Multicore Mining of Correlated Patterns

Abstract : In this paper, we present a new approach relevant to the discovery of correlated patterns, based on the use of multicore architectures. Our work rests on a full KDD system and allows one to extract Decision Correlation Rules based on the Chi-squared criterion that include a target column from any database. To achieve this objective, we use a levelwise algorithm as well as contingency vectors, an alternate and more powerful representation of contingency tables, in order to prune the search space. The goal is to parallelize the processing associated with the extraction of relevant rules. The parallelization invokes the PPL (Parallel Patterns Library), which allows a simultaneous access to the whole available cores / processors on modern computers. We finally present first results on the reached performance gains.
Type de document :
Communication dans un congrès
IARIA. IMMM 2013, Nov 2013, Lisboa, Portugal. pp 18-23, 2013
Liste complète des métadonnées

Littérature citée [9 références]  Voir  Masquer  Télécharger

https://hal-emse.ccsd.cnrs.fr/emse-00921628
Contributeur : Christian Ernst <>
Soumis le : vendredi 20 décembre 2013 - 17:05:57
Dernière modification le : vendredi 9 mars 2018 - 11:25:35
Document(s) archivé(s) le : vendredi 21 mars 2014 - 09:19:05

Fichier

2013IMMM.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : emse-00921628, version 1

Citation

Christian Ernst, Alain Casali. Multicore Mining of Correlated Patterns. IARIA. IMMM 2013, Nov 2013, Lisboa, Portugal. pp 18-23, 2013. 〈emse-00921628〉

Partager

Métriques

Consultations de la notice

345

Téléchargements de fichiers

184