations

and the features extracted from them will have the same weight in the final prediction. More

formally, with a sufficient number of random kernels, we expect the approach to detect anomalies

whose lengths range from the minimum possible length of the random kernels (3 in our case) to

the length of the subsequence. This makes the approach less sensitive to the selection of the size of

the moving window used to extract the subsequences from the time series, which is an important

advantage as it can be a difficult task to select the optimal value of this parameter. This is further

shown in Appendix F.

The study conducted in this chapter shows that ROCKET can be effective for the problem of

abnormal subsequence detection in different types of signals. In summary, the findings of all the

above results are as follows:

• Extracting both mv and ppv results in better accuracy than when using each of the two
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features separately.

• The best dimensionality reduction technique in terms of preserving accuracy across different

signals is the PCA.

• Generally, the higher the number of kernels used in the transform, the higher the accuracy.

• If the abnormal subsequences can be detected based on their global shape, discarding low

values of dilations can result in an increase in the accuracy and may eliminate the need for a

high number of random convolutional kernels.

• ROCKET allows detecting abnormal patterns of different lengths in the subsequence.

In addition to the study presented here, we also investigated in Appendix G the use of ROCKET

for unsupervised welding defect diagnosis, with the aim of developing a framework based on

ROCKET for both defect detection and unsupervised diagnosis.

3.4 Conclusion

The current chapter addressed the limitations of OC-SVM with distance substitution kernels, specif-

ically the need to select an appropriate dissimilarity measure and the inability to provide informa-

tion on the anomalies detected. To overcome these limitations, we proposed in this chapter two

approaches based on the random convolutional kernel transform.

The first approach aims to integrate explainability in anomaly detection. It involves extracting

the maximum values of the convolutions and using them as input vectors for an OC-SVM model.

When an abnormal subsequence is detected, an importance value is assigned to each random kernel

to reveal the anomalous patterns. The most important kernels can then be used to explain the

abnormal patterns in the subsequence. The approach has proven effective in explaining welding

defects that appear as abnormal shapelets and trends in the voltage signal. Additionally, it has

been found that the explainability approach works well even when a large number of convolutional

kernels are employed. Furthermore, despite the randomness of ROCKET, the results showed that

the explanations provided remain consistent across different runs.
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In the second approach, we studied the combination of ROCKET with dimensionality reduction

techniques with the aim of investigating the use of this combination as a generic and efficient method

for abnormal time series subsequence detection. The results showed that extracting both the ppv

and mv from the convolutions with random kernels is promising as a generic representation of the

subsequences. Moreover, it was found that the best dimensionality reduction technique in terms of

preserving accuracy is the PCA. Experiments also revealed that when the abnormal subsequences

should be detected based on their global shape, discarding low dilation values can result in increasing

the accuracy while avoiding the need for a large number of random convolutional kernels. For both

approaches, we also found that ROCKET allows the detection of anomalies of different lengths in

the subsequences, which is an important advantage compared to most of the approaches that are

sensitive to the length of the subsequence.

Both approaches have some limitations. As seen from the results, the first approach cannot be

used to explain any type of abnormal subsequences, there exist anomalies that cannot be explained

by basic shapes. Moreover, a relatively large number of random kernels are needed to obtain good

explainability, which could result in relatively high computational complexity. As for the second

approach, performing PCA does not enhance the computational efficiency, since the convolutions

with the whole set of random kernels generated at training will be still needed.

In terms of future research, there are several possible directions that could be pursued. One inter-

esting subject would be to explore alternative feature selection techniques and anomaly detectors to

further improve the accuracy and decrease the computational complexity of the second approach.

Another promising area for investigation would involve the study of ensemble methods in order to

improve the accuracy and possibly minimize the number of random kernels needed to perform the

transform. Finally, it would be interesting to study the extension of the proposed approaches to

multivariate signals.

This chapter marks the end of our research work on welding defect detection through welding

electrical signals. In the next Chapter, we address the problem of identifying defects from weld

images using computer vision techniques.
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4.1 Introduction

This chapter addresses the subject of detecting welding defects from weld images. The necessity for

a computer vision system for welding defect detection arises because there are welding machines that

are not equipped with signal acquisition systems. Installing the appropriate sensors and studying

the signals that they capture can be a time-consuming task. On the other hand, working with weld

images may be more straightforward for the problem of post-welding defect detection. Hence, our

objective here is to develop a computer vision system able to recognize defects in an orbital GTAW

process similar to the one studied in the previous chapters, which consists in joining two connection

parts to a stainless steel tube that we call here the higher and the lower connection parts. There

are multiple types of tubes, characterized by their diameter and the distance between the locations

of the two connection parts. We are interested in the orbital welding of tubes because the defects

in this process can have a very small size. As a consequence, human visual inspection has a high

rate of missed detection, which results in defective tubes being used to produce non-conforming hot

water tanks.

The most critical anomalies in this process are burn-through and incomplete welding. We define

two types of burn-through, characterized by their size, as shown in Fig. 4.1. The small ones are

mostly found on the higher connection part weld, while the large ones occur mostly on the welds

of the lower connection part. In addition to the size, what differentiates the two types of burn-

through is that the first is shallow and appears only on the welding seam, while the second breaks

through the tube. The burn-through can be caused by geometrical imperfections of the parts, while

incomplete welding is due to errors in the welding machine. If these defects are not detected at this

stage, the anomalous tubes will be used in the next processes, producing a non-conforming final

product that will be discarded, which causes a very high scrap cost.

The field of computer vision has undergone significant advancements in recent years, which can

be mostly attributed to the emergence of sophisticated deep learning architectures. This has led to

the development of more advanced algorithms that have greatly improved performance for various

vision tasks, namely image classification, object detection, and segmentation. This has given rise

to applications in various fields, such as in autonomous driving, medical imaging, and robotics.
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Figure 4.1: Types of the orbital welding defects.

However, accurate welding defect detection from weld images is still a challenging task due to

the intricate nature of weld defects (Z. Zhang, Wen, et al. (2019)) as well as their small size.

Additionally, it can be difficult to distinguish between an image of a defect-free weld and an image

of a non-conforming weld due to the subtle differences between the two. The objective of this

chapter is to study the applicability of computer vision for the problem of welding defect detection,

with the aim of developing a system that can accurately and efficiently detect defects in weld images.

We study the feasibility of developing such a system that is intended to be used as a part of tube

welding production and must then satisfy the following requirements:

• The system must detect welding defects with high accuracy and fast inference in order to

ensure that the production process is not disrupted.

• The system must localize the defect in the weld.

• The system must require minimal effort to operate.

The chapter is organized as follows: in section 4.2, we review research works that deal with defect

detection based on computer vision. In section 4.3 we present the methods and materials. Section

4.4 presents and discusses the results of the developed model for defect detection from weld images,

and we finish the chapter with conclusions and future works.
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4.2 Literature review on computer vision-based defect detec-

tion

The recent advances in computer vision and sensor technology have given rise to applications across

various fields ranging from autonomous vehicles, to medical diagnosis and industrial monitoring.

We review here research works using computer vision for defect detection, with an emphasis on the

welding domain. We review works from the most used concepts for supervised defect detection from

images, which we can group into four major concepts: Classical image processing, classification,

object detection, and segmentation using deep neural networks. Additionally, we review the recent

works addressing the problem of unsupervised anomaly segmentation, where only defect-free images

are available at the training.

