Development of Single Chamber Solid Oxide Fuel Cells (SCFC)
Abstract
Single Chamber Solid Oxide Fuel Cells (SCFC) have been prepared using an electrolyte as support (Ce0.9Gd0.1O1.95 named GDC). Anode (Ni-GDC) and different cathodes (Sm0.5Sr0.5CoO3 (SSC), Ba0.5Sr0.5Co0.2Fe0.8O3 (BSCF) and La0.8Sr0.2MnO3 (LSM)) were placed on the same side of the electrolyte. All the electrodes were deposited using screen-printing technology. A gold collector was also deposited on the cathode to decrease the over-potential. The different materials and fuel cell devices were tested under propane/air mixture, after a preliminary treatment under hydrogen to reduce the as-deposited nickel oxide anode. The results show that SSC and BSCF cathodes are not stable in these conditions, leading to a very low open circuit voltage (OCV) of 150 mV. Although LSM material is not the more adequate cathode regarding its high catalytic activity towards hydrocarbon conversion, it has a better chemical stability than SSC and BSCF. Ni-GDC-LSM SCFC devices were elaborated and tested; an OCV of nearly 750 mV could be obtained with maximum power densities around 20 mW cm–2 at 620 °C, under air–propane mixture with C3H8/O2 ratio equal to 0.53.
Domains
Chemical and Process EngineeringOrigin | Files produced by the author(s) |
---|
Loading...