Evaluating Scalability in Information Retrieval with Multigraded Relevance - G2I / RIM : Réseaux, Information, Multimédia
Communication Dans Un Congrès Année : 2006

Evaluating Scalability in Information Retrieval with Multigraded Relevance

Résumé

For the user’s point of view, in large environments, it can be desirable to have Information Retrieval Systems (IRS) that retrieve documents according to their relevance levels. Relevance levels have been studied in some previous Information Retrieval (IR) works while some others (few) IR research works tackled the questions of IRS effectiveness and collections size. These latter works used standard IR measures on collections of increasing size to analyze IRS effectiveness scalability. In this work, we bring together these two issues in IR (multigraded relevance and scalability) by designing some new metrics for evaluating the ability of IRS to rank documents according to their relevance levels when collection size increases.
Fichier principal
Vignette du fichier
imafouo2006.pdf (182.89 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00406849 , version 1 (05-03-2024)

Identifiants

Citer

Amélie Imafouo, Michel Beigbeder. Evaluating Scalability in Information Retrieval with Multigraded Relevance. Third Asia Information Retrieval Symposium, AIRS 2006, Oct 2006, Singapore, Singapore. pp.545-552, ⟨10.1007/11880592_44⟩. ⟨hal-00406849⟩
440 Consultations
30 Téléchargements

Altmetric

Partager

More