4.2.1 Supervised defect detection

Classical image processing

In classical image processing methods for defect detection, meaningful features are extracted from

the images, based on which defects are detected and classified. Shumin et al. (2011) proposed a

method for fabric defect detection using Histogram of Oriented Gradients to extract features from

images. SVM classifier with Adaboost are trained on the retrieved features and tested to identify

defects in image blocks obtained by a non-overlapping window. Valavanis et al. (2010) extracted

multiple geometric and texture features from X-ray images of welds and compared SVM, ANN, and

k-NN for the classification of images into 7 classes: defect-free, wormhole, linear slag, porosity, gas

pores, lack of fusion and crack. Sun et al. (2019) proposed a method for welding defect detection

based on background subtraction. The background is considered to be the good weld seam, whereas

the defects are treated as the foreground. To that end, they used a Gaussian Mixture Model with

two components. To detect the type of the defect in the foreground, they extracted features such

as brightness and gray values and used thresholding to categorize the defects into weld fusion, weld

perforation, and cold solder joint. Malarvel et al. (2021) extracted 8 geometrical and 2 texture
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features and employed a two-level classification procedure. In the first level, a binary SVM model

predicts if the defect is circular or rectangular, then the defect is classified by a multi-class SVM into

one of the 3 classes defined for each defect shape. Before the classification, prepossessing including

denoising and segmentation is performed on the x-ray images.

Deep neural networks for image classification

Convolutional neural networks (CNN) are a very efficient type of neural networks in image-related

tasks such as image classification and object detection due to their ability to automatically learn the

most representative features. They have been effectively used for welding defect detection in several

works. For instance, Khumaidi et al. (2017) proposed a Convolutional Neural Network composed of

2 convolutional layers to classify weld seam images into good, over-spatter, porosity, and undercut.

Xia et al. (2020) trained a model based on the ResNet18 architecture to classify molten pool

images during welding in order to detect undercut, incomplete penetration, burn-through, and

misalignment. Kumaresan et al. (2021) employed transfer learning to classify weld x-ray images

into 14 classes. Features extracted from pre-trained VGG16 and ResNet50 architectures are used

to experiment with SVM, logistic regression, and random forest models. The SVM with features

obtained from ResNet50 was found to be the most accurate.

To detect misalignment between the pieces at the pre-welding stage, Cruz et al. (2021) developed

an ensemble of 5 CNNs and used an evolutionary algorithm to optimize the architecture of the

networks and their hyperparameters that include the number and the size of convolutional filters,

the size of the pooling and the dropout rate. Perri et al. (2023) proposed a new CNN architecture

named WeldNet inspired by the famous Squeeznet (Iandola et al. (2016)) from which they borrowed

the fire modules. The CNN was used to classify weld grayscale X-ray images to identify lack of

penetration, cracks, and porosity. El Hachem et al. (2021) employed the MobileNet model, known

for its lightweight and low latency, to detect defective weld seams in the automotive industry. Z.

Zhang, Wen, et al. (2019) developed a CNN composed of 4 convolutional layers to detect burn-

through and lack of penetration.
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Deep neural networks for object detection

For some subjects where the location of faults in the image is needed, a simple classification of

images might not be suitable. Therefore, other works employ the object detection concept for

defect detection and localization. The neural networks in this case produce two predictions, a

bounding box and the class of the object inside the bounding box. There are two types of this kind

of neural network, region-based and regression-based. The difference between them is the method

of the bounding box prediction. The first type is two-stage detectors, the purpose of the first stage

is to extract the region with a high probability of containing an object from the target classes

while the second classifies the extracted object. The regression-based networks treat the problem

of bounding box prediction as a regression problem, where the goal is to predict the coordinates of

the box. Because of the high number of layers of object detectors, they are almost always trained

with techniques like transfer learning and data augmentation.

Wen-ming et al. (2019) use Faster R-CNN, a region-based object detector, to detect 7 welding

defects from x-ray images. The authors adapted the feature extractor to be able to operate with

grayscale images and obtained an accuracy of 58.6%. K. Zhang et al. (2021) Also developed a

Faster R-CNN where the feature extractor is replaced by the ResNet-101 architecture in order to

improve the detection of connectors weld in electronic products. The model had a final accuracy

of 94%. Changhong Chen et al. (2022) also proposed multiple improvements to Faster R-CNN,

such as combining ResNet-50 with Feature Pyramid Networks as a feature extractor and the use of

K-Means to propose new anchor boxes. The model was tested on 450 images with 5 weld classes

and a global accuracy of 93.72% was reported.

Regression-based were also used in the problem of welding defect detection. Zuo et al. (2021)

trained a regression-based model named You Only Look Once v3 (YOLO v3) to detect 4 types of

robotic welding defects. The authors reported an accuracy of 75.5%. However, they noted that

the accuracy decreased in real conditions to 71% because of the complex lightening conditions, as

argued by the authors. M. Liu et al. (2021) proposed a modification of the YOLO network for

weld defect detection in X-ray images by introducing modules with parameter-free units in order

to reduce the number of learnable parameters in the network.
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Deep neural networks for segmentation

Some works are interested not only in the localization of the defects with bounding boxes but also to

obtain a mask of every pixel in the image that forms the defect. This can be seen as object detection

at the pixel level. The segmentation can serve for further analysis of the defects, particularly for

measurement. Kim et al. (2022) developed a Mask-RCNN model for the segmentation of cracks

from thermal weld images and used medial axis transform to measure the length and the width of

the cracks. Under the keyhole TIG (K-TIG) welding, which is a variant of TIG welding that works

by allowing the electric arc to penetrate in the lower surface of the piece, Y. Chen et al. (2021)

Trained a Mask-RCNN model to segment the keyhole entrance after which they post-process the

mask to obtain its center. The deviation between the keyhole center and the weld center line is

measured in order to detect welding deviation, which is the aim of their study.

4.2.2 Unsupervised defect detection

Recently, there has been a growing interest in the unsupervised defect detection in images, espe-

cially after the publishing of an open access dataset named MVTEC by Bergmann, Fauser, et al.

(2019) that regroup real-world images of industrial pieces for which the goal is to develop models

for anomaly segmentation where only defect-free images are available at training. There are two

main categories of approaches that address this problem: reconstruction-based and dissimilarity-

based. Similar to anomaly detection in time series, models based on reconstruction are trained to

reconstruct the normal data from a latent space and define the anomaly score as the reconstruction

error, whereas dissimilarity-based models assign an anomaly score based on a distance measure.

Reconstruction-based approaches employ an autoencoder that learns to reconstruct the images

from the latent space. The anomalies are then detected and localized in pixel-wise fashion by

thresholding the anomaly map which is defined as the difference between the original image and

the reconstructed images. The assumption is that the autoencoder will fail to reconstruct abnormal

images. The challenge in this class of methods is the design of the autoencoder architecture and

the loss function used for the training. Collin et al. (2021) proposed the use of an autoencoder with

skip connections, where the loss function to minimize is the L2 distance between the original and
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the reconstructed images. In order to prevent the autoencoder from learning the identity mapping

and consequently having a low reconstruction error for abnormal images, the authors proposed to

corrupt the training images with stain-shaped noise. Bergmann, Löwe, et al. (2018) argued that

the use L2 loss has the shortcoming of assuming that neighboring pixels are independent and that

autoencoders using this loss function fail to detect structural differences between the original and

the reconstructed image. To overcome these shortcomings, they propose to use the Structural

Similarity Metric (SSIM, Zhou Wang et al. (2004)) in the loss function.

