Allocating Metrology Capacity to Multiple Heterogeneous Machines

Abstract : The measurement of lots to check process quality is crucial but also a non-added value operation in manufacturing systems. This paper is motivated by semiconductor manufacturing, where metrology tools are expensive, thus limiting metrology capacity which must be optimally used. In a context where multiple heterogeneous machines are sharing a common metrology workshop, the problem of minimising risk while considering metrology capacity arises. An integer linear programming (ILP) model is presented, which corresponds to a multiple-choice knapsack problem. Simple rounding heuristics are proposed, whose results on randomly generated instances are compared with the optimal solutions obtained using a standard solver on the ILP. Additionally, numerical experiments on industrial data are presented and discussed.
Type de document :
Article dans une revue
International Journal of Production Research, Taylor & Francis, 2016, 54 (20), pp.6082-6091. 〈10.1080/00207543.2016.1187775〉
Liste complète des métadonnées

https://hal-emse.ccsd.cnrs.fr/emse-01555691
Contributeur : Stéphane Dauzère-Pérès <>
Soumis le : mardi 4 juillet 2017 - 12:20:59
Dernière modification le : jeudi 5 octobre 2017 - 15:00:06

Identifiants

Collections

Citation

Stéphane Dauzere-Peres, Michael Hassoun, Alejandro Sendon. Allocating Metrology Capacity to Multiple Heterogeneous Machines. International Journal of Production Research, Taylor & Francis, 2016, 54 (20), pp.6082-6091. 〈10.1080/00207543.2016.1187775〉. 〈emse-01555691〉

Partager

Métriques

Consultations de la notice

38