Evaluating Scalability in Information Retrieval with Multigraded Relevance - Mines Saint-Étienne
Book Sections Year : 2006

Evaluating Scalability in Information Retrieval with Multigraded Relevance

Abstract

For the user's point of view, in large environments, it can be desirable to have Information Retrieval Systems (IRS) that retrieve documents according to their relevance levels. Relevance levels have been studied in some previous Information Retrieval (IR) works while some others (few) IR research works tackled the questions of IRS effectiveness and collections size. These latter works used standard IR measures on collections of increasing size to analyze IRS effectiveness scalability. In this work, we bring together these two issues in IR (multigraded relevance and scalability) by designing some new metrics for evaluating the ability of IRS to rank documents according to their relevance levels when collection size increases.

Dates and versions

emse-00680442 , version 1 (19-03-2012)

Identifiers

Cite

Amélie Imafouo, Michel Beigbeder. Evaluating Scalability in Information Retrieval with Multigraded Relevance. Ng, Hwee : Leong, Mun-Kew : Kan, Min-Yen : Ji, Donghong. Lecture Notes in Computer Science Third Asia Information Retrieval Symposium, AIRS 2006, Singapore, October 16-18, 2006. Proceedings, Springer Berlin / Heidelberg, p 545-552, 2006, ⟨10.1007/11880592_44⟩. ⟨emse-00680442⟩
76 View
0 Download

Altmetric

Share

More