Heuristics for the multi-item capacitated lot-sizing problem with lost sales
Abstract
This paper deals with the Multi-item Capacitated Lot-Sizing problem with setup times and lost sales. Because of lost sales, demands can be partially or totally lost. To find a good lower bound, we use a Lagrangian relaxation of the capacity constraints, when single-item uncapacitated lot-sizing problems with lost sales have to be solved. Each subproblem is solved using an adaptation of the O(T^2) dynamic programming algorithm of Aksen et al. [5]. To find feasible solutions, we propose a non-myopic heuristic based on a probing strategy and a refining procedure. We also propose a metaheuristic based on the adaptive large neighborhood search principle to improve solutions. Some computational experiments showing the effectiveness and limitation of each approach are presented.