In dissimilarity-based approaches, the initial step involves dividing the image into multiple parts,

known in the community as image patches, since the goal is to detect and localize the anomalies (this

is similar to dividing a time series into subsequences). The most important task in these methods

is to learn a representation of the image patches. Once done, the dissimilarity measure in this new

feature space provides the anomaly score of the patches of an upcoming image. Multiple strategies

were proposed for representation learning and anomaly segmentation. For instance, Yi et al. (2020)

suggested the use of self-supervised concept for representation learning, where a CNN is trained for

a so-called pretext task, such as predicting the relative location of the patches. After training, the

classifier in the CNN is discarded and the output of the last layer of the CNN is used as a feature

vector. For anomaly detection in the patch-wise problem, the authors proposed an extension of the

deep support vector data description (Deep SVDD) to learn the normal hypersphere of the normal

class. Defard et al. (2021) proposed an approach named Patch Distribution Modeling that uses

pre-trained CNN models to extract a feature vector of the image patches. To detect anomalies, the

feature vectors of the normal patches are modelled as multivariate Gaussian distribution and the

Mahalanobis distance is used to test the normality of the patches of upcoming images.

4.3 Methods and materials

Images of the defects that we are interested in detecting can be relatively easy to obtain because

of the high number of tubes that are welded and the relatively high proportion of defective welds

in this process. This suggests that a supervised model can be adequate for our problem since

high detection accuracy is required and, since, supervised models are generally more accurate than
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unsupervised models (Aggarwal et al. (2017)). Additionally, another requirement discussed earlier

that must be met is the ability to localize the defect in the image. This can be achieved either

by employing the concept of object detection or segmentation. The latter provides more precise

localization as it operates at the pixel level, but it generally has higher computational complexity

and is more laborious in image preprocessing and labeling. For our specific application, precise

localization at the pixel level is not required, since we are not interested in further analysis of the

defects at this stage. The localization in our case is needed in order to assist the operator with the

weld quality inspection.

From the above discussion and the literature review, we can conclude that an object detection

model is the most suitable for our problem. Specifically, Yolov3 architecture is known to give a good

balance between accuracy and detection speed (C. Li et al. (2020), Nepal et al. (2022)). Therefore,

we investigate the use of Yolov3 in our case study.

4.3.1 You Only Look Once v3 network

Yolov3 is a fully convolutional network developed by Redmon and Farhadi (2018) that detects

objects at three stages, as shown in Fig. 4.2. It is an improvement of YOLOv2 (Redmon and Farhadi

(2017)) and YOLO (Redmon, Divvala, et al. (2016)). The network is a single-stage architecture,

which means that it accomplishes the problems of bounding box regression and the classification of

the object inside the box in a single shot. This is what makes YOLOv3 fast at inference, which is

an important criterion in our case as discussed before.

In YOLOv3, the input image is divided into S×S grid where each cell is responsible for predicting

one object and produces B bounding boxes for that object. In addition to a score of the object

presence, which is the probability that the cell is the center of the object, the total predictions

produce a tensor of (S × S) × (B × 5 + C) where B is the number of bounding boxes and C the

number of classes. In the default setting B is equal to 3. YOLOv3 uses a feature extractor named

Darknet-53 and detects the target objects at 3 different scales (Fig. 4.2) to be able to detect objects

of various sizes. At each one, a prediction tensor of size (S×S)× (B× 5+C) is produced. (S×S)

are equal to (13× 13), (26× 26) and (52× 52) for each scale, respectively.
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Figure 4.2: illustration of the YOLOv3 architecture.

The loss function of YOLOv3 is multi-objective and defined as follows:

λcoord

∑S2

i=0

∑B
j=0 1obj
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+
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2 + λnoobj
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1noobj
ij (osi − ôsi)

2

+

S2∑
i=0

1obj
i

∑
c∈classes

(pi(c)− p̂i(c))
2

(4.1)

Where:

• x̂i, ŷi are the predicted coordinates of the top left point of the bounding box

• ŵi, ĥi are the predicted width and height of the bounding box

• 1obj
i indicates that the object appears in the cell i

• 1obj
ij indicates that the jth bounding box in the cell i is responsible for the prediction.
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• λcoord is a weight to give less importance to the loss of predicted coordinates than the class

predictions in order to achieve better accuracy of the object detection.

• ôs is the predicted object score.

• λnoobj is a parameter used to ensure that the score is not zero for cells that do not contain

an object. This is added in order to prevent instabilities during training.

• p̂i(c) is the probability of the class of the object.

The first line in Eq. 4.1 is the loss for the problem of the bounding box regression, whereas the

second and the third line treat respectively the problem of the object presence and its classification.

The output of prediction for the bounding boxes does not give directly the absolute coordinates,

it uses a transformation to give coordinates relative to the location of the grid cell. Moreover, the

height and width are given as offsets to B predefined anchor boxes, which are obtained by clustering

Figure 4.3: The output of YOLO at each prediction level.
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ground truth bounding boxes of the COCO dataset. Since YOLOv3 produces a high number of

bounding boxes, the Non-Maximum Suppression algorithm is used to make sure that one bounding

box per object is returned. This is done by iteratively removing overlapping boxes.

In our experiments, we also use YOLOv3 tiny, which is a variant of the original architecture with

fewer layers proposed by the same authors. It uses the Darknet-13 feature extractor composed of

13 layers and produces predictions at two scales as shown by Fig. 4.4. Due to its lightweight, it is

much faster to train and faster at inference than Yolov3.

Figure 4.4: The architecture of YOLOv3 Tiny (Ding et al. (2019)).
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4.3.2 Evaluation metric

Object detectors are evaluated using Average Precision (AP). AP is an interpolation to approximate

the area under the precision-recall curve obtained by the following equations:

Precision =
TP

TP + FP
(4.2)

Recall =
TP

TP + FN
(4.3)

AP =

N−1∑
n=0

(rn+1 − rn) max
r̃:r̃≥rn+1

ρ(r̃) (4.4)

Where :

• TP, FP, FN are respectively the true positives, false positives, and false negatives.

• r is the recall.

• N is the number of images.

• ρ(r̃) the precision at recall r̃.

In order to declare if a prediction is true positive, two thresholds must be provided, the first

for the class probability (CP) below which the predictions are ignored using the Non-Maximum

Suppression procedure, and the second for the Intersection Over Union (IOU). The IOU measures

how well the model can localize the defects in the images according to the ground truth localization

by computing the area of intersection over the area of union between the predicted bounding boxes

and ground truth, as shown in Fig. 4.5.

To compare the models, we use the mean Average Precision metric, which is defined as follows:

mAP =

∑Nc

n=1(APn)

NC
(4.5)
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Figure 4.5: Illustration of the IOU.

Where :

• Nc is the number of classes,

• APn is the AP for the class n

4.3.3 Image acquisition system

The image acquisition system must be able to obtain images of the whole circular weld for both

connection parts simultaneously. Furthermore, the system must require minimal manipulations by

the operator in order to minimize the control duration. To satisfy these criteria, we proposed the

conception shown in Fig. 4.6. We found that 3 cameras are needed for each of the two welds to

capture the entire circular weld seam. The closed shape of the system minimizes the changes of the

brightness and also helps in preventing background errors that could be generated by the detector.

The rod in the middle is used for placing the tube and fixing its position.

Since the cameras’ locations are close to the tube, we do not need a high-resolution camera, we

use simple 2 Megapixel USB camera modules shown in Fig. 4.7. Each 3 cameras are connected to

the computer via a USB hub. This allows to open two cameras at a time, which accelerates the

control.

