Minimizing the number of workers in a paced mixed-model assembly line - Mines Saint-Étienne Access content directly
Journal Articles European Journal of Operational Research Year : 2019

Minimizing the number of workers in a paced mixed-model assembly line

Abstract

We study a problem of minimizing the maximum number of identical workers over all cycles of a paced assembly line comprised of m stations and executing n parts of k types. There are lower and upper bounds on the workforce requirements and the cycle time constraints. We show that this problem is equivalent to the same problem without the cycle time constraints and with fixed workforce requirements. We prove that the problem is NP-hard in the strong sense if and the workforce requirements are station independent, and present an Integer Linear Programming model, an enumeration algorithm and a dynamic programming algorithm. Polynomial in k and polynomial in n algorithms for special cases with two part types or two stations are also given. Relations to the Bottleneck Traveling Salesman Problem and its generalizations are discussed.
Fichier principal
Vignette du fichier
WorkersTSP 9 March.pdf (196.3 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

emse-01840007 , version 1 (16-07-2018)

Identifiers

Cite

Xavier Delorme, Alexandre Dolgui, Sergey Kovalev, Mikhail Kovalyov. Minimizing the number of workers in a paced mixed-model assembly line. European Journal of Operational Research, 2019, 272 (1), pp.188 - 194. ⟨10.1016/j.ejor.2018.05.072⟩. ⟨emse-01840007⟩
213 View
412 Download

Altmetric

Share

Gmail Facebook X LinkedIn More