Extracting Decision Correlation Rules

Abstract : In this paper, two concepts are introduced: decision correlation rules and contingency vectors. The first concept results from a cross fertilization between correlation and decision rules. It enables relevant links to be highlighted between sets of patterns of a binary relation and the values of target items belonging to the same relation on the twofold basis of the Chi-Squared measure and of the support of the extracted patterns. Due to the very nature of the problem, levelwise algorithms only allow extraction of results with long execution times and huge memory occupation. To offset these two problems, we propose an algorithm based both on the lectic order and contingency vectors, an alternate representation of contingency tables.
Type de document :
Chapitre d'ouvrage
Database and Expert Systems Applications, Springer Berlin / Heidelberg, pp.689-703, 2009, 〈10.1007/978-3-642-03573-9_57〉
Liste complète des métadonnées

https://hal-emse.ccsd.cnrs.fr/emse-00464030
Contributeur : Sabine Salmeron <>
Soumis le : lundi 15 mars 2010 - 17:19:19
Dernière modification le : jeudi 18 janvier 2018 - 02:08:56

Identifiants

Collections

Citation

Alain Casali, Christian Ernst. Extracting Decision Correlation Rules. Database and Expert Systems Applications, Springer Berlin / Heidelberg, pp.689-703, 2009, 〈10.1007/978-3-642-03573-9_57〉. 〈emse-00464030〉

Partager

Métriques

Consultations de la notice

42