The system is easy to use, requiring the operator to simply place the tube inside the box sup-

ported by the rod and click the button on the developed graphical user interface to initiate the

image acquisition and the control. This meets the defined requirements for ease of use and the
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Figure 4.6: The proposed image acquisition system.

Figure 4.7: The USB camera module used for image acquisition.

reproducibility of the control conditions. In the next section, we show how the system is used for

the control of welds, along with the results of the developed YOLOv3 model.

4.4 Results and discussion

The image acquisition system was first used to obtain images of tubes with defective welds. The

images were captured directly in the workshop in order to acquire training and test images that

reflect the real conditions in which the model will be used. Moreover, the anomalies do not always

appear in the center of the weld. Thus, it is important that they appear at different locations in

the weld for training the detection model. We do this by capturing images of the anomalous welds

while rotating the tube placed in the image acquisition system.

We noticed that some impurities that the electrode can leave on the weld seam, which are not
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faults, and which appear as black circles could make the detector have a high false positive rate

as it may detect them as burn-through 1. This was also noted in the study by Sun et al. (2019)

where they proposed to treat them as "pseudo-defects". We follow this idea in order to prevent

false detection by adding these impurities as a fourth object to be detected. The 3 defects and the

pseudo-defect that we seek to detect are shown in Fig. 4.8.

Table 4.1 gives the number of objects in the images used for training and testing the model. Since

deep learning models require a high number of images. We augment the dataset by employing

random flips, translations, and crops for all the training images. We also use fine-tuning of the

weights of the Yolov3 model trained on the COCO dataset in order to accelerate the convergence

and overcome the problem of the relatively small dataset used in the study.

We train four models; two YOLOv3 and two YOLOv3 Tiny, with a batch size of 8 and 16 for

each architecture for 100 epochs using the TensorFlow framework. the input images are always

resized to 416× 416. We study two cases where CP is fixed at 0.3 and then 0.5 while keeping the

Figure 4.8: The four objects to be detected: three defects and one pseudo defect (impurity).
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Table 4.1: The number of images used in the study.

Category
burn-through 1 burn-through 2 No weld Impurity

Train 1169 379 210 186
Test 480 153 93 79

IOU threshold at 50%.

The results for each model are given in Table 4.2. For all models, the APs for burn-through 1 (BT

1) and Impurity (Imp) are lower than those of burn-through 2 (BT 2) and no weld (NW) defects.

This is explained by the fact that these objects are smaller. For YOLOv3 models, increasing batch

size to 16 increases the AP for burn through 1 and Impurity and the mAP. The mAP of the models

based on YOLOv3 tiny is reduced when the batch size is increased from 8 to 16. From mAP in

Table 4.2, we conclude that the model YOLOv3 trained with a batch size of 16 with CP=0.3 is the

most accurate and achieves a mAP of 93.91%, which can be seen as good results. We also note that

if we remove the AP of the Impurity class, which is only added in order to reduce false detection

and is not a real defect, the mAP increases to 96.63%.

The images used in the test are all of defective welds. To get an estimation of false positives of

the model when there are no anomalies, we test it on 230 images of good welds using the confidence

threshold of the selected model. Seven (7) false anomalies were detected, which represents 3% of

the number of images. This shows that the model generates only a few false positives and is ready

to be deployed. Fig. 4.9 shows the components of the proposed inspection system. We developed

a software using Python based on the YOLOv3 model shown in Fig. 4.10 that begins by acquiring

the images using the OpenCV library. After the 6 images are fed to the model, the predicted

bounding boxes are shown along with a pop-up that informs the operator if the model has found

any defect in any of the 6 images or if no defect is detected. Two buttons are created in the pop-up

that allows the operator to confirm if the control is correct. If not, the images are automatically

stored. This can help track the performance of the model over time and re-train the model with

these new instances in the future in order to improve the accuracy of the model. Furthermore, all

the images for which the model predicts the presence of defects are automatically saved, which can

help experts in further analysis of the welding defects and also enrich the database.
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Figure 4.9: The proposed system for the welding inspection.

The inference time of the YOLOv3 model is 0.45 seconds per image on average, while the whole

control from image acquisition to the prediction output takes around 30 seconds. With this meeting

the constraint on the control duration, the system is now in use as a part of the tube welding process

as shown in Fig. 4.11.

Despite the good detection results, the proposed methodology has some limitations, First, if we

Table 4.2: The AP of each class with the mAP of each model.
(BT 1= Burn-through 1, BT 2= Burn-through 2, NW= No Weld, Imp=Impurity).

Model Defect AP50 (CP=0.3) mAP AP50 (CP=0.5) mAP

Yolov3
(batch=8)

BT 1 91.686%

91.63%

90.927%

90.25%BT 2 99.329% 98.684%
NW 98.481% 97.429%
Imp 77.063% 73.988%

Yolov3
(batch=16)

BT 1 93.956%

93.91%

93.383%

92.81%BT 2 98.646% 98.005%
NW 97.288% 97.288%
Imp 85.783% 82.595%

Yolov3
Tiny

(batch=8)

BT 1 85.857%

85.99%

81.789%

82.13%BT 2 97.608% 96.976%
NW 92.948% 89.842%
Imp 64.584% 59.929%

Yolov3
Tiny

(batch=16)

BT 1 79.452%

83.95%

73.045%

78.22%BT 2 95.805% 93.977%
NW 94.808% 88.582%
Imp 65.761% 57.296%

142



CHAPTER 4. COMPUTER VISION-BASED WELDING DEFECT DETECTION

Figure 4.10: A screenshot of the developed GUI.

Figure 4.11: The quality control station based on the proposed system.

discard the AP of the pseudo-defect, we see that the AP of burn-through 1 is the lowest because

of the small size of this defect. In future works, improving the detection of this class of anomaly

should be investigated. Moreover, as the model is trained on images captured in fixed conditions,

its performance might degrade when illumination conditions change or when changing the type of

cameras used for image acquisition. Furthermore, since YOLO3 is a supervised model, it is not able

to detect the emergence of new classes of defects. A possible solution to this problem is to employ
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Figure 4.12: A defect detected by the model on an image of a different welding process.

unsupervised learning for anomaly segmentation, we explore this in Appendix H.

On the other hand, an advantage of the computer vision-based detection model is that it might be

used directly for detecting defects in the other welding processes or to fine-tune new models based

on the developed one. We tested this using an image of a defective CMT weld at the intersection

between the cylinder and the cap. As shown in Fig. 4.12 the model was able to detect the burn-

through in this weld.

4.5 Conclusion

In this chapter, we proposed a complete computer vision-based control system for post-welding

defect detection for the hot water tank connection tubes to overcome the problem of the unavail-

ability of signal acquisition systems. We designed and developed an easy-to-use image acquisition

system and software, and we compared models based on YOLOv3 and Yolov3 tiny with different

hyperparameters and selected the one with the highest accuracy for the industrial application. The

model has a mAP of 93.91% with the pseudo-defect and 96.63% without, which can be seen as a

high accuracy.

In future works, it would be interesting to compare YOLOv3 with other object detection networks

such as Fast R-CNN using more images and other welding defects. Furthermore, investigating and

statistically evaluating the direct use of the computer vision model in other welding processes in the

manufacturing of hot water tanks would be an interesting research direction. Another important
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improvement to be studied in future works is the detection of defects with a small size, especially

since they are the most critical as they are the hardest to detect by human visual inspection.

