Texture descriptors based on adaptive neighborhoods for classification of pigmented skin lesions

Abstract : In this paper, different texture descriptors are proposed for the automatic classification of skin lesions from dermoscopic images. They are based on color texture analysis obtained from (1) color mathematical morphology (MM) and Kohonen Self-Organizing Maps (SOM) or (2) Local Binary Patterns (LBPs), computed with the use of local adaptive neighborhoods of the image. Neither of these two approaches need a previous segmentation process. In the first proposed descriptor, the adaptive neighborhoods are used as structuring elements to carry out adaptive mathematical morphology operations which are further combined by using Kohonen SOM, and it has been compared with a non-adaptive version. In the second one, the adaptive neighborhoods enable geometrical feature maps to be defined, from which Local Binary Patterns (LBP) histograms are computed. Also, it has been compared with a classical LBP approach. A ROC analysis of the experimental results shows that the adaptive neighborhood-based LBP approach yields the best results. It outperforms the non-adaptive versions of the proposed descriptors and the dermatologists' visual predictions.
Liste complète des métadonnées

Littérature citée [29 références]  Voir  Masquer  Télécharger

https://hal-emse.ccsd.cnrs.fr/emse-01225076
Contributeur : Fatima Lillouch <>
Soumis le : jeudi 5 novembre 2015 - 15:21:24
Dernière modification le : jeudi 19 avril 2018 - 18:32:02
Document(s) archivé(s) le : samedi 6 février 2016 - 11:30:26

Fichier

J Debayle Journal of Electroni...
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Víctor González-Castro, Johan Debayle, Yanal Wazaefi, Mehdi Rahim, Caroline Gaudy-Marqueste, et al.. Texture descriptors based on adaptive neighborhoods for classification of pigmented skin lesions. Journal of Electronic Imaging, SPIE and IS&T, 2015, 24 (6), pp.061104. 〈http://electronicimaging.spiedigitallibrary.org/article.aspx?articleid=2443786〉. 〈10.1117/1.JEI.24.6.061104〉. 〈emse-01225076〉

Partager

Métriques

Consultations de la notice

304

Téléchargements de fichiers

312