Data Preparation in the MineCor KDD Framework - Mines Saint-Étienne Access content directly
Conference Papers Year : 2011

Data Preparation in the MineCor KDD Framework

Abstract

Yield enhancement is a key issue in semiconductor manufacturing. Data mining tools can therefore be helpful, by extracting hidden links between numerous complex process control parameters. In order to highlight correlations between such parameters, we developed a complete Knowledge Discovery in Databases (KDD) model, called MineCor. Its mining heart uses a new method derived from association rules programming, based on lectic search and contingency vectors. After recalling these concepts, this paper focuses on data preprocessing and transformation functions, which have an important impact on final results. An overall presentation of these functions, of some significant experimental results and of associated performances are provided and finally discussed.
No file

Dates and versions

emse-00648333 , version 1 (05-12-2011)

Identifiers

  • HAL Id : emse-00648333 , version 1

Cite

Christian Ernst, Alain Casali. Data Preparation in the MineCor KDD Framework. IMMM 2011 : The First International Conference on Advances in Information Mining and Management ISBN: 978-1-61208-162-5, Oct 2011, Barcelona, Spain. pp 16-22. ⟨emse-00648333⟩
74 View
0 Download

Share

Gmail Mastodon Facebook X LinkedIn More