Collecting and annotating defective weld images can be expensive and time-consuming. Even if

efforts are put into defective weld image acquisition, it is unlikely that this would cover all types of

welding defects. Hence, investigating unsupervised welding anomaly detection from images would

be a highly relevant research direction in future works.
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General conclusion

Summary of the work

In this thesis, we proposed statistical and machine learning approaches for the problem of welding

defect detection and diagnosis in the context of the manufacturing of hot water tanks. In the first

chapter, we studied the feasibility of welding defect detection from welding signals, and we proposed

a supervised machine learning approach to detect and localize burn-through in the voltage signal.

Moreover, we conducted a study that showed the possibility of predicting the root cause of the

burn-through from the voltage signals. Furthermore, by studying the localization and the signature

of the defect in the signal, we proposed solutions to reduce the occurrence of burn-through in the

circular welding process.

In the second chapter, we proposed an approach based on One-Class SVM and distance substi-

tution kernels. This approach requires only data of defect-free welds in the training stage, which

overcomes the problem of the lack of labels, as it can detect any anomaly of the voltage signal.

Moreover, unlike most of the approaches proposed for welding defect detection, the proposed ap-

proach does not rely on designing adequate features for each welding process and instead works with

the raw signals and detects anomalies depending on their distance to the normal data, which makes

it easier to generalize across signals of different types captured from different welding processes.

Furthermore, unlike most distance-based techniques, One-Class SVM with distance substitution

kernels requires only the distances to the support vectors, which has the advantage of fast infer-

ence. Results of the experiments showed that the proposed approach is more accurate and faster
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than known techniques from the literature. Furthermore, we showed that the approach can be ex-

tended to multivariate welding signals by using dissimilarities defined for multivariate time series.

In addition to anomaly detection, we also proposed a diagnosis approach based on classifying

the anomalous subsequences of the signals using random convolutional kernel transform. This

method classifies the abnormal subsequences based on both the global and local patterns, which

is more convenient since there can be local patterns that differentiate between defects classes.

Furthermore, the approach is faster than shapelet-based techniques, which makes it more adequate

for our problem where fast inference is needed. Software based on both anomaly detection and

diagnosis we proposed in this work was developed and is in use for real-time monitoring of the

circular welding.

An additional method is proposed in Chapter 3 where we extended the random convolutional

kernel transform to the problem of anomaly detection. Two approaches were proposed. The first

approach aims to integrate explainability in anomaly detection. This is achieved by extracting

the maximum values of the convolutions and using them as input vectors for an OC-SVM model.

When an abnormal subsequence is detected, an importance value is assigned to each random kernel

to reveal the anomalous patterns. The most important kernels can then be used to explain the

abnormal patterns in the subsequence. The approach has proven effective in explaining welding

defects that appear as abnormal shapelets and trends in the voltage signal. Additionally, results

show that the explainability approach works well even when a large number of convolutional kernels

are employed. Furthermore, despite the randomness incorporated in the approach, the results

showed that the explanations provided remain consistent across different runs.

In the second approach, we studied the combination of random convolutional kernel transform

with dimensionality reduction techniques with the aim of developing a generic and efficient method

for abnormal time series subsequence detection. The results showed that extracting both the pro-

portion of positive values and the maximum value from the convolutions with random kernels is

promising as a generic representation of the subsequences. Moreover, results revealed that the

best dimensionality reduction technique in terms of preserving accuracy is the Principal Compo-

nent Analysis. Experiments also showed that when the abnormal subsequences should be detected

based on their global shape, discarding low dilation values can result in increasing the accuracy
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while avoiding the need for a large number of random convolutional kernels. For both approaches,

we also found that the transform allows the detection of anomalies of different lengths in the subse-

quences, which is an important advantage compared to most known approaches, which are sensitive

to the length of the window used to extract the subsequences from the time series.

Besides detecting welding defects from welding signals, we addressed in Chapter 4 the problem

of computer vision-based defect detection and we proposed a complete system that detects defects

from weld images. We designed and implemented an image acquisition system and we trained

a neural network able to localize and classify welding defects. We fine-tuned and compared pre-

trained models based on YOLOv3 and Yolov3 tiny with different hyperparameters and selected

the one with the highest accuracy for the industrial application. The model had a mean average

precision of 93.91% with the pseudo-defect and 96.63% without, which can be seen as high accuracy.

Software based on the trained neural network was developed and is in use in the production line

for automatic welding defect detection.

Perspectives for future works

There are multiple interesting directions for future works on the subject treated in this thesis. We

can classify the perspectives into three categories: defect detection, defect diagnosis, and prognosis.

Defect Detection

• We tested the One-Class SVM with distance substitution kernels using the Euclidean distance

and the lower bound of the Dynamic Time Warping. It would be interesting in future works

to study the use of other time series distances.

• We showed in Chapter 2 that One-Class SVM with distance substitution kernels can be used

for multivariate time series. It would be interesting to evaluate the approach using distances

that are able to take into consideration the correlation structure of the time series.

• Like most of the approaches intended for abnormal subsequence detection, OC-SVM with dis-
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tance substitution kernels can be sensitive to the length of the moving window used to extract

the subsequences. An interesting direction to overcome this shortcoming is to further explore

the two proposed approaches we proposed in the appendix, which are based on segmentation

to detect abnormal subsequences with variable lengths. This would allow avoiding the prob-

lem of tuning the length of the moving window and can be used to estimate the measures of

the defect based on the length of the corresponding abnormal subsequence in the signal.

• We assumed in the work of the thesis that the normality does not change over time. However,

this can occur. Hence, in future works, it would be interesting to extend the approaches in

order for the anomaly detector to automatically adapt to such changes, known in the literature

as concept drifts.

• We studied in Chapter 3 the combination of the random convolutional kernel transform with

dimensionality reduction techniques for the problem of anomaly detection. It would be rele-

vant to study in future works further dimensionality reduction techniques. Moreover, instead

of using One-Class SVM as the anomaly detector, it would be interesting to investigate the

use of other anomaly detection techniques with the random convolutional kernel transform.

• We proposed in this thesis distance-based and feature-based approaches for anomaly detection.

An interesting extension of the work would be to explore ensembling strategies to combine

both concepts.

• Concerning computer vision-based defect detection, a possible future work would be to further

study the approach we proposed in the appendix for the unsupervised defect detection from

weld images.

Defect Diagnosis

Concerning the diagnosis, we proposed in Chapter 2 a classification-based method for diagnosing

welding defects. In Chapter 3 we introduced explainability, and in the appendix the clustering of

abnormal subsequences based on the random convolutional kernel transform, which can be used as

unsupervised diagnosis methods.
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• As discussed throughout this thesis, a wide range of welding defects can occur. It would be

time-consuming and difficult to gather labels for all the possible defects in each welding pro-

cess. Hence, an interesting future work would be to extend the classification or the clustering

method to detect and adapt to the appearance of new classes of defects.

• For computer vision-based defect detection, a possible extension would be to use supervised

or unsupervised anomaly segmentation and the use of information, such as the measure of the

defect and its localization in the weld seam, for an automatic diagnosis.

Prognosis

Concerning prognosis, we propose the following subjects for future works:

• Exploring methods from the field of remaining useful life (RUL) estimation and early clas-

sification of time series for the early prediction of burn-through. This would allow stopping

the welding before the occurrence of the defect, which would result in reducing the scrap and

rework costs.

