Rheology of methane hydrate slurries during their crystallization in a water in dodecane emulsion under flowing

Abstract : An original experimental set-up was developed and used for studying crystallization and rheology of methane hydrate/water/dodecane system. Methane is injected in a water in dodecane emulsion at low temperature and high pressure in order to form methane hydrate crystals and to move the suspension by gas lift. It behaves as a Newtonian fluid. Dynamic viscosity and conversion of water and gas into gas hydrate crystals were measured during the process for various water contents. Experimental results were explained by means of a model including nucleation, growth and agglomeration. Due to the high value of crystal and drop concentrations, agglomeration takes place through three-body collisions between one water drop and two already formed agglomerates. Resulting agglomerates were considered as fractal-like ones. During crystallization and agglomeration, the effective volume fraction of drops and porous agglomerates is increased, and then suspension viscosity increases. When all water drops are crystallized, agglomeration stops and viscosity does not change.
Type de document :
Article dans une revue
Chemical Engineering Science, Elsevier, 2006, 61 (2), pp.505-515. 〈10.1016/j.ces.2005.07.001〉
Liste complète des métadonnées

https://hal-emse.ccsd.cnrs.fr/emse-00497840
Contributeur : Andrée-Aimée Toucas <>
Soumis le : mardi 6 juillet 2010 - 09:24:05
Dernière modification le : mardi 23 octobre 2018 - 14:36:07

Identifiants

Citation

Annie Fidel-Dufour, Frédéric Gruy, Jean-Michel Herri. Rheology of methane hydrate slurries during their crystallization in a water in dodecane emulsion under flowing. Chemical Engineering Science, Elsevier, 2006, 61 (2), pp.505-515. 〈10.1016/j.ces.2005.07.001〉. 〈emse-00497840〉

Partager

Métriques

Consultations de la notice

116