DEFORMATION MICROSTRUCTURE AND TEXTURE EVOLUTION OF {110}<112> Al-0.3wt.%Mn SINGLE CRYSTALS COMPRESSED IN A CHANNEL-DIE
Abstract
Crystal subdivision patterns of microbands have been extensively reported but mostly by studies on only one section, using either TEM or SEM-EBSD. To better correlate substructure with slip patterns a systematic study of the 3D deformation microstructure in a deformed single crystal (i.e. over the 3 perpendicular surfaces) has been carried out. The microstructure and microtexture evolutions during plane strain deformation of high purity single crystals of Al-0.3%wt.Mn alloy with initial ideal and near-brass{110}<112> orientations were characterised by TEM and high resolution FEG-SEM/EBSD after strains of 0.15 and 0.56. These two different techniques enable one to examine the crystal subdivision deformation pattern at different microscopic scales, on the 3 orthogonal sections, i.e. perpendicular to the nominal <110>, <112> and <111> crystallographic directions. Particular attention is paid to a comparison of the microband orientations with the expected slip traces of the 2 active slip systems on all 3 surfaces. It is concluded that the microband boundary alignment corresponds very well to the traces of the crystallographic {111} planes, on which most of the slip occurs.