• In order to obtain a weld with high quality, it is important that the parts of the welding

machine are in a good health state. To ensure this, RUL estimation can be used to predict

the health state of the components and for scheduling maintenance actions. This could be

done by designing and studying the evolution over time of features extracted from the welding

signals that indicate the health state of the components, which are known as health indexes

in the literature of RUL estimation.

• We have seen that misalignment and burn-through are caused by distortions and non-conformities

in the parts to be assembled. Therefore, ensuring the quality of the parts to be assembled

is also an important factor in obtaining a defect-free weld. This can be done with the help

of machine learning. For example, computer vision systems can be developed to detect dis-

tortions in the pieces before launching the welding. In addition, it would be interesting to

study the causalities between successive welding processes in order to develop approaches that

predict, at the output of process i, the likelihood of obtaining a fault in process i + 1. An
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example would be the longitudinal welding, which impacts the quality of the circular welding,

as we saw in Chapter 1.
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Appendix

A Causality between welding signals

We noticed that in some cases, there is the signature of the burn-through both in the wire speed

signal and the voltage signal, as shown in Fig. 13. We were interested in investigating if, in this case,

the burn-through is caused by abnormal movements of the wire. To this end, we were interested

in studying the causalities between the signals. A time series Y is said to be causing another time

series X, if knowing Y reduced the error of predicting X. This is called Granger causality. To study

causality, the time series must be stationary. We employed Variational mode decomposition in

order to remove the trend component of the voltage signals. We then employed Transfer Entropy

(TE), which is a non-parametric causality measure from the information theory field. It detects

linear and non-linear causalities between time series. For the calculation of TE, the time series

Figure 13: An example of voltage and wire speed signals, where the burn-through is noticed in
both.
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Table 3: Results of Transfer Entropy estimated for the defective weld signals

Direction TE
Wire→ V oltage 0.0831
V oltage→Wire 0.2562

are considered stationary Markov processes. The TE from a time series Y to X (the amount of

information transferred from Y to X) is given by:

TEY−>X =
∑

p(Xn+1, X
k
n, X

l
n)log

p(Xn+1|Xk
n, Y

l
n)

p(Xn+1|Xk
n)

(6)

where:

• Xn, Yn are the processes X and Y at time n.

• k,l are the order of the Markov processes X and Y respectively. Chosen to be 1 in our work.

If Y does not cause X, the conditional probability p(Xn+1|Xk
n, Y

l
n) is equal to p(Xn+1|Xk

n), the TE is

then null, which indicates no information flow from Y to X. Table 3 in the two directions, we obtain

a TE value of 0.0831 in the direction of Wire→ V oltage and 0.2562 in the other direction. These

values suggest that there is more information transferred from the voltage to the wire speed signal,

indicating that burn-through initially appears in the voltage signal, which is then transferred to

the wire speed signal. This observation is consistent with the physics of TIG welding, as abnormal

wire speed or the absence of wire in welding is unlikely to cause burn-through.



B Whole time series anomaly detection

We are interested here in investigating the performance of the OC-SVM with distance substitution

kernels for the detection of abnormal whole time series. This can be formalized as: given a time

series xt of real values ordered in time with t ∈ [1, 2, ..n] where n is the length of the time series, we

seek to predict if the whole xt is normal or abnormal by analyzing them using a model trained to

recognize normal whole time series. The problem of abnormal whole time series is only artificially

different from the problem of abnormal subsequence detection. The goal here is to study the

comparison of the proposed approach with the other approaches when working with sequences with

higher lengths than those of the subsequences considered before.

To that end, we consider voltage signals from the circular welding and the orbital welding pro-

cesses. We consider a dataset composed of 2000 normal signals and 30 abnormal signals for the

former and 1500 normal signals and 50 abnormal signals for the latter. We follow the same experi-

mental protocol defined in Chapter 2 as well as the same distances for each process.

Results for the circular welding signals are given in Table 4. The OC-SVM with both kernels

and the autoencoder achieve an F-score of 1. The model with the RBF kernel is the fastest, as it

Table 4: Results for abnormal full-series detection in the circular welding process.

Model F-score 1 F-score 2 F-score 3 F-score 4 F-score 5 Mean Time
OC-SVM RBF L2 1 1 1 1 1 1 0.06
OC-SVM ND L2 1 1 1 1 1 1 0.93

kthNN L2 0.938 0.968 0.938 0.984 0.938 0.953 19.59
Mean k-NN L2 0.938 0.984 0.923 0.952 0.923 0.944 19.59

Features & IForest 0.87 0.811 0.896 0.857 0.923 0.871 4.29
AutoEncoder 1 1 1 1 1 1 0.476

Table 5: Results for abnormal full-series detection in the orbital welding process.

Model F-score 1 F-score 2 F-score 3 F-score 4 F-score 5 Mean Time
OC-SVM RBF lb_improved 0.99 0.99 1 1 0.98 0.992 0.318
OC-SVM ND lb_improved 0.990 0.990 1 0.990 0.980 0.990 0.216

kth-NN lb_improved 1 0.971 1 0.98 0.943 0.979 3.64
Mean k-NN lb_improved 0.99 0.971 1 0.99 0.926 0.975 3.64

Features & IForest 0.935 0.917 0.951 0.935 0.891 0.926 2.35
AutoEncoder 0.947 0.929 0.959 0.935 0.906 0.940 0.104



required only 1 support vector for the prediction, while the one with the ND kernel required 16

support on average. The feature-based approach has the lowest F-score while the k-NN approaches

are the slowest as the signals have a relatively high length here.

For the signals of the orbital welding, roughly the same results are obtained, as Table 5 shows.

The ranking of the methods in terms of F1-scores remains the same. In terms of the inference

time, the autoencoder is slightly faster here than the OC-SVM models but has a lower average

F1-score. The results obtained here further show the advantages of the proposed approach for fast

and accurate anomaly detection.



C The software for real-time anomaly detection and diagnosis

in the circular welding process

The pipeline of the software is given in Fig. 14. The signal is first analyzed by the anomaly detector.

Abnormal subsequence is extracted from the signal if any and classified using the ROCKET model.

Fig. 15 shows the developed software that is in a dashboard format. It shows the two voltage

signals and gives the localization of the anomaly if any. The tables diagnosis at the right hand give

the diagnosis, which consists of the probability of anomalies obtained by transforming the anomaly

scores into probabilities using the logistic function and the class of the anomalies along with the

probability of the classification.

Figure 14: The pipeline of the circular welding monitoring.

Figure 15: A screenshot of the developed software.



D Detecting abnormal subsequences of variable lengths

We propose here two approaches that can be used to detect variable length anomalies in time

series. The first component of the two approaches is change point detection. Given a time series

x = (x1, ..., xn), change point detection consists in determining the times τ1 : m, where m << n, at

which a change occurs in the probability density distribution of the time series. Here, we consider

inferring τ1 : m based on the change in the mean using the R package changepoint which uses the

likelihood ratio and the PELT algorithm to find multiple change points in a time series.

