Physical and quasi-chemical study of point defects in aluminium or niobium-doped polycrystalline tin dioxide - Mines Saint-Étienne Access content directly
Journal Articles Journal of the European Ceramic Society Year : 1999

Physical and quasi-chemical study of point defects in aluminium or niobium-doped polycrystalline tin dioxide

Abstract

The influence of aluminium or niobium doping on the thermoluminescence (TL) of polycrystalline tetravalent tin dioxide is studied. The non-stoichiometry of SnO2−x is characterised by the presence of oxygen vacancies. These vacancies, once or twice ionised behave as donor centres. Introduction of trivalent or pentavalent impurities in the matrix constitute an efficient way to control the native defects of SnO2. Thus, tin oxide samples are doped with aluminium(III) or niobium(V) by impregnation technique. Hydroxyl groups OH are also supposed to play an important role in the TL of the oxide The deconvolution of SnO2 TL curve is carried out in order to identify the trap parameters of the defects Besides, a quasi-chemical model is developed. This theoretical approach allows to foresee the behaviour of points defects versus dopant species concentration. Correlations with experience lead to the identification of these point defects.
No file

Dates and versions

emse-00432715 , version 1 (17-11-2009)

Identifiers

Cite

Laurent Poupon, Philibert Iacconi, Christophe Pijolat. Physical and quasi-chemical study of point defects in aluminium or niobium-doped polycrystalline tin dioxide. Journal of the European Ceramic Society, 1999, 19 (6-7), pp.747-751. ⟨10.1016/S0955-2219(98)00305-7JournalofEuropeanCeramicSociety⟩. ⟨emse-00432715⟩
54 View
0 Download

Altmetric

Share

Gmail Facebook X LinkedIn More