Investigating the origins of the 'double rise' shape in hydrogen permeation transients on pure iron, - Mines Saint-Étienne
Journal Articles Corrosion Science Year : 2024

Investigating the origins of the 'double rise' shape in hydrogen permeation transients on pure iron,

Abstract

This study delves into the underlying causes of the atypical 'double rise' shape observed in hydrogen permeation rising transients on pure iron and low alloy steels. Electrochemical permeation experiments on pure iron reveal a fast initial rise, a short pseudo-plateau, and a slow second rise. Similar patterns emerge in the decaying transients. The micro-porosity present in material appears to act as reversible traps, affecting hydrogen diffusion. Surface damage, confirmed by SEM analysis, exacerbates the issue. Utilizing numerical simulations, an FEM model effectively replicates the 'double rise' behavior, attributed to limited recombination/dissociation kinetics at bulk-cavity interfaces. Overall, micro-porosity is identified as the primary factor behind this unique permeation curve shape.
Fichier principal
Vignette du fichier
SA_AD Corrosion Science 2024.pdf (6.6 Mo) Télécharger le fichier
Origin Publication funded by an institution
Licence

Dates and versions

emse-04563722 , version 1 (30-04-2024)

Licence

Identifiers

Cite

Sarah Alzein, Alixe Dreano, Frédéric Christien. Investigating the origins of the 'double rise' shape in hydrogen permeation transients on pure iron,. Corrosion Science, 2024, 231, pp.111998. ⟨10.1016/j.corsci.2024.111998⟩. ⟨emse-04563722⟩
24 View
15 Download

Altmetric

Share

More