After segmenting the time series into homogeneous segments of variable lengths, we can use one

of the proposed approaches shown in Fig. 16 to be able to learn the normality and to detect

anomalies in variable length subsequences. The first approach that we propose consists in using

an elastic dissimilarity with OCSVM that handles variable length subsequences such as the Shape

Based Distance (SBD), which is a non-metric dissimilarity. In the process of calculating SBD(x,y),

where x = (x1, x2, .., xm) and y = (y1, y2, .., yn), y is kept static while x is slid over y, at each shift

s ∈ [−n, n], the inner product is computed to determine the similarity. The shift of a sequence x is

Figure 16: The two proposed approaches for detecting abnormal variable length subsequences.



defined as follows:

xs =


(

s︷ ︸︸ ︷
0, .., 0, x1, .., xn−s) if s ≥ 0

(x1−s, .., xn,

s︷ ︸︸ ︷
0, .., 0) if s < 0

(7)

The cross-correlation vector CCw=Rw−m of length 2n− 1 where w ∈ [1, ...2n+ 1] is given by:

Rk(x, y) =


∑m−k

l=1 xl+k.yl k ≥ 0

R−k(x, y) < 0

(8)

The SBD is then computed by transforming the maximum value CCw to a normalized dissimi-

larity:

SBD(x, y) = 1−max
w

(
CCw(x, y)√

R0(x, x)R0(y, y)
) (9)

In the case where lock-step measures are preferable, the second approach can be employed. It

uses Uniform Scaling, which is an interpolation approach, in order to scale the variable length

subsequences into a fixed length. To scale a time series x of length m to produce a new time series

x′ of length n, the Uniform Scaling is defined by the following formula:

x′
j = x⌈j∗m/n⌉, 1 ≤ j ≤ n (10)

We consider here scaling the subsequence to the length 300. We investigated both approaches by

training from 50 normal voltage signals from the circular welding segmented using the change point

method. We tested on a test signal containing an abnormal subsequence. The results are shown

in Fig.17. There are 3 subsequences in the test signal, and 3 anomaly scores are then produced

by each approach. From Fig.17 we can notice that both approaches have the same ranking of the

subsequence in terms of abnormality.

These results encourage further investigation in this research direction for welding defect detec-

tion. We considered here mean change detection for segmenting the time series. In future works,

other change detection should be considered, as segmentation is important in these approaches.



Figure 17: Anomaly scores produced by each approach for the test signal.



E Pseudocode of ROCKET for explainable abnormal subse-

quence detection

The pseudocode highlighting the important steps for training an OC-SVM model using the trans-

form obtained by ROCKET is given in Algorithm 3, while the testing phase is given by Algorithm

4. Finally, the pseudocode for explaining the abnormal patterns is given in Algorithm 5.

Algorithm 3 Train OC-SVM with ROCKET

1: Ŝ ▷ Subsequences of some normal time series
2: w, d = generate_kernels(k) ▷ Generate k kernel weights w and their dilations d.
3:
4: for (i =1 to |Ŝ|) do
5: for (j =1 to k) do
6: conv_output← apply_kernel(Ŝi, w[j], d[j])
7: transform_train[i, j]← max(conv_output)
8: end for
9: end for

10: model← train_ocsvm(transform_train, ν, γ) ▷ Fit the OC-SVM model with the
parameters ν,γ.

Algorithm 4 Predictions with OC-SVM and ROCKET
1: xt ▷ The test time series
2: τ ▷ Threshold of the anomaly scores
3: S ← get_subsequences(xt, w) ▷ Subsequences of the test time series
4: for (i =1 to |S|) do
5: for (j =1 to k) do
6: conv_output← apply_kernel(Si, w[j], d[j])
7: transform_test[i, j]← max(conv_output)
8: end for
9: end for

10: Anomaly_scores← model.predict(transform_test)
11: Final_predictions← convert_to_binary(Anomaly_scores, τ) ▷ 0 if

Anomaly_scores[i] > τ , 1 otherwise



Algorithm 5 Explainability
1: S ▷ An abnormal subsequence.
2: x′ ▷ The transform of the abnormal subsequence S.
3: N_imp_kernels ▷ The number of important kernels to return.
4: FI ← x′ −NN(transform_train) ▷ The features importance defined as the

difference between the transform of the abnormal subsequence and its nearest neighbor in the
training data.

5: for (i =1 to k) do
6: if FI[i] ≤ 0 then
7: FI[i]← 0
8: end if
9: end for

10: Imp_order ← order(FI)[1 : N_imp_kernels] ▷ The indexes of the most important kernels
that explain the abnormal subsequence.

11: for (i =1 to N_imp_kernels) do
12: conv_output← apply_kernel(S,w[Imp_order[i]], d[Imp_order[i]])
13: L[i]← argmax(conv_output) ▷ the location of the maximum value of the convolution.
14: end for
15: Explainnation← [FI, L]



F Testing ROCKET and OC-SVM on time series from differ-

ent domains

We are interested here in investigating the use of the ROCKET with OC-SVM for anomaly detection

in other types of signals in order to further study its ability to work with different types of signals.

For this, we consider an electrocardiogram (ECG). Fig. 18 shows an ECG signal with multiple

abnormal subsequences. For training, we use the first 1000 points to extract training subsequences.

The length of the subsequence is set to the length of one period of the signal. We use here the original

features extracted from the convolutions with 500 kernels without dimensionality reduction, and

Figure 18: ECG signal along with the ground truth labels and anomaly scores.



we set the parameter γ of the RBF kernel to 10−4. Fig. 18 gives the anomaly scores generated with

OC-SVM along with the ground truth labels for each subsequence. We notice from the anomaly

scores that the abnormal subsequences are perfectly detected. This shows again that the approach

is promising as a generic method for abnormal subsequence detection.

We also tested the approach on a signal from the Mars Curiosity Rover shown in Fig. 19 that

has a subtle anomaly annotated by the experts. Employing the approach with the same parameters

set earlier gives the anomaly scores given in Fig. 19. We notice that despite the complexity of this

anomaly, the approach perfectly detects it. Fig. 20 shows a zoom on the abnormal subsequence. We

can notice that the only difference from a normal subsequence is that the abnormal subsequence

Figure 19: Mars Curiosity rover signal along with the ground truth labels and anomaly scores.

Figure 20: A zoom on the abnormal subsequence.



Figure 21: Anomaly score obtained with the larger moving window.

has a steeper rate of increase, which can be difficult to detect for other methods. We noted In

3 that ROCKET allows detecting variable length anomalies in a subsequence. We are interested

here in verifying this for this signal. For this, we extracted subsequences using a moving window

whose size is equal to 4 times the length of one period of the signal. Fig. 21 shows the signal with

the produced anomaly scores for each of the subsequences. We notice that despite the difference

between the length of the anomaly and the length of the moving window, the method perfectly

detects the anomaly. Other approaches that we tested were not able to detect the anomaly. This

verifies that ROCKET allows the detection of even small anomalies in a relatively long subsequence.

A problem that can arise when detecting a small anomaly in a subsequence is to localize the

anomaly found. The first approach proposed that deals with explainability is well-suited for this

task. Fig. 22 shows the subsequence where an anomaly is detected along with the three most

important kernels. We can notice that they perfectly point to the abnormal rate of increase. These

good results encourage further investigations into the ability of the approaches to detect and explain

abnormal subsequences in time series from different domains.



Figure 22: The most important kernels obtained using the proposed explainability approach.



G Welding defect diagnosis using ROCKET and K-means

We are interested here in investigating the use of the representation of the subsequences obtained

by the random convolutional kernel transform in order to cluster the abnormal subsequences for

the goal of automatic welding defect diagnosis. ROCKET can be interesting for this particular

task because it does not require the abnormal subsequences to be aligned. Thus, we expect that

ROCKET would give better clustering results than distance-based methods where alignment is

required.

