Karhunen-Loève decomposition of Gaussian measures on Banach spaces - Mines Saint-Étienne
Pré-Publication, Document De Travail Année : 2017

Karhunen-Loève decomposition of Gaussian measures on Banach spaces

Résumé

The study of Gaussian measures on Banach spaces is of active interest both in pure and applied mathematics. In particular, the spectral theorem for self-adjoint compact operators on Hilbert spaces provides a canonical decomposition of Gaussian measures on Hilbert spaces, the so-called Karhunen-Lò eve expansion. In this paper, we extend this result to Gaussian measures on Banach spaces in a very similar and constructive manner. In some sense, this can also be seen as a generalization of the spectral theorem for covariance operators associated to Gaussian measures on Banach spaces. In the special case of the standard Wiener measure, this decomposition matches with Paul Lévy's construction of Brownian motion.
Fichier principal
Vignette du fichier
Karhunen_loeve_decomposition_gaussian_measures.pdf (203.04 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

emse-01501998 , version 1 (04-04-2017)
emse-01501998 , version 2 (06-04-2017)
emse-01501998 , version 3 (10-04-2017)
emse-01501998 , version 4 (03-05-2017)

Licence

Identifiants

Citer

Xavier Bay, Jean-Charles Croix. Karhunen-Loève decomposition of Gaussian measures on Banach spaces. 2017. ⟨emse-01501998v2⟩
751 Consultations
917 Téléchargements

Altmetric

Partager

More