We suppose here that abnormal subsequences are detected using the second approach in Chapter

3 that combines ROCKET and PCA. We consider here the abnormal subsequences of the orbital 1

and CMT connection welding (the same that were used in Chapter 2 and Chapter 3) and the use

of the K-means algorithm to cluster the abnormal subsequences from the output of the PCA. In K-

means, we need to specify the number of clusters k. to estimate k, we compute the silhouette score

of the clustering obtained from varying the value of k from 2 to 14, and we choose the k that results

in the maximum silhouette score. Fig 23 (a) shows the silhouette scores for the orbital welding

subsequences and Fig 23 (b) the ones for the CMT welding. From the figure, we can conclude that

the optimal value of k is 5 and 4 for the orbital and the CMT welding signals, respectively. Fig. 24

shows the 5 abnormal subsequences of the orbital signals that are the most representative of the 5

centroids. In the first cluster, we find subsequences with an abnormal upward trend, while the fifth

Figure 23: Silhouette scores for different numbers of clusters for (a) orbital signals’ subsequences
and for those of the CMT signals (b).



Figure 24: The centroids of the abnormal subsequences of the "orbital 1" signals.

cluster groups subsequences with an abnormal downward trend. Cluster 2 consists of subsequences

with a level shift, and Cluster 4 groups subsequences where there is an abnormal change in the

amplitude of the oscillations. Cluster 3 had only one subsequence that has a peak with amplitude.

The centroids of the abnormal subsequences of the CMT signals are depicted in Fig. 25. Cluster 1

consists of subsequences where there are flat regions indicating the stopping of the movements of the

electrode, which indicates the occurrence of a burn-through. Cluster 3 contains subsequences having

irregular waveforms indicating abnormal movement of the electrode. Cluster 2 groups subsequences

where we see a part having an abnormal amplitude of the oscillations, possibly indicating that the

electrode is retrieved before the occurrence of the short circuit. Cluster 4 is similar to Cluster 3

but has more regions where the short circuit does not occur.

The results obtained from the clustering of the abnormal subsequences suggest that ROCKET is a

suitable feature extractor that can be used to cluster abnormal subsequences from different signals,

allowing us in our case study to perform an unsupervised diagnosis of welding defect and to have a

complete framework for the detection and the diagnosis of welding defects based on ROCKET.



Figure 25: The centroids of the abnormal subsequences of the CMT connection welding signals.



H Unsupervised welding defect detection from weld images

We are interested here in studying the feasibility of unsupervised anomaly detection from weld

images by employing an autoencoder that is trained to reconstruct defect-free weld images.

The acquired images by the image acquisition system developed exhibit a significant amount of

background. The first task that needs to be accomplished for anomaly detection to work well is

to only extract the weld from the whole image. For that, we used U-net, which is an autoencoder

designed for image segmentation. We trained the model using 700 weld images and by using image

augmentation. The model showed high accuracy in segmenting weld images. An example of the

segmentation is shown in Fig. 26.

Once the images are segmented. We trained an autoencoder for anomaly detection (27) where

the encoder consists of 3 layers of 32, 64 and 128 kernels respectively, and the latent space of length

200. We tried both the L2 and the Structural similarity measure (SSIM) losses. We found that the

Figure 26: The segmentation of the welded tube image.

Figure 27: An illustration of the autoencoder for image reconstruction.



latter is more suitable for weld images, as it reconstructs better the texture of the weld. As seen

in 4, this type of anomaly detection method uses the difference between the reconstructed image

and the original image to produce an anomaly map, where high values would indicate anomalies.

We tested the autoencoder on some of the normal and abnormal segmented weld images. Fig.

28 shows three examples. The top image shows a normal weld. We notice that the autoencoder

reconstructs this image with low errors, as can be seen from the anomaly map in the third column.

For the second and the third image that show welds with burn-through, the autoencoder fails at

reconstructing the defect, which allows their detection from the anomaly map shown in the third

column where we see high error values at the location of the burn-through. This shows that this

unsupervised approach can be used to detect welding defects from images. There are some remarks

that can be made from this first study that would help in future works in this direction. First,

we notice from Fig. 28 that the autoencoder cannot reconstruct the sharp edges of the tube with

Figure 28: Some results of anomaly detection from the anomaly map.



high accuracy. This introduced high reconstruction errors in the anomaly map that can cause a

high false positive rate. Moreover, we notice that even with the use of SSIM loss, the model does

not reconstruct the texture of the weld for some images. This can be seen in the second image at

the region around the coordinates (150,200). This means that the autoencoder might need a high

number of normal training images in order to be able to reconstruct the complex texture of the

weld in any image.
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Résumé

La fabrication de ballons d’eau chaude nécessite de multiples processus de soudage. La qualité des

soudures est cruciale pour la durabilité du produit. Elle est souvent évaluée par inspection visuelle,

chronophage et sujette à l’erreur. Une solution à ce problème est l’utilisation de l’apprentissage

automatique qui est une technologie se développant de plus en plus dans l’industrie manufacturière.

L’objectif de cette recherche est le développement de systèmes de détection et de diagnostic des

défauts de soudage par apprentissage en exploitant les signaux capturés lors du soudage automatique

et des images de la soudure. La détection des défauts est difficile dans le contexte des ballons d’eau

chaude pour de nombreuses raisons: la complexité de la dynamique du soudage, la variété des

procédés de soudage et le large éventail de défauts. Les approches proposées ici répondent à ces

défis, afin de développer des systèmes utilisables en temps réel. Après avoir étudié la faisabilité de la

détection, nous proposons une approche basée sur le One-Class SVM et les noyaux de substitution

de la distance. Cette approche ne nécessite que des données brutes de soudures normales et détecte

les anomalies en fonction de leur distance à la normalité, ce qui facilite la généralisation. De plus,

nous avons proposé une approche de diagnostic basée sur la classification. Une autre contribution

est proposée qui étende la transformée de noyaux aléatoires au problème de détection d’anomalies

et l’explicabilité. De plus, nous proposons un système détectant les défauts à partir d’images de

soudure composé d’un système d’acquisition et d’un réseau neuronal capable de localiser et de

classer les défauts.

Mots clés: Détection et diagnostic des défauts; Soudage à l’arc; Détection d’anomalie; Séries

temporelles; Dissimilarité; Détection d’objet.



Abstract

The manufacturing of hot water tanks requires multiple welding processes. The quality of the

welds is crucial for the durability of the product. It is often assessed by visual inspection, which is

time-consuming and prone to error. One solution to this problem is the use of machine learning,

which is a growing technology in the manufacturing industry. This research aims to develop systems

for detecting and diagnosing welding faults using machine learning by exploiting the signals captured

during automatic welding and images of the weld. Fault detection is difficult in the context of hot

water storage tanks for many reasons: the complexity of welding dynamics, the variety of welding

processes, and the wide range of faults. The approaches proposed here treat these challenges with

the aim of developing systems that can be used in real-time. After studying the feasibility of

detection, we propose an approach based on One-Class SVM and distance substitution kernels.

This approach only requires raw data of conforming welds and detects anomalies based on their

distance from normality, which facilitates the generalization. Moreover, we propose a diagnostic

approach based on classification. Another contribution is proposed, which extends the random

kernel transform to the problem of anomaly detection and explainability. In addition, we propose

a system detecting defects from welding images composed of an acquisition system and a neural

network capable of locating and classifying defects.

Keywords: Defect detection and diagnosis; Arc welding; Anomaly detection; Time series; Dis-

similarity; Object detection.
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